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De�nition

TIME(f(n)) TIME(f(n)) denotes the set of languages decided by
deterministic TM of TIME complexity f(n)

De�nition

SPACE(f(n)) denotes the set of languages decided by
deterministic TM of SPACE complexity f(n)

De�nition

NTIME(f(n)) denotes the set of languages decided by
non-deterministic TM of TIME complexity f(n)

De�nition

NSPACE(f(n)) denotes the set of languages decided by
non-deterministic TM of SPACE complexity f(n)
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Linear Speedup Theorem

Theorem

If L is recognised by machine M in time complexity f(n) then it

can be recognised by a machine M' in time complexity

f ′(n) = εf (n) + (1+ ε)n, where ε > 0.
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Blum's theorem

There exists a language for which there is no fastest algorithm!
(Blum - a Turing Award laureate, 1995)

Theorem

There exists a language L such that if it is accepted by TM of

time complexity f(n) then it is also accepted by some TM in

time complexity log(f (n)).
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Basic complexity classes

(the functions are asymptotic)

P =
⋃

j>0 TIME(nj), the class of languages decided in
deterministic polynomial time

NP =
⋃

j>0 NTIME(nj), the class of languages decided in
non-deterministic polynomial time

EXP =
⋃

j>0 TIME(2n
j
), the class of languages decided in

deterministic exponential time

NEXP =
⋃

j>0 NTIME(2n
j
), the class of languages decided

in non-deterministic exponential time
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Space complexity classes

L = SPACE(logn), the class of languages decided in
deterministic logarithic space

NL = NSPACE(logn), the class of languages decided in
non-deterministic logarithic space

PSPACE =
⋃

j>0 SPACE(n
j), the class of languages decided in

deterministic polynomial space

NPSPACE =
⋃

j>0 NSPACE(n
j), the class of languages decided

in non-deterministic polynomial space

EXPSPACE =
⋃

j>0 SPACE(2
nj

), the class of languages decided
in deterministic exponential space

NEXPSPACE =
⋃

j>0 NSPACE(2
nj

), the class of languages
decided in non-deterministic exponential space
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Basic relations among complexity classes

(Connections between time, space and non-determinism)

TIME(f (n)) ⊆ NTIME(f (n))

, since each deterministic
machine is also a non-deterministic one (by de�nition)

SPACE(f (n)) ⊆ NSPACE(f (n))(as above)

TIME(f (n)) ⊆ SPACE(f (n)) (no machine can write more
memory cells than its working time)

NTIME(f (n)) ⊆ NSPACE(f (n)) (as above)

NTIME(f (n)) ⊆ TIME(c f (n)) (by a theorem on simulating
a non-deterministic machine by a deterministic one)
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Gap Theorem and space-constructibility

Let assume the following constraint on f(n) (f(n) is
space-constructible): f (n) > logn and there exists TM that,
when receives n (in unary encoding) in input, uses exactly f(n)
cells of space and stops
Example: dlogne, nk , 2n are space-constructible (and all
�reasonable� functions are).

(binary counter,
multiplication/addition, n times doubling the input)

Theorem

(Gap theorem) There exists a recursive function f(n) so that

TIME(f(n))=TIME(2f (n)).

Comment: constraints like space-constructibility are introduced
to avoid situations like this.
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Con�gurations of TM

The number of di�erent con�gurations of a TM with space
complexity f(n) (that is space-constructible) on a input word of
length n can be bounded by c f (n), for some constant c that
depends only on the machine and assuming that f (n) > logn
(what is implied by space-constructibility)

SPACE(f (n)) ⊆ TIME(c f (n)), due to the bound on the number
of con�gurations (c f (n)), since the machine that does not loop
can be simulated on a machine that works that long (else it
loops)
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More relations between classes ...

NTIME(f (n)) ⊆ SPACE(f (n)), since deterministic machine can
simulate non-deterministic one It su�ces to generate each of
f(n) sequences of non-deterministic choices (here we use the
space-constructibility assumption) that are made during the
computations. Next, we deterministically simulate the
computations in f(n) steps. All these operations can be done in
f(n) space since each sequence of non-deterministic choices can
be simulated in the same space.

NSPACE(f (n)) ⊆ TIME(c f (n)), again, due to simulation

As before, the number of all con�gurations is c f (n), but now
transitions between the con�gurations form a graph. It su�ces
to check whether there exists a path from the starting
con�guration to the terminating one, that can be computed in
polynomial time (with regard to the graph size), that is in
asymptotic time c f (n).
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L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE ⊆
NEXPSPACE

Explanations:

NL ⊆ P, due to NSPACE(f (n)) ⊆ TIME(c f (n)), because
c logn = nk

NPSPACE ⊆ EXP, also due to NSPACE(f (n)) ⊆ TIME(c f (n)),

because cnk

= 2n
k′

.

The space-hierarchy theorem (later) implies L  PSPACE so that the
�rst and last elements above are di�erent. Thus, at least one of the
inclusions is sharp, however it is not known which one! (the most
famous is the P vs NP case)



Introduction

to

Complexity

Classes

Marcin

Sydow

Theorem

(Savitch) If f(n) is space-constructible, then

NSPACE(f (n)) ⊆ SPACE(f 2(n)).

Thus, we can infer that some classes are equal:

PSPACE = NPSPACE,

EXPSPACE = NEXPSPACE.

This means that non-determinism does not extend
computational power for some high space complexity classes.
Nothing comparable concerning the time complexity classes is
known.
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Space hierarchy theorem

Theorem

If f(n) is space-constructible and g(n) ∈ o(f (n)) (grows

asymptotically slower) then SPACE(g(n)) ( SPACE(f (n)).
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Time hierarchy theorem

f(n) is time-constructible i� f (n) > nlogn and there exists a TM
that having n (unary encoding) on input can work in exactly f(n)
steps and halt. (�most� of known functions have this property)

Theorem

If f(n) is time-constructible and g(n) ∈ o(f (n)/logf (n)) then

TIME(g(n)) ( TIME(f (n)).
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Conclusions

SPACE(nε1) ( SPACE(nε2), for 0 6 ε1 < ε2, from the
properties of polynomials

TIME(nε1) ( TIME(nε2), for 1 6 ε1 < ε2, as above

L ( PSPACE, since logarithm grows slower than
polynomial

P ( EXP, since each polynomial grows slower than
sub-exponential function nlogn that grows slower than any
exponential function

PSPACE ( EXPSPACE, as above

Thus, the complexity class P that is usually regarded as the
class of �e�ciently solvable� problems has some inner hierarchy.
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Thank you for attention


