Introduction
to Combina-
torics: Basic
Counting
Techniques
Marcin
Sydow

Introduction

Basic

Counting
General
Techniques

Introduction to Combinatorics: Basic Counting Techniques

Marcin Sydow

Project co-financed by European Union within the framework of European Social Fund

Literature

Introduction
to Combina-
torics: Basic
Counting
Techniques
Marcin
Sydow

- Combinatorics:
- D.Knuth et al. "Concrete Mathematics" (also available in Polish, PWN 1998)
■ M.Libura et al. "Wykłady z Matematyki Dyskretnej", cz. 1 Kombinatoryka, skrypt WSISIZ, Warszawa 2001
■ M.Lipski "Kombinatoryka dla programistów", WNT 2004
- Van Lint et al. "A Course in Combinatorics", Cambridge 2001
- Graphs:
- R.Wilson "Introduction to Graph Theory" (also available in Polish, PWN 2000)
■ R.Diestel "Graph Theory", Springer 2000

Contents

Introduction
to Combina-
torics: Basic Counting Techniques

Marcin
Sydow

Introduction

Basic

Counting
General
Techniques

■ Basic Counting

- Reminder of basic facts
- Binomial Coefficient
- Multinomial Coefficient
- Multisets
- Set Partitions
- Number Partitions
- Permutations and Cycles

■ General Techniques

- Pigeonhole Principle
- Inclusion-Exclusion Principle
- Generating Functions

General Basic Ideas for Counting

Introduction
to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting

- create easy-to-count representations of counted objects

■ "product rule": multiply when choices are independent
■ "sum rule": sum up exclusive alternatives
■ "combinatorial interpretation" proving technique
These ideas can be used not only to count objects but also to easily prove non-trivial discrete-maths identities (examples soon)

Counting Basic Objects

Introduction

 to Combina-torics: Basic Counting Techniques

Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

Denotations: "\#" means: "the number of"
[n] means: the set $\{1, \ldots, n\}$, for $n \in \mathcal{N}$ $n, m \in \mathcal{N}$

- (\# functions from $[\mathrm{m}]$ into $[\mathrm{n}])|F u n([m],[n])|=$

Counting Basic Objects

Introduction to Combinatorics: Basic Counting Techniques

Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

Denotations: "\#" means: "the number of"
[n] means: the set $\{1, \ldots, n\}$, for $n \in \mathcal{N}$ $n, m \in \mathcal{N}$

■ (\# functions from [m] into $[\mathrm{n}])|\operatorname{Fun}([m],[n])|=n^{m}$

- (\# subsets of an n-element set) $|P([n])|=$

Counting Basic Objects

Introduction to Combinatorics: Basic Counting Techniques

Marcin
Sydow

Introduction
Basic
Counting

Denotations: "\#" means: "the number of"
[n] means: the set $\{1, \ldots, n\}$, for $n \in \mathcal{N}$
$n, m \in \mathcal{N}$
■ (\# functions from [m] into [n]) $|\operatorname{Fun}([m],[n])|=n^{m}$
■ (\# subsets of an n-element set) $|P([n])|=2^{n}$

- (\# injections as above) $|\operatorname{Inj}([m],[n])|=$

Counting Basic Objects

Introduction to Combinatorics: Basic Counting Techniques

Marcin
Sydow

Introduction

Denotations: "\#" means: "the number of"
[n] means: the set $\{1, \ldots, n\}$, for $n \in \mathcal{N}$
$n, m \in \mathcal{N}$
■ (\# functions from [m] into [n]) $|\operatorname{Fun}([m],[n])|=n^{m}$
■ (\# subsets of an n-element set) $|P([n])|=2^{n}$
■ (\# injections as above) $|\operatorname{lnj}([m],[n])|=n \underline{\underline{m}}$ for $n \geq m$ (called "falling factorial")

- \# ordered placings of m different balls into n different boxes :

Counting Basic Objects

Introduction to Combinatorics: Basic Counting Techniques

Marcin
Sydow

Introduction

Denotations: "\#" means: "the number of"
[n] means: the set $\{1, \ldots, n\}$, for $n \in \mathcal{N}$
$n, m \in \mathcal{N}$
■ (\# functions from [m] into [n]) $|\operatorname{Fun}([m],[n])|=n^{m}$
■ (\# subsets of an n-element set) $|P([n])|=2^{n}$
■ (\# injections as above) $|\operatorname{lnj}([m],[n])|=n^{\underline{m}}$ for $n \geq m$ (called "falling factorial")

- \# ordered placings of m different balls into n different boxes: $n^{\bar{m}}$ (called "increasing power")
- (\# permutations of $[\mathrm{n}])\left|S_{n}\right|=$

Counting Basic Objects

Introduction to Combinatorics: Basic Counting Techniques

Marcin
Sydow

Introduction

Denotations: "\#" means: "the number of"
[n] means: the set $\{1, \ldots, n\}$, for $n \in \mathcal{N}$
$n, m \in \mathcal{N}$
■ (\# functions from [m] into [n]) $|\operatorname{Fun}([m],[n])|=n^{m}$
■ (\# subsets of an n-element set) $|P([n])|=2^{n}$
■ (\# injections as above) $|\operatorname{lnj}([m],[n])|=n^{\underline{m}}$ for $n \geq m$ (called "falling factorial")

- \# ordered placings of m different balls into n different boxes: $n^{\bar{m}}$ (called "increasing power")
- (\# permutations of $[\mathrm{n}])\left|S_{n}\right|=n$!

Binomial Coefficient

Introduction
to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques
\# k-subsets of [n]

$$
\binom{n}{k}=\frac{n^{\underline{k}}}{k!}
$$

$\mathcal{N} \ni k \leq n \in \mathcal{N}$
(there is also possible a more general formulation for non-natural numbers)

Recursive formulation

Introduction

to Combina-
torics: Basic Counting
Techniques
Marcin
Sydow

Introduction

$$
\begin{aligned}
& \binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \\
& \text { (also known as "Pascal's triangle") }
\end{aligned}
$$

Recursive formulation

Introduction to Combinatorics: Basic Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

(also known as "Pascal's triangle")
how to prove it without (almost) any algebra?
(use "combinatorial interpretation" idea)

Recursive formulation

Introduction
to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques
$\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}$
(also known as "Pascal's triangle")
how to prove it without (almost) any algebra?
(use "combinatorial interpretation" idea)
(consider whether one fixed element of [n] belongs to the k-subset or not)

Basic properties

Introduction

to Combina-
torics:
Basic Counting
Techniques
Marcin
Sydow

$$
\text { Symmetry: }\binom{n}{k}=\binom{n}{n-k}
$$

Introduction
Basic
Counting
General
Techniques

Basic properties

Introduction
to Combina-
torics: Basic Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

Symmetry: $\binom{n}{k}=\binom{n}{n-k}$
(each k-subset defines ($n-k$)-subset - its complement)

Basic properties

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

Symmetry: $\binom{n}{k}=\binom{n}{n-k}$
(each k-subset defines ($n-k$)-subset - its complement)

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Basic properties

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

Symmetry: $\binom{n}{k}=\binom{n}{n-k}$
(each k-subset defines ($n-k$)-subset - its complement)

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

(summing subsets of [n] by their multiplicity)

Basic properties

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin

$$
\binom{n}{k}\binom{k}{m}=\binom{n}{m}\binom{n-m}{n-k}
$$

Introduction
Basic
Counting
General
Techniques

Basic properties

Introduction
to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

$$
\binom{n}{k}\binom{k}{m}=\binom{n}{m}\binom{n-m}{n-k}
$$

(consider m-element subset of o k-element subset of $[n]$)

Basic properties

Introduction
to Combinatorics: Basic Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

$$
\binom{n}{k}\binom{k}{m}=\binom{n}{m}\binom{n-m}{n-k}
$$

(consider m-element subset of o k-element subset of $[n]$)

$$
\binom{m+n}{k}=\sum_{s=0}^{k}\binom{m}{s}\binom{n}{k-s}
$$

Binomial Theorem

Introduction to Combinatorics: Basic Counting Techniques

Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

(explanation: each term on the right may be represented as a k-subset of [n])
Corollaries:
■ \# odd subsets of [n] equals \# even subsets

Binomial Theorem

Introduction to Combinatorics: Basic Counting Techniques

Marcin
Sydow

Introduction
Basic
Counting

Techniques

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

(explanation: each term on the right may be represented as a k-subset of [n])
Corollaries:

- \# odd subsets of [n] equals \# even subsets (substitute $x=1$ and $y=-1$)

Binomial Theorem

Introduction
to Combinatorics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

(explanation: each term on the right may be represented as a k-subset of [n])
Corollaries:

- \# odd subsets of [n] equals \# even subsets (substitute $x=1$ and $y=-1$)

$$
\sum_{k=0}^{n} k\binom{n}{k}=n 2^{n-1}
$$

(take derivative (as function of x) of both sides and then subsitute $\mathrm{x}=\mathrm{y}=1$)

Multinomial Coefficient

Introduction to Combinatorics: Basic Counting Techniques

Marcin
Sydow

Introduction
Basic
Counting
General
Techniques
(a generalisation of the binomial coefficient)
\# colourings of n balls with at most m different colours so that exactly $k_{i} \in N$ balls have the i-th colour

$$
\binom{n}{k_{1} k_{2} \ldots k_{m}}=\frac{n!}{k_{1}!\cdot \ldots \cdot k_{m}!}
$$

Multinomial Coefficient

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques
(a generalisation of the binomial coefficient)
\# colourings of n balls with at most m different colours so that exactly $k_{i} \in N$ balls have the i-th colour

$$
\binom{n}{k_{1} k_{2} \ldots k_{m}}=\frac{n!}{k_{1}!\cdot \ldots \cdot k_{m}!}
$$

(fix the sequence $(k)_{i}$ and fix a permutation of $[n]$ to be coloured)

Multinomial Theorem

Introduction

to Combina-
torics: Basic
Counting
Techniques
Marcin
Sydow

$$
\left(x_{1}+\ldots+x_{m}\right)^{n}=\sum_{\substack{k_{1}, \ldots, k_{m} \in \mathcal{N} \\ k_{1}+\ldots+k_{m}=n}}\binom{n}{k_{1} k_{2} \ldots k_{m}} x_{1}^{k_{1}} \ldots . x_{m}^{k_{m}}
$$

Corollary:

$$
\sum_{\substack{k_{1}, \ldots, k_{m} \in \mathcal{N} \\ k_{1}+\ldots+k_{m}=n}}\binom{n}{k_{1} k_{2} \ldots k_{m}}=m^{n}
$$

Multinomial Theorem

Introduction

to Combine-
tories: Basic
Counting
Techniques
Marci
Sydow

$$
\left(x_{1}+\ldots+x_{m}\right)^{n}=\sum_{\substack{k_{1}, \ldots, k_{m} \in \mathcal{N} \\ k_{1}+\ldots+k_{m}=n}}\binom{n}{k_{1} k_{2} \ldots k_{m}} x_{1}^{k_{1}} \ldots \cdot x_{m}^{k_{m}}
$$

Corollary:

$$
\sum_{\substack{k_{1}, \ldots, k_{m} \in \mathcal{N} \\ k_{1}+\ldots+k_{m}=n}}\binom{n}{k_{1} k_{2} \ldots k_{m}}=m^{n}
$$

(substitute all 1's on the left-hand side)

Recursive Formula

Introduction

to Combina-
torics: Basic
Counting
Techniques
Marcin
Sydow

Introduction

$$
\binom{n}{k_{1} k_{2} \ldots k_{m}}=\binom{n-1}{k_{1}-1 k_{2} \ldots k_{m}}+\binom{n-1}{k_{1} k_{2}-1 \ldots k_{m}}+
$$

$$
+\ldots+\binom{n-1}{k_{1} k_{2} \ldots k_{m}-1}
$$

Recursive Formula

Introduction
to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

$$
\binom{n}{k_{1} k_{2} \ldots k_{m}}=\binom{n-1}{k_{1}-1 k_{2} \ldots k_{m}}+\binom{n-1}{k_{1} k_{2}-1 \ldots k_{m}}+
$$

$$
+\ldots+\binom{n-1}{k_{1} k_{2} \ldots k_{m}-1}
$$

(explanation: fix one element of [n] and analogously to the binomial theorem)

Multisets

Introduction

to Combina-

torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction

Element of type x_{i} has k_{i} (identical) copies.

$$
Q=<k_{1} * x_{1}, \ldots, k_{n} * x_{n}>
$$

$$
|Q|=k_{1}+\ldots+k_{n}
$$

Subset S of Q :
$S=<m_{1} * x_{1}, \ldots, m_{n} * x_{n}>$
($0 \leq m_{i} \leq k_{i}$, for $i \in[n]$)
Fact:
\# subsets of $Q=$?

Multisets

Introduction

to Combina-

torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction

Element of type x_{i} has k_{i} (identical) copies.

$$
Q=<k_{1} * x_{1}, \ldots, k_{n} * x_{n}>
$$

$$
|Q|=k_{1}+\ldots+k_{n}
$$

Subset S of Q :
$S=<m_{1} * x_{1}, \ldots, m_{n} * x_{n}>$
($0 \leq m_{i} \leq k_{i}$, for $i \in[n]$)
Fact:
\# subsets of $\mathrm{Q}=?\left(1+k_{1}\right) \cdot\left(1+k_{2}\right) \cdot \ldots \cdot\left(1+k_{n}\right)$

Partitions of number n into sum of k terms

Introduction

 to Combinatorics: BasicCounting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

$$
P(n, k)
$$

\# k-partitions of $n, n \in \mathcal{N}$
Partition of $n: n=a_{1}+\ldots+a_{k}, a_{1} \geq \ldots \geq a_{k}>0$
Recursive formula:

$$
P(n, k)=P(n-1, k-1)+P(n-k, k)
$$

Partitions of number n into sum of k terms

Introduction

 to Combinatorics: BasicCounting
Techniques
Marcin
Sydow

Introduction
Basic
Counting

Techniques

$$
P(n, k)
$$

\# k-partitions of $n, n \in \mathcal{N}$
Partition of $n: n=a_{1}+\ldots+a_{k}, a_{1} \geq \ldots \geq a_{k}>0$
Recursive formula:

$$
P(n, k)=P(n-1, k-1)+P(n-k, k)
$$

(either $a_{k}=1$ or all blocks can be decreased by 1 element)

Partitions of number n into sum of k terms

Introduction to Combinatorics: Basic Counting Techniques

Marcin
Sydow

Introduction
Basic
Counting

$$
P(n, k)
$$

\# k-partitions of $n, n \in \mathcal{N}$
Partition of $n: n=a_{1}+\ldots+a_{k}, a_{1} \geq \ldots \geq a_{k}>0$
Recursive formula:

$$
P(n, k)=P(n-1, k-1)+P(n-k, k)
$$

(either $a_{k}=1$ or all blocks can be decreased by 1 element)

Fact:

$$
P(n, k)=\sum_{i=0}^{k} P(n-k, i)
$$

Partitions of number n into sum of k terms

Introduction
to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting

$$
P(n, k)
$$

\# k-partitions of $n, n \in \mathcal{N}$
Partition of $n: n=a_{1}+\ldots+a_{k}, a_{1} \geq \ldots \geq a_{k}>0$
Recursive formula:

$$
P(n, k)=P(n-1, k-1)+P(n-k, k)
$$

(either $a_{k}=1$ or all blocks can be decreased by 1 element)

Fact:

$$
P(n, k)=\sum_{i=0}^{k} P(n-k, i)
$$

(decrease by 1 each of i terms greater than 1)

Set Partitions

Introduction

to Combina-
torics: Basic Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

Partition of finite set X into k blocks: $\Pi_{k}=A_{1}, \ldots, A_{k}$ so that:

- $\forall_{1 \leq i \leq k} A_{i} \neq \emptyset$

■ $A_{1} \cup \ldots \cup A_{k}=X$

- $\forall_{1 \leq i<j \leq k} A_{i} \cap A_{j}=\emptyset$

Stirling Number of the 2 nd kind

Introduction

to Combinatorics: Basic
Counting
Techniques
Marcin
Sydow

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\left|\Pi_{k}([n])\right|
$$

(\# partitions of [n] into k blocks)
Recursive formula:

$$
\begin{gathered}
\left\{\begin{array}{l}
n \\
n
\end{array}\right\}=1\left\{\begin{array}{l}
n \\
0
\end{array}\right\}=0 \text { for } n>0 \\
\left\{\begin{array}{c}
n \\
k
\end{array}\right\}=\left\{\begin{array}{c}
n-1 \\
k-1
\end{array}\right\}+k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}
\end{gathered}
$$

Stirling Number of the 2 nd kind

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\left|\Pi_{k}([n])\right|
$$

(\# partitions of [n] into k blocks)
Recursive formula:

$$
\begin{gathered}
\left\{\begin{array}{l}
n \\
n
\end{array}\right\}=1\left\{\begin{array}{l}
n \\
0
\end{array}\right\}=0 \text { for } n>0 \\
\left\{\begin{array}{c}
n \\
k
\end{array}\right\}=\left\{\begin{array}{c}
n-1 \\
k-1
\end{array}\right\}+k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}
\end{gathered}
$$

(a fixed element constitutes a singleton-block or belongs to one of bigger k blocks)

Equivalence Relations and Surjections

Introduction
to Combina-
torics: Basic Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting

Techniques

■ Bell Number

$$
B_{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}
$$

(\# equivalence relations on [n])

- \# surjections from [m] onto $[n], m \geq n=$?

Equivalence Relations and Surjections

Introduction

to Combina-
torics:
Basic
Counting
Techniques
■ Bell Number
Marcin
Sydow

$$
B_{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}
$$

(\# equivalence relations on [n])

- \# surjections from [m] onto $[n], m \geq n=$?
$|\operatorname{Sur}([m],[n])|=m!\cdot\left\{\begin{array}{c}m \\ n\end{array}\right\}$

Relation between x^{n}, x^{n}, x^{n} (with Stirling 2-nd order numbers)

Introduction

to Combina-

torics: Basic
Counting
Techniques
Marcin
Sydow

$$
x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \cdot x^{\underline{n}}=\sum_{k=0}^{n}(-1)^{n-k} \cdot\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \cdot x^{\bar{n}}
$$

Permutations

Introduction
to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting

Techniques

$$
\operatorname{lnj}([n],[n])
$$

Permutations on [n] constitute a group denoted by S_{n}

- composition of 2 permutations gives a permutation on [n]
- identity permutation is a neutral element (e)
- inverse of permutation f is a permutation f^{-1} on [n]

Examples

Introduction
to Combinatorics: Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

$$
\begin{aligned}
& f=\binom{12345}{53214} \\
& g=\binom{12345}{25314}
\end{aligned}
$$

Inverse:

$$
f^{-1}=\binom{12345}{43251}
$$

The group is not commutative: fg is different than gf :

$$
\begin{aligned}
& f g=\binom{12345}{34251} \\
& g f=\binom{12345}{43521}
\end{aligned}
$$

Decomposition into Cycles

Introduction

 to Combinatorics: Basic Counting TechniquesMarcin
Sydow

Introduction
Basic
Counting
General
Techniques

A cycle is a special kind of permutation.
Each permutation can be decomposed into disjoint cycles:

- decomposition is unique
- the cycles are commutative

Example:

$$
\begin{gathered}
f=\binom{12345}{53214} \\
f=f^{\prime} f^{\prime \prime}=[1,5,4][2,3]=[2,3][1,5,4]=f^{\prime \prime} f^{\prime}=f
\end{gathered}
$$

Stirling Number of the 1st kind

Introduction

 to Combina-torics: Basic Counting Techniques

Marcin
Sydow

Introduction
Basic
Counting
General Techniques
\# permutations consisting of exactly k cycles: $\left[\begin{array}{l}n \\ k\end{array}\right]$

$$
\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]=n!
$$

Recursive Formula:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]+(n-1)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]
$$

Stirling Number of the 1st kind

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques
\# permutations consisting of exactly k cycles: $\left[\begin{array}{l}n \\ k\end{array}\right]$

$$
\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]=n!
$$

Recursive Formula:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]+(n-1)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]
$$

(fix a single element: it either itself constitutes a 1-cycle or can be at one of the $n-1$ positions in the k cycles)

Expressing decreasing and increasing powers in terms of "normal" powers with the help of Stirling Numbers of the 1 -st kind

$$
\begin{aligned}
& \begin{array}{c}
\text { Introduction } \\
\text { to Combina- } \\
\text { torics: } \\
\text { Basic } \\
\text { Counting } \\
\text { Techniques }
\end{array} \\
& \begin{array}{c}
\text { Marcin } \\
\text { Sydow }
\end{array} \\
& \text { Introduction } \\
& \begin{array}{l}
\text { Basic } \\
\text { Counting }
\end{array} \\
& \begin{array}{l}
\text { General } \\
\text { Techniques }
\end{array} \\
& x^{n}=\sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right](-1)^{n-k} x^{k} \\
&
\end{aligned}
$$

(Reminder of the opposite)

Introduction

to Combina-

torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction

$$
x^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \cdot x^{\underline{n}}=\sum_{k=0}^{n}(-1)^{n-k} \cdot\left\{\begin{array}{l}
n \\
k
\end{array}\right\} \cdot x^{\bar{n}}
$$

Other (amazing) connections between Stirling Numbers of both kinds

Introduction

 to Combina-torics: Basic
Counting
Techniques
Marcin
Sydow

$$
\begin{aligned}
& \sum_{k=0}^{n}(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]\left\{\begin{array}{l}
k \\
m
\end{array}\right\}=[m==n] \\
& \sum_{k=0}^{n}(-1)^{n-k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\left[\begin{array}{l}
k \\
m
\end{array}\right]=[m==n]
\end{aligned}
$$

Type of permutation

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction

Permutation $f \in S_{n}$ has type $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ iff its decomposition into disjoint cycles contains exactly λ_{i} cycles of length i.

Example:

$$
f=\binom{123456789}{751423698}
$$

$f=[1,7,6,3],[2,5],[4],[8,9]$

Thus, the type of f is $(1,2,0,1,0,0,0,0,0)$.
We equivalently denote it as: $1^{1} 2^{2} 4^{1}$

Inversion in a permutation

Introduction
to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting

Inversion in a permutation $f=\left(a_{1}, \ldots, a_{n}\right) \in S_{n}$ is a pair $\left(a_{i}, a_{j}\right)$ so that $i<j \leq n$ and $a_{i}>a_{j}$

The number of inversions in permutation f is denoted as $I(f)$
What is the minimum/maximum value of $I(f)$?
How does it relate to sorting? How to efficiently compute $I(f)$?

Transpositions

Introduction
to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow
A permutation that is a cycle of length 2 is called transposition

Fact: Each permutation f is a composition of exactly $I(f)$ transpositions of neighbouring elements

Sign of Permutation

Introduction to Combinatorics: Basic
Counting
Techniques
Marcin
Sydow

Introduction
assume, $f \in S_{n}$:
(definition)

$$
\begin{gathered}
\operatorname{sgn}(f)=(-1)^{l(f)} \\
\operatorname{sgn}(f g)=\operatorname{sgn}(f) \cdot \operatorname{sgn}(g) \\
\operatorname{sgn}\left(f^{-1}\right)=\operatorname{sgn}(f)
\end{gathered}
$$

We say that a permutation is even when $\operatorname{sgn}(f)=1$ and odd otherwise

Fact: $\operatorname{sgn}(f)=(-1)^{k-1}$ for any f being a k-cycle

Computing the sign of a permutation

Introduction to Combinatorics: Basic Counting Techniques

Marcin
Sydow

Introduction

Basic

Counting
General
Techniques

For any permutation $f \in S_{n}$ of the type $\left(1^{\lambda_{1}} \ldots n^{\lambda_{n}}\right)$ its sign can be computed as follows:

$$
\operatorname{sgn}(f)=(-1)^{\sum_{j=1}^{\lfloor n / 2\rfloor} \lambda_{2 j}}
$$

(only even cycles contribute to the sign of the permutation)

General Techniques

Introduction

to Combina-
torics: Basic Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

■ Pigeonhole Principle

- Inclusion-Exclusion Principle
- Generating Functions

Pigeonhole Principle (Pol. "Zasada szufladkowa")

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Let X, Y be finite sets, $f \in \operatorname{Fun}(X, Y)$ and $|X|>r \cdot|Y|$ for some $r \in \mathcal{R}_{+}$. Then, for at least one $y \in Y,\left|f^{-1}(\{y\})\right|>r$.
(or equivalently: if you put m balls into n boxes then at least one box contains not less than m / n balls)

Examples

Introduction
to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

Any 10-subset of [50] contains two different 5-subsets that have the same sum of elements.

Examples

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Any 10-subset of [50] contains two different 5-subsets that have the same sum of elements.
("Hair strands theorem", etc.):
At the moment, there exist two people on the earth that have exactly the same number of hair strands

Inclusion-Exclusion Principle

(Pol. "Zasada Włączeń-Wyłączeñ")

Introduction
to Combinatorics: Basic Counting Techniques

Marcin
Sydow

For any non-empty family $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ of subsets of a finite set X , the following holds:

$$
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{i=1}^{n}(-1)^{i-1} \sum_{1 \leq p_{1}<p_{2}<\ldots<p_{i} \leq n}\left|A_{p_{1}} \cap A_{p_{2}} \cap \ldots \cap A_{p_{i}}\right|
$$

(proof by induction on n)
Example: the principle can be used to prove that

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\frac{1}{m!} \sum_{i=0}^{m-1}(-1)^{i}\binom{m}{i}(m-i)^{n}
$$

(a closed-form formula for Stirling number of the 2-nd kind)

Example: number of Derangements

Introduction to Combinatorics: Basic Counting Techniques

Marcin
Sydow

A derangement (Pol. "nieporządek") is a permutation $f \in S_{n}$ so that $f(i) \neq i$, for $i \in[n]$.
D_{n} is the set of all derangements on $[n] .\left|D_{n}\right|$ is denoted as $!n$.
Theorem: $!n=\left|D_{n}\right|=n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}$

Proof of the formula for !n

Introduction to Combinatorics: Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

Let $A_{i}=\left\{f \in S_{n}: f(i)=i\right\}$, for $i \in[n]$. Thus
$!n=\left|S_{n}\right|-\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right|=$

$$
=n!-\sum_{i=1}^{n}(-1)^{i-1} \sum_{1 \leq p_{1}<p_{2}<\ldots<p_{i} \leq n}\left|A_{p_{1}} \cap A_{p_{2}} \cap \ldots \cap A_{p_{i}}\right|
$$

But for any sequence $p=\left(p_{1}, \ldots, p_{i}\right)$ the intersection $A_{p_{1}} \cap A_{p_{2}} \cap \ldots \cap A_{p_{i}}$ represents all the permutations for which $f\left(p_{j}\right)=j$, for $j \in[i]$. Thus, $\left|A_{p_{1}} \cap A_{p_{2}} \cap \ldots \cap A_{p_{i}}\right|=(n-i)!$. There are $\binom{n}{i}$ possibilities for choosing the sequence p, so finally:

$$
\left|D_{n}\right|=n!-\sum_{i=1}^{n}(-1)^{i-1}\binom{n}{i}(n-i)!=\sum_{i=0}^{n}(-1)^{i} \frac{n!}{i!}=n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}
$$

Ratio of Derangements in Permutations

Introduction

 to Combinatorics: BasicCounting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

Since $!n=\left|D_{n}\right|=n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}$
The ratio of derangements: $\left|D_{n}\right| /\left|S_{n}\right|$ while $n \rightarrow \infty$ tends to $\frac{1}{e}$

$$
e^{-1}=\sum_{i=0}^{\infty}(-1)^{i} \frac{1}{i!} \approx 0.368 \ldots
$$

($e \approx 2.7182 \ldots$ is the base of the natural logarithm)

Generating Functions

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General Techniques

A generating function of an infinite sequence a_{0}, a_{1}, \ldots is a power series:

$$
A(z)=\sum_{i=0}^{\infty} a_{i} z^{i}
$$

where z is a complex variable

Generating functions is a powerful tool for representing, manipulating and finding closed-form formulas for sequences (especially recurrent sequences)

How to extract a sequence from its generating

 function?
Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General Techniques

Let's view $A(z)$ as a function of z, that is convergent in some neighbourhood of z. Then we have:

$$
a_{k}=\frac{A^{(k)}(0)}{k!}
$$

(k-th factor in the Maclaurin series of $A(z)$)

Examples

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

$$
\begin{aligned}
& a_{i}=[i=n] \rightsquigarrow \sum_{i=0}^{\infty}[i=n] z^{i}=z^{n} \\
& a_{i}=c^{i} \rightsquigarrow \sum_{i=0}^{\infty} c^{i} z^{i}=(1-c z)^{-1} \text { (geometric series) } \\
& a_{i}=[m \mid i] \rightsquigarrow \sum_{i=0}^{\infty} z^{m \cdot i}=\frac{1}{1-z^{m}} \\
& a_{i}=(i!)^{-1} \rightsquigarrow \sum_{i=0}^{\infty} \frac{z^{i}}{i!}=e^{z} \\
&(a)=(0,1,1 / 2,1 / 3 /, 1 / 4, \ldots) \rightsquigarrow \sum_{i=1}^{\infty} \frac{z^{i}}{i}=-\ln (1-z)
\end{aligned}
$$

Basic Operations

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

Let $A(z)$ and $B(z)$ are the generating functions (GF) of sequences $\left(a_{i}\right)$ and $\left(b_{i}\right)$, respectively, $\alpha \in \mathcal{R}$. Then:

- GF of $\left(a_{i}+b_{i}\right)$ is $A(z)+B(z)=\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) z^{i}$

■ GF of $\left(\alpha \cdot a_{i}\right)$ is $\alpha \cdot A(z)=\sum_{i=0}^{\infty} \alpha \cdot a_{i} \cdot z^{i}$

- GF of $\left(a_{i-m}\right)$ is $z^{m} \cdot A(z)$

Further Examples

Introduction

to Combina-

torics: Basic Counting
Techniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

$$
\begin{gathered}
(0,1,0,1 \ldots) \rightsquigarrow z\left(1-z^{2}\right)^{-1} \\
(1,1 / 2,1 / 3, \ldots) \rightsquigarrow-z^{-1} \ln (1-z) \\
a_{i}=1 \rightsquigarrow(1-z)^{-1} \\
a_{i}=(-1)^{i} \rightsquigarrow(1+z)^{-1} \\
i \cdot a_{i} \rightsquigarrow z \cdot A^{\prime}(z) \\
a_{i}=i \rightsquigarrow z \frac{d}{d z}(1-z)^{-1}=z(1-z)^{-2}
\end{gathered}
$$

Convolution of sequences

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

A convolution of two sequences $\left(a_{i}\right)$ and $\left(b_{i}\right)$ is a sequence c_{i} :

$$
c_{i}=\sum_{k=0}^{i} a_{k} \cdot b_{i-k}
$$

and is denoted as: $\left(c_{i}\right)=\left(a_{i}\right) *\left(b_{i}\right)$
Convolution is commutative. Fact:

$$
\sum_{i=0}^{\infty} c_{i} z^{i}=A(z) \cdot B(z)
$$

(GF of $\left(a_{i}\right) *\left(b_{i}\right)$ is $A(z) \cdot B(z)$)

Example

Introduction

 to Combinatorics: Basic CountingTechniques
Marcin
Sydow

Introduction
Basic
Counting
General
Techniques

Harmonic number:

$$
H_{n}=\sum_{i=1}^{n} \frac{1}{i}
$$

Closed-form formula?
GF for $\left(H_{n}\right)$ is a convolution of $(0,1,1 / 2,1 / 3, \ldots)$ and $(1,1,1, \ldots)$. Thus, this GF is $-(1-z)^{-1} \ln (1-z)$.

Example: Closed-form formula Fibonacci Numbers

Introduction to Combinatorics: Basic Counting Techniques

Marcin
Sydow

$$
F_{i}=F_{i-1}+F_{i-2}+[i=1]
$$

thus (its GF is):

$$
F(z)=z F(z)+z^{2} F(z)+z
$$

$$
F(z)=\frac{z}{1-z-z^{2}}
$$

$\left(1-z-z^{2}\right)=(1-a z)(1-b z)$, where $a=(1-\sqrt{5}) / 2$ and $b=(1+\sqrt{5}) / 2$. Thus,
$F(z)=\frac{z}{(1-a z)(1-b z)}=\frac{1}{(a-b)}\left(\frac{1}{(1-a z)}-\frac{1}{(1-b z)}\right)=\sum_{i=0}^{\infty} \frac{a^{i}-b^{i}}{a-b} \cdot z^{i}$.
Finally:

$$
F_{i}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{i}-\left(\frac{1-\sqrt{5}}{2}\right)^{i}\right]
$$

N -th order linear recurrent equations

Introduction

to Combina-
torics:
Basic
Counting
Techniques
Marcin
Sydow

Introduction

Basic

Counting
General
Techniques

$$
a_{i}=q(i)+q_{1} \cdot a_{i-1}+q_{2} \cdot a_{i-2}+\ldots+q_{k} \cdot a_{i-k}
$$

where $q(i)=a_{i}$, for $i \in[k-1]$ (initial conditions)

$$
A(z)=A_{0}(z)+q_{1} \cdot z A(z)+q_{2} \cdot z^{2} A(z)+\ldots+q_{k} \cdot z^{k} A(z)
$$

$$
A(z)=\frac{a_{0}+a_{1} z+\ldots+a_{k-1} z^{k-1}}{1-q_{1} z-q_{2} z^{2}-\ldots-q_{k} z^{k}}
$$

```
Introduction
to Combina-
    torics:
    Basic
    Counting
    Techniques
    Marcin
    Sydow
Introduction
Basic
Thank you for attention
```

Counting

