Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

Introduction to Combinatorics: Basic Counting Techniques

Marcin Sydow

Project co-financed by European Union within the framework of European Social Fund

Literature

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

Combinatorics:

- D.Knuth et al. "Concrete Mathematics" (also available in Polish, PWN 1998)
- M.Libura et al. "Wykłady z Matematyki Dyskretnej", cz.1 Kombinatoryka, skrypt WSISIZ, Warszawa 2001
- M.Lipski "Kombinatoryka dla programistów", WNT 2004
- Van Lint et al. "A Course in Combinatorics", Cambridge 2001

Graphs:

- R.Wilson "Introduction to Graph Theory" (also available in Polish, PWN 2000)
- R.Diestel "Graph Theory", Springer 2000

Contents

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

Basic Counting

- Reminder of basic facts
- Binomial Coefficient
- Multinomial Coefficient
- Multisets
- Set Partitions
- Number Partitions
- Permutations and Cycles
- General Techniques
 - Pigeonhole Principle
 - Inclusion-Exclusion Principle

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Generating Functions

General Basic Ideas for Counting

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

- create easy-to-count representations of counted objects
- "product rule": multiply when choices are independent
- "sum rule": sum up exclusive alternatives
- "combinatorial interpretation" proving technique

These ideas can be used not only to count objects but also to **easily prove** non-trivial discrete-maths identities (examples soon)

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

```
Denotations: "#" means: "the number of"

[n] means: the set \{1,...,n\}, for n \in \mathcal{N}

n, m \in \mathcal{N}
```

• (# functions from [m] into [n]) |Fun([m], [n])| =

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

```
Denotations: "#" means: "the number of"

[n] means: the set \{1,...,n\}, for n \in \mathcal{N}

n, m \in \mathcal{N}
```

• (# functions from [m] into [n]) $|Fun([m], [n])| = n^m$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• (# subsets of an n-element set) |P([n])| =

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques Denotations: "#" means: "the number of" [n] means: the set $\{1,...,n\}$, for $n \in \mathcal{N}$ $n, m \in \mathcal{N}$

• (# functions from [m] into [n]) $|Fun([m], [n])| = n^m$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- (# subsets of an n-element set) $|P([n])| = 2^n$
- (# injections as above) |Inj([m], [n])| =

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

```
Denotations: "#" means: "the number of"
[n] means: the set \{1,...,n\}, for n \in \mathcal{N}
n, m \in \mathcal{N}
```

- (# functions from [m] into [n]) $|Fun([m], [n])| = n^m$
- (# subsets of an n-element set) $|P([n])| = 2^n$
- (# injections as above) $|Inj([m], [n])| = n^{\underline{m}}$ for $n \ge m$ (called "falling factorial")
- # ordered placings of m different balls into n different boxes :

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

```
Denotations: "#" means: "the number of"
[n] means: the set \{1,...,n\}, for n \in \mathcal{N}
n, m \in \mathcal{N}
```

- (# functions from [m] into [n]) $|Fun([m], [n])| = n^m$
- (# subsets of an n-element set) $|P([n])| = 2^n$
- (# injections as above) $|Inj([m], [n])| = n^{\underline{m}}$ for $n \ge m$ (called "falling factorial")
- # ordered placings of m different balls into n different boxes : n^m (called "increasing power")

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• (# permutations of [n]) $|S_n| =$

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques Denotations: "#" means: "the number of" [n] means: the set $\{1,...,n\}$, for $n \in \mathcal{N}$ $n, m \in \mathcal{N}$

- (# functions from [m] into [n]) $|Fun([m], [n])| = n^m$
- (# subsets of an n-element set) $|P([n])| = 2^n$
- (# injections as above) $|Inj([m], [n])| = n^{\underline{m}}$ for $n \ge m$ (called "falling factorial")
- # ordered placings of m different balls into n different boxes : n^m (called "increasing power")

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• (# permutations of [n]) $|S_n| = n!$

Binomial Coefficient

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

0000

Introduction

Basic Counting

General Techniques # k-subsets of [n]

$$\left(\begin{array}{c}n\\k\end{array}\right) = \frac{n^{\underline{k}}}{k!}$$

.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 $\mathcal{N} \ni k \leq n \in \mathcal{N}$ (there is also possible a more general formulation for non-natural numbers)

Recursive formulation

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

$$\left(\begin{array}{c}n\\k\end{array}\right) = \left(\begin{array}{c}n-1\\k-1\end{array}\right) + \left(\begin{array}{c}n-1\\k\end{array}\right)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

(also known as "Pascal's triangle")

Recursive formulation

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

$$\left(\begin{array}{c}n\\k\end{array}\right) = \left(\begin{array}{c}n-1\\k-1\end{array}\right) + \left(\begin{array}{c}n-1\\k\end{array}\right)$$

(also known as "Pascal's triangle")

how to prove it without (almost) any algebra? (use "combinatorial interpretation" idea)

Recursive formulation

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

$$\left(\begin{array}{c}n\\k\end{array}\right) = \left(\begin{array}{c}n-1\\k-1\end{array}\right) + \left(\begin{array}{c}n-1\\k\end{array}\right)$$

(also known as "Pascal's triangle")

how to prove it without (almost) any algebra? (use "combinatorial interpretation" idea) (consider whether one fixed element of [n] belongs to the k-subset or not)

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

Symmetry:
$$\begin{pmatrix} n \\ k \end{pmatrix} = \begin{pmatrix} n \\ n-k \end{pmatrix}$$

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

Symmetry:
$$\binom{n}{k} = \binom{n}{n-k}$$

(each k-subset defines (n-k)-subset – its complement)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

Symmetry:
$$\binom{n}{k} = \binom{n}{n-k}$$

(each k-subset defines (n-k)-subset – its complement)

$$\sum_{k=0}^{n} \left(\begin{array}{c} n\\ k \end{array}\right) = 2^{n}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

Symmetry:
$$\binom{n}{k} = \binom{n}{n-k}$$

(each k-subset defines (n-k)-subset – its complement)

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

(summing subsets of [n] by their multiplicity)

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Basic Counting

General Techniques

$$\left(\begin{array}{c}n\\k\end{array}\right)\left(\begin{array}{c}k\\m\end{array}\right)=\left(\begin{array}{c}n\\m\end{array}\right)\left(\begin{array}{c}n-m\\n-k\end{array}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

$$\binom{n}{k}\binom{k}{m} = \binom{n}{m}\binom{n-m}{n-k}$$
(consider m-element subset of o k-element subset of [n])

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

$$\binom{n}{k}\binom{k}{m} = \binom{n}{m}\binom{n-m}{n-k}$$
(consider m-element subset of o k-element subset of [n])

$$\left(\begin{array}{c}m+n\\k\end{array}\right) = \sum_{s=0}^{k} \left(\begin{array}{c}m\\s\end{array}\right) \left(\begin{array}{c}n\\k-s\end{array}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Binomial Theorem

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$

(explanation: each term on the right may be represented as a k-subset of [n]) Corollaries:

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

odd subsets of [n] equals # even subsets

Binomial Theorem

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$

(explanation: each term on the right may be represented as a k-subset of [n]) Corollaries:

odd subsets of [n] equals # even subsets (substitute x=1 and y=-1)

Binomial Theorem

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$

(explanation: each term on the right may be represented as a k-subset of [n]) Corollaries:

odd subsets of [n] equals # even subsets (substitute x=1 and y=-1)

$$\sum_{k=0}^{n} k \left(\begin{array}{c} n \\ k \end{array} \right) = n2^{n-1}$$

(take derivative (as function of x) of both sides and then subsitute x=y=1)

Multinomial Coefficient

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques (a generalisation of the binomial coefficient)

colourings of n balls with at most m different colours so that exactly $k_i \in N$ balls have the i-th colour

$$\left(\begin{array}{c}n\\k_1k_2\ldots k_m\end{array}\right)=\frac{n!}{k_1!\cdot\ldots\cdot k_m!}$$

Multinomial Coefficient

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques (a generalisation of the binomial coefficient)

colourings of n balls with at most m different colours so that exactly $k_i \in N$ balls have the i-th colour

$$\binom{n}{k_1k_2\ldots k_m} = \frac{n!}{k_1!\cdot\ldots\cdot k_m!}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

(fix the sequence $(k)_i$ and fix a permutation of [n] to be coloured)

Multinomial Theorem

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

$$(x_1+\ldots+x_m)^n = \sum_{\substack{k_1,\ldots,k_m \in \mathcal{N} \\ k_1+\ldots+k_m = n}} \binom{n}{k_1k_2\ldots k_m} x_1^{k_1}\cdots x_m^{k_m}$$

Corollary:

$$\sum_{\substack{k_1,\ldots,k_m \in \mathcal{N} \\ k_1+\ldots+k_m = n}} \binom{n}{k_1k_2\ldots k_m} = m^n$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Multinomial Theorem

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

$$(x_1+\ldots+x_m)^n = \sum_{\substack{k_1,\ldots,k_m \in \mathcal{N} \\ k_1+\ldots+k_m = n}} \binom{n}{k_1k_2\ldots k_m} x_1^{k_1}\cdot\ldots\cdot x_m^{k_m}$$

Corollary:

$$\sum_{\substack{k_1,\ldots,k_m\in\mathcal{N}\\k_1+\ldots+k_m=n}} \binom{n}{k_1k_2\ldots k_m} = m^n$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

(substitute all 1's on the left-hand side)

Recursive Formula

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

$$\binom{n}{k_1 k_2 \dots k_m} = \binom{n-1}{k_1 - 1 k_2 \dots k_m} + \binom{n-1}{k_1 k_2 - 1 \dots k_m} + \dots + \binom{n-1}{k_1 k_2 \dots k_m - 1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recursive Formula

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

$$\binom{n}{k_1 k_2 \dots k_m} = \binom{n-1}{k_1 - 1 k_2 \dots k_m} + \binom{n-1}{k_1 k_2 - 1 \dots k_m} + \dots + \binom{n-1}{k_1 k_2 \dots k_m - 1}$$

イロト 不得 とうき イヨト

3

(explanation: fix one element of [n] and analogously to the binomial theorem)

Multisets

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques Element of type x_i has k_i (identical) copies.

$$Q = < k_1 * x_1, \ldots, k_n * x_n >$$

$$|Q| = k_1 + \ldots + k_n$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Subset S of Q: $S = \langle m_1 * x_1, \dots, m_n * x_n \rangle$ $(0 \leq m_i \leq k_i, \text{ for } i \in [n])$ Fact: # subsets of Q = ?

Multisets

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques Element of type x_i has k_i (identical) copies.

$$Q = < k_1 * x_1, \ldots, k_n * x_n >$$

$$|Q|=k_1+\ldots+k_n$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Subset S of Q: $S = \langle m_1 * x_1, \dots, m_n * x_n \rangle$ $(0 \leq m_i \leq k_i, \text{ for } i \in [n])$ Fact: # subsets of Q = ? $(1 + k_1) \cdot (1 + k_2) \cdot \dots \cdot (1 + k_n)$

P(n,k)

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques # k-partitions of n, $n \in \mathcal{N}$ Partition of n: $n = a_1 + \ldots + a_k$, $a_1 \ge \ldots \ge a_k > 0$

Recursive formula:

$$P(n,k) = P(n-1,k-1) + P(n-k,k)$$

P(n,k)

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques # k-partitions of n, $n \in \mathcal{N}$ Partition of n: $n = a_1 + \ldots + a_k, a_1 \ge \ldots \ge a_k > 0$

Recursive formula:

$$P(n,k) = P(n-1,k-1) + P(n-k,k)$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

(either $a_k = 1$ or all blocks can be decreased by 1 element)

P(n,k)

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques # k-partitions of n, $n \in \mathcal{N}$ Partition of n: $n = a_1 + \ldots + a_k$, $a_1 \ge \ldots \ge a_k > 0$

Recursive formula:

$$P(n,k) = P(n-1,k-1) + P(n-k,k)$$

(either $a_k = 1$ or all blocks can be decreased by 1 element)

Fact:

$$P(n,k) = \sum_{i=0}^{k} P(n-k,i)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

P(n,k)

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques # k-partitions of n, $n \in \mathcal{N}$ Partition of n: $n = a_1 + \ldots + a_k$, $a_1 \ge \ldots \ge a_k > 0$

Recursive formula:

$$P(n,k) = P(n-1, k-1) + P(n-k, k)$$

(either $a_k = 1$ or all blocks can be decreased by 1 element)

Fact:

$$P(n,k) = \sum_{i=0}^{k} P(n-k,i)$$

(decrease by 1 each of i terms greater than 1), (1, 2)

Set Partitions

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques Partition of finite set X into k blocks: $\Pi_k = A_1, \ldots, A_k$ so that:

$$\forall_{1 \le i \le k} A_i \neq \emptyset$$

•
$$A_1 \cup \ldots \cup A_k = X$$

$$\forall_{1 \le i < j \le k} A_i \cap A_j = \emptyset$$

Stirling Number of the 2nd kind

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

(# partitions of [*n*] into k blocks) Recursive formula:

Introduction

Basic Counting

General Techniques

$$\left\{ \begin{array}{c} n \\ n \end{array} \right\} = 1 \quad \left\{ \begin{array}{c} n \\ 0 \end{array} \right\} = 0 \text{ for } n > 0$$
$$\left\{ \begin{array}{c} n \\ k \end{array} \right\} = \left\{ \begin{array}{c} n-1 \\ k-1 \end{array} \right\} + k \left\{ \begin{array}{c} n-1 \\ k \end{array} \right\}$$

 $\left\{\begin{array}{c}n\\k\end{array}\right\} = |\Pi_k([n])|$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Stirling Number of the 2nd kind

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Basic Counting

General Techniques

$$\left\{\begin{array}{c}n\\k\end{array}\right\} = |\Pi_k([n])|$$

(# partitions of [n] into k blocks) Recursive formula:

$$\left\{\begin{array}{c}n\\n\end{array}\right\} = 1 \quad \left\{\begin{array}{c}n\\0\end{array}\right\} = 0 \text{ for } n > 0$$

$$\left\{\begin{array}{c}n\\k\end{array}\right\} = \left\{\begin{array}{c}n-1\\k-1\end{array}\right\} + k \left\{\begin{array}{c}n-1\\k\end{array}\right\}$$

(a fixed element constitutes a singleton-block or belongs to one of bigger k blocks)

Equivalence Relations and Surjections

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques Bell Number

$$B_n = \sum_{k=0}^n \left\{ \begin{array}{c} n \\ k \end{array} \right\}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

(# equivalence relations on [n])

• # surjections from [m] onto [n], $m \ge n = ?$

Equivalence Relations and Surjections

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques Bell Number

$$B_n = \sum_{k=0}^n \left\{ \begin{array}{c} n \\ k \end{array} \right\}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

(# equivalence relations on [n])

surjections from [m] onto [n], m ≥ n = ?
$$|Sur([m], [n])| = m! \cdot \begin{cases} m \\ n \end{cases}$$

Relation between $x^n, x^{\overline{n}}, x^{\overline{n}}$ (with Stirling 2-nd order numbers)

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

$$x^{n} = \sum_{k=0}^{n} \left\{ \begin{array}{c} n \\ k \end{array} \right\} \cdot x^{\underline{n}} = \sum_{k=0}^{n} (-1)^{n-k} \cdot \left\{ \begin{array}{c} n \\ k \end{array} \right\} \cdot x^{\overline{n}}$$

▲□▶ ▲課▶ ★注▶ ★注▶ 注目 - のへぐ

Permutations

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques Inj([n], [n])

Permutations on [n] constitute a group denoted by S_n

• composition of 2 permutations gives a permutation on [n]

- identity permutation is a neutral element (e)
- inverse of permutation f is a permutation f^{-1} on [n]

Examples

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

$$f = \left(\begin{array}{c} 12345\\53214\end{array}\right)$$
$$g = \left(\begin{array}{c} 12345\\25314\end{array}\right)$$

Inverse:

$$f^{-1} = \left(\begin{array}{c} 12345\\43251\end{array}\right)$$

The group is not commutative: fg is different than gf:

$$fg = \begin{pmatrix} 12345\\ 34251 \end{pmatrix}$$
$$gf = \begin{pmatrix} 12345\\ 43521 \end{pmatrix}$$

Decomposition into Cycles

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques A cycle is a special kind of permutation.

Each permutation can be decomposed into disjoint cycles:

- decomposition is unique
- the cycles are commutative

Example:

$$f = \left(\begin{array}{c} 12345\\53214\end{array}\right)$$

f = f'f'' = [1, 5, 4][2, 3] = [2, 3][1, 5, 4] = f''f' = f

Stirling Number of the 1st kind

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques # permutations consisting of exactly k cycles: $\begin{vmatrix} n \\ k \end{vmatrix}$

$$\sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right] = n!$$

Recursive Formula:

$$\left[\begin{array}{c}n\\k\end{array}\right] = \left[\begin{array}{c}n-1\\k-1\end{array}\right] + (n-1) \left[\begin{array}{c}n-1\\k\end{array}\right]$$

Stirling Number of the 1st kind

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques # permutations consisting of exactly k cycles: $\begin{bmatrix} n \\ k \end{bmatrix}$

$$\sum_{k=0}^{n} \left[\begin{array}{c} n \\ k \end{array} \right] = n!$$

Recursive Formula:

$$\left[\begin{array}{c}n\\k\end{array}\right] = \left[\begin{array}{c}n-1\\k-1\end{array}\right] + (n-1)\left[\begin{array}{c}n-1\\k\end{array}\right]$$

(fix a single element: it either itself constitutes a 1-cycle or can be at one of the n-1 positions in the k cycles)

Expressing decreasing and increasing powers in terms of "normal" powers with the help of Stirling Numbers of the 1-st kind

Marcin Sydow

Introduction

Basic Counting

General Techniques $x^{\underline{n}} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^{k}$ $x^{\overline{n}} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^{k}$

(Reminder of the opposite)

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

$$x^{n} = \sum_{k=0}^{n} \left\{ \begin{array}{c} n \\ k \end{array} \right\} \cdot x^{\underline{n}} = \sum_{k=0}^{n} (-1)^{n-k} \cdot \left\{ \begin{array}{c} n \\ k \end{array} \right\} \cdot x^{\overline{n}}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Other (amazing) connections between Stirling Numbers of both kinds

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

$$\sum_{k=0}^{n} (-1)^{n-k} \begin{bmatrix} n\\k \end{bmatrix} \begin{Bmatrix} k\\m \end{Bmatrix} = [m == n]$$
$$\sum_{k=0}^{n} (-1)^{n-k} \begin{Bmatrix} n\\k \end{Bmatrix} \begin{bmatrix} k\\m \end{bmatrix} = [m == n]$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Type of permutation

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques Permutation $f \in S_n$ has type $(\lambda_1, \ldots, \lambda_n)$ iff its decomposition into disjoint cycles contains exactly λ_i cycles of length *i*.

 $f = \left(\begin{array}{c} 123456789\\751423698\end{array}\right)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

f = [1, 7, 6, 3], [2, 5], [4], [8, 9]

Example:

Thus, the type of f is (1, 2, 0, 1, 0, 0, 0, 0, 0).

We equivalently denote it as: $1^{1}2^{2}4^{1}$

Inversion in a permutation

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques Inversion in a permutation $f = (a_1, \ldots, a_n) \in S_n$ is a pair (a_i, a_j) so that $i < j \le n$ and $a_i > a_j$

The number of inversions in permutation f is denoted as I(f)

ション ふゆ アメリア メリア しょうくしゃ

What is the minimum/maximum value of I(f)? How does it relate to sorting? How to efficiently compute I(f)?

Transpositions

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques A permutation that is a cycle of length 2 is called *transposition*

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Fact: Each permutation f is a composition of exactly I(f) transpositions of neighbouring elements

Sign of Permutation

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques assume, $f \in S_n$: (definition)

$$sgn(f) = (-1)^{I(f)}$$

$$sgn(fg) = sgn(f) \cdot sgn(g)$$

 $sgn(f^{-1}) = sgn(f)$

We say that a permutation is *even* when sgn(f) = 1 and *odd* otherwise

Fact:
$$sgn(f) = (-1)^{k-1}$$
 for any f being a k-cycle

Computing the sign of a permutation

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques For any permutation $f \in S_n$ of the type $(1^{\lambda_1} \dots n^{\lambda_n})$ its sign can be computed as follows:

$$sgn(f) = (-1)^{\sum_{j=1}^{\lfloor n/2 \rfloor} \lambda_{2j}}$$

ション ふゆ アメリア メリア しょうくしゃ

(only even cycles contribute to the sign of the permutation)

General Techniques

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques Pigeonhole Principle

Inclusion-Exclusion Principle

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Generating Functions

Pigeonhole Principle (Pol. "Zasada szufladkowa")

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques Let X,Y be finite sets, $f \in Fun(X, Y)$ and $|X| > r \cdot |Y|$ for some $r \in \mathcal{R}_+$. Then, for at least one $y \in Y$, $|f^{-1}(\{y\})| > r$.

(or equivalently: if you put m balls into n boxes then at least one box contains not less than m/n balls)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Example	es
---------	----

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques Any 10-subset of [50] contains two different 5-subsets that have the same sum of elements.

Examples

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques Any 10-subset of [50] contains two different 5-subsets that have the same sum of elements.

("Hair strands theorem", etc.):

At the moment, there exist two people on the earth that have exactly the same number of hair strands

Inclusion-Exclusion Principle

(Pol. "Zasada Włączeń-Wyłączeń")

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques For any non-empty family $\mathcal{A} = \{A_1, \ldots, A_n\}$ of subsets of a finite set X, the following holds:

$$|\bigcup_{i=1}^{n} A_{i}| = \sum_{i=1}^{n} (-1)^{i-1} \sum_{1 \le p_{1} < p_{2} < \dots < p_{i} \le n} |A_{p_{1}} \cap A_{p_{2}} \cap \dots \cap A_{p_{i}}|$$

(proof by induction on n)

Example: the principle can be used to prove that

$$\left\{\begin{array}{c}n\\k\end{array}\right\} = \frac{1}{m!}\sum_{i=0}^{m-1}(-1)^{i}\binom{m}{i}(m-i)^{n}$$

(a closed-form formula for Stirling number of the 2-nd kind)

・ロト ・聞 ・ ・目 ・ ・目 ・ うへぐ

Example: number of Derangements

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques A derangement (Pol. "nieporządek") is a permutation $f \in S_n$ so that $f(i) \neq i$, for $i \in [n]$.

 D_n is the set of all derangements on [n]. $|D_n|$ is denoted as !n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Theorem: $|n| = |D_n| = n! \sum_{i=0}^{n} \frac{(-1)^i}{i!}$

Proof of the formula for !n

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

Let
$$A_i = \{f \in S_n : f(i) = i\}$$
, for $i \in [n]$. Thus
 $|n| = |S_n| - |A_1 \cup A_2 \cup \ldots \cup A_n| =$

$$= n! - \sum_{i=1}^{n} (-1)^{i-1} \sum_{1 \le p_1 < p_2 < \dots < p_i \le n} |A_{p_1} \cap A_{p_2} \cap \dots \cap A_{p_i}|$$

But for any sequence $p = (p_1, \ldots, p_i)$ the intersection $A_{p_1} \cap A_{p_2} \cap \ldots \cap A_{p_i}$ represents all the permutations for which $f(p_j) = j$, for $j \in [i]$. Thus, $|A_{p_1} \cap A_{p_2} \cap \ldots \cap A_{p_i}| = (n-i)!$. There are $\binom{n}{i}$ possibilities for choosing the sequence p, so finally:

$$|D_n| = n! - \sum_{i=1}^n (-1)^{i-1} \binom{n}{i} (n-i)! = \sum_{i=0}^n (-1)^i \frac{n!}{i!} = n! \sum_{i=0}^n \frac{(-1)^i}{i!}$$

Ratio of Derangements in Permutations

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

Since
$$!n = |D_n| = n! \sum_{i=0}^{n} \frac{(-1)^i}{i!}$$

The ratio of derangements: $|D_n|/|S_n|$ while $n \to \infty$ tends to $\frac{1}{e}$

$$e^{-1} = \sum_{i=0}^{\infty} (-1)^i \frac{1}{i!} \approx 0.368 \dots,$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 $(e \approx 2.7182...$ is the base of the natural logarithm)

Generating Functions

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques A generating function of an infinite sequence a_0, a_1, \ldots is a power series:

$$A(z) = \sum_{i=0}^{\infty} a_i z^i$$

where z is a complex variable

Generating functions is a powerful tool for representing, manipulating and finding closed-form formulas for sequences (especially recurrent sequences)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

How to extract a sequence from its generating function?

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques Let's view A(z) as a function of z, that is convergent in some neighbourhood of z. Then we have:

$$a_k = \frac{A^{(k)}(0)}{k!}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

(k-th factor in the Maclaurin series of A(z))

Examples

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

$$\begin{aligned} a_{i} &= [i = n] \rightsquigarrow \sum_{i=0}^{\infty} [i = n] z^{i} = z^{n} \\ a_{i} &= c^{i} \rightsquigarrow \sum_{i=0}^{\infty} c^{i} z^{i} = (1 - cz)^{-1} \text{ (geometric series)} \\ a_{i} &= [m|i] \rightsquigarrow \sum_{i=0}^{\infty} z^{m \cdot i} = \frac{1}{1 - z^{m}} \\ a_{i} &= (i!)^{-1} \rightsquigarrow \sum_{i=0}^{\infty} \frac{z^{i}}{i!} = e^{z} \\ (a) &= (0, 1, 1/2, 1/3/, 1/4, \ldots) \rightsquigarrow \sum_{i=1}^{\infty} \frac{z^{i}}{i} = -\ln(1 - z)^{-1} \end{aligned}$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

Basic Operations

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques Let A(z) and B(z) are the generating functions (GF) of sequences (a_i) and (b_i) , respectively, $\alpha \in \mathcal{R}$. Then:

• GF of
$$(a_i + b_i)$$
 is $A(z) + B(z) = \sum_{i=0}^{\infty} (a_i + b_i) z^i$
• GF of $(\alpha \cdot a_i)$ is $\alpha \cdot A(z) = \sum_{i=0}^{\infty} \alpha \cdot a_i \cdot z^i$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• GF of (a_{i-m}) is $z^m \cdot A(z)$

Further Examples

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques

$$(0, 1, 0, 1...) \rightsquigarrow z(1 - z^{2})^{-1}$$
$$(1, 1/2, 1/3, ...) \rightsquigarrow -z^{-1} ln(1 - z)$$
$$a_{i} = 1 \rightsquigarrow (1 - z)^{-1}$$
$$a_{i} = (-1)^{i} \rightsquigarrow (1 + z)^{-1}$$
$$i \cdot a_{i} \rightsquigarrow z \cdot A'(z)$$
$$a_{i} = i \rightsquigarrow z \frac{d}{dz} (1 - z)^{-1} = z(1 - z)^{-2}$$

~

Convolution of sequences

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques A convolution of two sequences (a_i) and (b_i) is a sequence c_i :

$$c_i = \sum_{k=0}^i a_k \cdot b_{i-k}$$

and is denoted as: $(c_i) = (a_i) * (b_i)$ Convolution is commutative. Fact:

$$\sum_{i=0}^{\infty} c_i z^i = A(z) \cdot B(z)$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 $(\mathsf{GF of } (a_i) * (b_i) \text{ is } A(z) \cdot B(z))$

Example

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sy dow

Introduction

Basic Counting

General Techniques Harmonic number:

$$H_n = \sum_{i=1}^n \frac{1}{i}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Closed-form formula?

GF for (H_n) is a convolution of (0, 1, 1/2, 1/3, ...) and (1, 1, 1, ...). Thus, this GF is $-(1-z)^{-1}ln(1-z)$.

Example: Closed-form formula Fibonacci Numbers

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

$$F_i = F_{i-1} + F_{i-2} + [i = 1]$$

thus (its GF is):

$$F(z) = zF(z) + z^2F(z) + z$$

$$F(z) = \frac{z}{1 - z - z^2}$$

$$(1-z-z^2) = (1-az)(1-bz)$$
, where $a = (1-\sqrt{5})/2$ and $b = (1+\sqrt{5})/2$. Thus,
 $F(z) = \frac{z}{(1-az)(1-bz)} = \frac{1}{(a-b)}(\frac{1}{(1-az)} - \frac{1}{(1-bz)}) = \sum_{i=0}^{\infty} \frac{a^i - b^i}{a - b} \cdot z^i$.
Finally:

$$F_{i} = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{i} - \left(\frac{1 - \sqrt{5}}{2} \right)^{i} \right]$$

æ

N-th order linear recurrent equations

< · · >

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

$$a_i = q(i) + q_1 \cdot a_{i-1} + q_2 \cdot a_{i-2} + \ldots + q_k \cdot a_{i-k}$$

where $q(i) = a_i$, for $i \in [k-1]$ (initial conditions)

$$A(z) = A_0(z) + q_1 \cdot zA(z) + q_2 \cdot z^2A(z) + \ldots + q_k \cdot z^kA(z)$$

$$A(z) = \frac{a_0 + a_1 z + \ldots + a_{k-1} z^{k-1}}{1 - q_1 z - q_2 z^2 - \ldots - q_k z^k}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction to Combinatorics: Basic Counting Techniques

> Marcin Sydow

Introduction

Basic Counting

General Techniques

Thank you for attention

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?