
Turing
Machines

Marcin
Sydow

Turing Machines

Marcin Sydow

Turing
Machines

Marcin
Sydow

Turing Machines - the Role

Basic tool for complexity theory. An abstract model of
computation machine:

conceptually simple

can execute any computation possible on �known�
computers

resources consumption models well �real� computers

Turing
Machines

Marcin
Sydow

Properties of TM

First property is very important, since it makes it possible to
formulate and prove theorems concerning machines with the use
of only the simplest mathematical concepts.

Second property is connected with famous Church-Turing
thesis: each function that can be e�ectively computed can be

computed on a Turing Machine (i.e. TM is a su�ciently
powerful computational model)

Third property is particularly important for complexity theory:
time and space used by TM do not di�er signi�cantly (in
asymptotic sense) from those used by �real� computers.

Turing
Machines

Marcin
Sydow

Computation Model

Description, time and space consumption of computation is
dependent on the particular model.

Real computers are quite complex, thus there is a need to
de�ne something simpler, yet actually not very di�erent.

There exist many models of computation, including:

Turing Machine

RAM machine

logical circuits

Turing
Machines

Marcin
Sydow

Turing Machine

Alan Turing (1912-1954)

Turing machine was proposed as the model of �any possible
computation� in 1936, mainly as a notation for expressing
algorithms and for logicians to determine which problems are
possible to be algorithmically computed.

Simple computation model:

unlimited tape divided into cells for storing symbols

head that can read/write symbols from/to the tape

control module that can be in one of (�nitely) many states
and, based on the current state and current symbol,
decides on the next steps:

overwrite current symbol with some other symbol
move the head to left or right
change current state

Turing
Machines

Marcin
Sydow

Formal De�nition of Turing Machine

M = (Q,Σ, Γ,#, δ, q0,F), where:

Q is a �nite set of states

Σ is a �nite set of input symbols that represent the input (written on
the tape)

Γ is a �nite set of possible symbols to be written on the tape Σ ⊆ Γ

empty symbol # (not an input symbol) that �lls almost all cells of
the tape

δ transition function. It is a partial function
δ : Q × Γ→ Q × Γ× {←,→}.
By δ(A, x) = (B, y ,K) we denote that TM in state A and reading
symbol x gets to state B, writes symbol x and moves the head to left
or right: (K =←), (K =→).

q0 initial state

F is a set of accepting states (subset of Q). TM terminates when any
of accepting states is reached

Turing
Machines

Marcin
Sydow

How does TM work?

We make the following assumptions about the initialisation of
TM:

the tape is �lled with in�nitely many empty symblos except
some �nite contiguous region �lled with input symbols
(input word).

head is over the leftmost input symbol

state is set to q0
Then, the machine works accordingly to the δ function. It will
change the state, move the head, read and write symbols. until
any of the conditions happen:

TM reaches one of the accepting states (we say �TM
accepts the input� or simply �accepts�)

TM in state A reads x and δ(A, x) is not de�ned (we say
�TM halts with an error�)

It may also happen, that TM never reaches any of the
conditions - in such case TM never halts

Turing
Machines

Marcin
Sydow

Representation

How to represent a particular TM?

a tabular representation of the δ function. Each row
contains sequence: A,x, B,y,K, that represents
δ(A, x) = (B, y ,K). Anything else, except the initial state
and accepting states can be derived from the table.

graph (state diagram): vertices are states, direct edges
from A to B represents transition with label of the form
x,y,K (meaning δ(A, x) = (B, y ,K)).

Turing
Machines

Marcin
Sydow

Exercises

De�ne a TM that solves the following task:

recognises palindromes ww← : w ∈ {0, 1}∗

multiplies 2 given numbers (unary encoded) separated by 0

resets the head to the leftmost symbol

terminates with clear tape (erases the input word)

Turing
Machines

Marcin
Sydow

TM and Languages. Partially Decidable Languages

De�nition

The language of M denoted as L(M) ⊆ Σ∗, is the set of those
input words for which M accepts. We also say that L(M)
recognises (or accepts) the language L(M)

De�nition

A language L ⊆ Σ∗ is called recursively enumerable (or partially
decidable) i� there exists machine M such that L = L(M).

Comment: why �partially?�. Since for w ∈ L, the machine halts
(accepts). However for w /∈ L, the machine can loop (work
endlessly).

Turing
Machines

Marcin
Sydow

Decidable Languages

De�nition

Machine M has stop property if for any word w ∈ Σ∗ M always
halts. Language L ⊆ Σ∗ is recursive (or decidable) i� there
exists TM M with stop property so that L = L(M)

Remark: There exists language that is not decidable.

Exercise: Show that if L1 ∈ Σ∗ and L2 ∈ Σ∗ are decidable then
L1 ∩ L2 and L1 ∪ L2 are decidable.

Turing
Machines

Marcin
Sydow

Decidable Languages

De�nition

Machine M has stop property if for any word w ∈ Σ∗ M always
halts. Language L ⊆ Σ∗ is recursive (or decidable) i� there
exists TM M with stop property so that L = L(M)

Remark: There exists language that is not decidable.

Exercise: Show that if L1 ∈ Σ∗ and L2 ∈ Σ∗ are decidable then
L1 ∩ L2 and L1 ∪ L2 are decidable.

Turing
Machines

Marcin
Sydow

Decidable Languages

De�nition

Machine M has stop property if for any word w ∈ Σ∗ M always
halts. Language L ⊆ Σ∗ is recursive (or decidable) i� there
exists TM M with stop property so that L = L(M)

Remark: There exists language that is not decidable.

Exercise: Show that if L1 ∈ Σ∗ and L2 ∈ Σ∗ are decidable then
L1 ∩ L2 and L1 ∪ L2 are decidable.

Turing
Machines

Marcin
Sydow

Encoding of Turing Machines

Importantly, any Turing Machine can be encoded as a sequence
of symbols so that it can be written as input to some other
Turing Machine.
One of such encodings:

symbols and states can be represented by consecutive natural numbers

q = |Q|, Q = {0, 1, . . . , q − 1}
s = | Σ|

g = |Γ|. It is convenient to assume that numbers in Σ ⊆ Γ are compatible
with those in Γ.

the number representing the empty symbol

d - the number of de�ned (argument,value) pairs of δ

next, the sequence of d 5-tuples of natural numbers A < q, X < g, B < q,

Y < g, K ∈ {0, 1} with the following meaning:

δ(A,X) = (B,Y ,←), for K=0.
δ(A,X) = (B,Y ,→), for K=1.

Turing
Machines

Marcin
Sydow

Turing machines as input words

We can write an encoding of a Turing machine (a sequence of
natural numbers de�ned on the previous slide) with unary
encoding, separated by symbols of 0 and treat such a TM
encoding sequence as an input word (for some other machine!)
over {0, 1} alphabet.
It is very important that it is a �nite word.

Similarly, we can always encode the current con�guration of any
TM in similar way.

Turing
Machines

Marcin
Sydow

Time complexity of Turing Machine

Time complexity of Turing Machine M on an input word w,
denoted as T(M,w) is the number of steps done by the machine
before it halts. If it does not, we set T(M,w) = ∞
We can also de�ne time complexity of a machine itself as
follows:

Function f : N→ N is time complexity of M i�
∀n∈N : f (n) = max{T (M,w) : w ∈ Σn} (assuming it halts)

Turing
Machines

Marcin
Sydow

Space complexity of Turing Machine

Space used by TM M on input word w, denoted as S(M,w) is
de�ned as the number of tape cells that were visited by the
head before M halted. If M does not halt, it is not de�ned.

We say that f : N→ N is space complexity of M (with stop
property) i� ∀n∈N : f (n) = max{S(M,w) : w ∈ Σn}

Turing
Machines

Marcin
Sydow

Multi-tape Turing Machine

The basic model of Turing Machine has many variants.

(Example of extension of the basic TM model)
k-tape Turing Machine has k tapes, k independent heads (one
for each tape), and the control function depends on all read
symbols (and controls all heads independently). We allow that
head can stay at the same position in this variant.

The input word is written on the �rst tape, other are empty,
acceptation is de�ned as previously.

Turing
Machines

Marcin
Sydow

O�-line Turing Machine

(Example of restriction of the k-tape Turing Machine)

The restriction is that it is not possible to write on the �rst
tape (read-only input tape). Usually, in addition, the head on
the last (output) tape can move only to the left (write-only
output tape). Other tapes are regarded as �working� space.
In this case we do not count the space used on input and
output tapes. This allows to analyse interesting machines that
have sub-linear space complexity.

Some de�nitions of the basic Turing Machine assume that the
tape is bounded on one (left) end. This model does not restrict
the power signi�cantly (e.g. odd and even cells can represent
the �left� and �right� part, etc.)

Turing
Machines

Marcin
Sydow

Simulation of a k-tape TM on a basic TM

Allowing for multiple tapes does not make the computation
model much more powerful.

Lemma

For any language recognised by a k-tape TM M(k) in time

complexity O(f (n)) it is possible to construct a basic TM that

simulates it in time complexity O(f (n)2).

Comment: k-tape TM can be also simulated on 2-tape o�-line
TM

Turing
Machines

Marcin
Sydow

Non-deterministic Turing Machine

A very important extension of the basic model of TM that
introduces non-determinism into the transition function of TM.

The idea is that, given any particular con�guration of
non-deterministic TM, it can �choose� one of many steps to
follows.

More precisely, the transition function of non-deterministic TM
is de�ned as a partial, multi-valued function as follows:
δ : Q × Γ→ P(Q × Γ× {←,→})
Thus, a non-deterministic TM could be viewed as �random�, but
this there is a better interpretation especially in the context of
the de�nition of acceptation of non-deterministic TM.

Turing
Machines

Marcin
Sydow

De�nition of acceptation of a non-deterministic TM

De�nition

Non-deterministic TM accepts a word m if there exists at least
one sequence of transitions that reaches the accepting state.

Thus, instead of viewing non-deterministic TM as a �random�
device it is more precise to view it as a machine that checks all
possibilities during the computation. This view better
demonstrates the power of non-determinism.

The question of �how big power does non-determinism give to
TM� is represented by the famous problem P vs NP .

Turing
Machines

Marcin
Sydow

Complexity of non-deterministic TM

We say that non-deterministic TM halts on word w i� no
computation scenario loops endlessly.

Time and space used by non-deterministic TM can be de�ned
as:

computation time NT(M,w) as the number of steps of the
longest possible computation

computation space NS(M,w) as the maximum number of
cells needed in a possible computation scenario

Comment: time is represented by the height of the tree of
possible computations

The de�nitions of time and space complexity are analogous to
those of the deterministic one.

Turing
Machines

Marcin
Sydow

Simulation of non-deterministic TM on a

deterministic one

Lemma

If language L is recognised by a non-deterministic TM in time

O(f (n)), then there exists a deterministic TM recognising L in

time O(c f (n)) for some constant c.

Lemma

Any language recognised by a non-deterministic k-tape TM in

time O(f (n)) is also recognised by some 2-tape

non-deterministic TM in time O(f (n)).

Turing
Machines

Marcin
Sydow

Literature

Complexity Theory:

Papadimitriou �Computational Complexity�, Addison
Wesley Longman, 1994
Garey, Johnson �Computers and Intractability�
(issued in 1979, not easy to get nowadays)

Introductory Textbooks:

Cormen et al. �Introduction to Algorithms� 3rd edition,
MIT Press
chapters 34,35
Kleinberg, Tardos �Algorithm Design�, Addison Wesley,
2006
chapters 8,10,11

Turing
Machines

Marcin
Sydow

Thank you for attention

