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Oświadczenie

Ja, niżej podpisany Karol Struniawski, autor rozprawy doktorskiej pt. „Optimization
and Applications of Extreme Learning Machine Method”, oświadczam, iż wyżej wskazaną
rozprawę napisałem samodzielnie i żaden jej fragment lub całość nie był pisany przez
osobę trzecią. Jednocześnie oświadczam, iż:

• praca nie była wcześniej podstawą nadania stopnia doktora innej osoby,

• załączona wersja elektroniczna jest tożsama z wydrukiem rozprawy,

• wszystkie elementy pracy, które zostały wykorzystane do jej realizacji, a nie będące
mojego autorstwa, zostały odpowiednio oznaczone oraz zostało podane źródło ich
pochodzenia,

• przedstawiona przeze mnie wyżej wskazana praca nie narusza przepisów ustawy z
dnia 4 lutego 1994 r. o prawach autorskich i prawach pokrewnych (tj. z dnia 17
maja 2006 r. Dz.U. Nr 90, poz. 631 z późn. zm.).

Mam również świadomość, iż złożenie nieprawdziwego oświadczenia skutkować będzie
niedopuszczeniem do dalszych czynności postępowania w sprawie nadania stopnia dok-
tora lub cofnięciem decyzji o nadaniu mi stopnia doktora oraz wszczęciem postępowania
dyscyplinarnego.
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Abstract

This dissertation focuses on the development, optimization, and applications of the
Extreme Learning Machine (ELM) method across various fields, with particular emphasis
on: (a) the creation of programming tools and the search for energy-efficient deployment
platforms for ELM, (b) algorithmic improvements for ELM, and (c) practical applications
of ELM together with other Machine Learning methods in microorganisms’ identification.
This order reflects the logical structure of the research, as the development of the TfELM
platform in (a) served as the computational foundation for all subsequent experiments
and analyses presented in (b-d).

(a) One of the key contributions of this work is the development of TfELM, a flexible
software programming platform developed from scratch in Python, fully integrated with
TensorFlow, CUDA, and scikit-learn libraries. This open-source tool, available through
the Python Package Index (PyPI) and GitHub, supports 18 ELM variants and is fully
compatible with scikit-learn conventions, enabling automatic computation of metrics dur-
ing cross-validation, application of Explainable Artificial Intelligence (XAI) techniques,
and model saving and loading. Performance evaluations demonstrated that TfELM out-
performs existing implementations in computational efficiency, due to its compatibility
with the latest versions of TensorFlow and CUDA, as well as the adoption of techniques
such as Nyström approximation. The dissertation also addresses the impact of hardware
architecture on the performance of machine learning algorithms, including ELM. The
energy efficiency of Apple Silicon (M1, M2, M3 and M4) processors was analyzed and
compared to traditional GPU configurations, such as the NVIDIA RTX 3090. The results
confirmed that M2 processors can offer an energy-efficient alternative for selected ELM
tasks while still maintaining high computational performance.

(b) A significant part of the dissertation is dedicated to the algorithmic optimization
of ELM. Research on metaheuristic algorithms (MAs) demonstrated that techniques such
as the Salp Swarm Algorithm (SSA) and Manta Ray Foraging Optimization (MRFO) can
significantly enhance the accuracy of ELM models. Further studies focused on optimizing
the selection of activation function parameters for ELM using MAs, resulting in notice-
able improvements in classifier performance. A comprehensive analysis of 36 activation
functions, including Mish and Sexp-previously unused in ELM-was conducted, confirm-
ing the critical importance of activation function selection for classification outcomes.
Moreover, the dissertation provides a detailed investigation into the influence of random-
ness in the weight initialization process in ELM. It was demonstrated that the choice of
random number generator and probability distribution function substantially impacts on
the stability and on accuracy of the used models. Experimental results indicated that
the Pareto distribution in most cases outperforms the uniformly distributed initialization
commonly used in ELM.

(c) Another key element of this dissertation is the practical application of ELM in
the analysis of biological images. A series of studies focused on the identification of
soil microorganisms using machine learning and image processing techniques. One of
the issues studied in this dissertation compares the effectiveness, in terms of the model
precision for ELM, Support Vector Machines, and Random Forests in the classification
of soil bacteria, demonstrating the superiority of ELM in single-cell classification tasks
using the TfELM library and algorithmic enhancements based on insights from ELM
optimization process. Subsequent research exploits also the use of Convolutional Neural

4



Networks (CNNs) to identify fungi and Chromista, confirming the accuracy of single-
instance analysis even in datasets with substantial morphological diversity. The most
extensive study addresses the automatic identification of soil microorganisms cultivated
on agar media. With the aid of developed TfELM package, the ELM and CNN precision
and execution time is subsequently analyzed. This is achieved upon comparing calculated
features (color, texture, and shape descriptors) with traits extracted via CNNs. Notably,
manually computed features usually proved more effective than those extracted from deep
convolutional networks.

In summary, this dissertation attempts to make a substantial contribution to the ad-
vancement of ELM by developing modern programming software tools (TfELM library),
enhancing algorithmic techniques through SSA and MRFO, and demonstrating practical
applications in biological image analysis. The research hypothesis of this dissertation
is that the ELM can be significantly improved by enhancing its algorithmic techniques-
specifically through the incorporation of the aforementioned extensions. These enhance-
ments not only boost ELM’s performance but also broaden its applicability to real-world,
data-driven problems. The results offer a solid foundation for future research into other
applications of ELM and its variants across various machine learning tasks.
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Streszczenie

Niniejsza rozprawa koncentruje się na opracowaniu rozszerzeń i usprawnień, optyma-
lizacji oraz zastosowaniach metody Extreme Learning Machine (ELM) w różnych dzie-
dzinach, ze szczególnym uwzględnieniem a) tworzenia narzędzi programistycznych oraz
poszukiwaniu efektywnych energetycznie platform uruchomieniowych dla ELM, b) opra-
cowaniu i realizacji usprawnień algorytmicznych dla ELM oraz c) praktycznych zastoso-
waniach ELM i innych metod uczenia maszynowego w zadaniach identyfikacji mikroorga-
nizmów ryzosferowych. Taka kolejność odzwierciedla logiczną kolejność badań, ponieważ
opracowanie platformy TfELM w części (a) stanowiło podstawę obliczeniową dla wszyst-
kich dalszych eksperymentów i analiz przedstawionych w częściach (b-d).

a) Podstawę pracy stanowi TfELM – stworzona przez autora tej rozprawy od podstaw
elastyczna platforma programistyczna napisana w języku Python, w pełni zintegrowana z
bibliotekami TensorFlow, CUDA oraz scikit-learn. To otwarte oprogramowanie, dostępne
w menadżerze pakietów dla języka Python - PyPI oraz GitHub wspiera 18 wariantów
ELM i jest zgodne z konwencjami biblioteki scikit-learn, co umożliwia m.in. automa-
tyczne obliczanie metryk w walidacji krzyżowej, zastosowanie Wyjaśnialnej Sztucznej
Iteligencji (eng. Explainable AI) oraz zapisywanie i wczytywanie rozważanych modeli.
Przeprowadzone testy wydajnościowe wykazały, że TfELM przewyższa istniejące im-
plementacje pod względem efektywności obliczeń (krótszy czas nauczania i testowania
modelu) dzięki zgodności z najnowszymi wersjami bibliotek TensorFlow i CUDA oraz
zastosowaniu metod takich jak aproksymacja Nyströma. W rozprawie podjęto także te-
mat wpływu architektury sprzętowej na wydajność algorytmów uczenia maszynowego, w
tym ELM. Przeanalizowano możliwości energooszczędnych układów Apple Silicon (M1-
M4), porównując ich wydajność z tradycyjnymi konfiguracjami GPU, takimi jak NVIDIA
RTX 3090. Wyniki badań potwierdziły, że procesory M2 mogą stanowić efektywną ener-
getycznie alternatywę dla wybranych zadań modeli typu ELM, przy zachowaniu wysokiej
wydajności obliczeniowej.

b) Znaczną część pracy poświęcono optymalizacji algorytmicznej ELM. W badaniach
nad Metaheurystycznymi Algorytmami (MA) wykazano, że techniki takie jak Salp Swarm
Algorithm (SSA) czy Manta Ray Foraging Optimization (MRFO) pozwalają na zwięk-
szenie dokładności modeli ELM. Kolejne badania skupiły się na optymalizacji doboru
wartości parametrów dla różnych funkcji aktywacji do ELM za pomocą algorytmów MA,
co przyniosło zauważalny wzrost skuteczności klasyfikatorów. Przeprowadzono również
kompleksową analizę 36 funkcji aktywacji, w tym też dotąd niewykorzystywanych w ELM
funkcji Mish i Sexp, potwierdzając kluczowe znaczenie doboru funkcji aktywacji dla wy-
ników klasyfikacji. W rozprawie szczegółowo przeanalizowano także wpływ losowości wy-
boru wag w procesie inicjalizacji wag w ELM. Badania wykazały, że wybór generatora
liczb losowych oraz funkcji rozkładu prawdopodobieństwa może znacząco wpłynąć na
stabilność i dokładność modeli. Eksperymenty dowiodły, że rozkład Pareto często prze-
wyższał najczęściej stosowane w ELM rozkłady jednostajne.

c) Ważnym elementem pracy jest również testowanie praktycznego zastosowania ELM
w analizie obrazów biologicznych (tj. do klasyfikacji bakterii i Chromist zamieszkujących
ryzosferę). W serii różnorodnych badań skoncentrowano się na identyfikacji mikroorgani-
zmów glebowych z wykorzystaniem uczenia maszynowego oraz innych technik przetwa-
rzania obrazów (np. filtrowanie, segmentacja, czy ekstrakcja). W jednej z prac porównano
efektywność ELM, maszyn wektorów nośnych oraz lasów losowych w klasyfikacji bakte-
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rii glebowych. Wyniki wykazały wyższość ELM, w kontekście dopasowania do danych
oraz szybkości nauczania i testowania, w zadaniach klasyfikacji pojedynczych komórek
wykorzystując stworzoną bibliotekę TfELM do obliczeń oraz usprawnienia sieci na bazie
wiedzy ugruntowanej w publikacjach poświęconym optymalizacji sieci ELM. W kolejnych
badaniach zastosowano konwolucyjne sieci neuronowe (eng. Convolutional Neural Ne-
twork - CNN) do identyfikacji grzybów i Chromist potwierdzając efektywność podejścia
opartego na analizie pojedynczych instancji nawet przy dużym zróżnicowaniu morfolo-
gicznym badanych danych. Najobszerniejsze studium poświęcono automatycznej identyfi-
kacji mikroorganizmów glebowych hodowanych na pożywkach agarowych. Wykorzystując
wcześniej stworzony pakiet TfELM, przeanalizowano skuteczność klasyfikatorów ELM i
CNN, porównując cechy obliczone ręcznie w zestawieniu z tymi uzyskanymi przy użyciu
CNN. Co istotne, cechy wyliczane z obrazu, które obejmowały cechy koloru, tekstury oraz
kształtu, okazały się często bardziej skuteczne pod względem dopasowania modelu niż te
uzyskane z głębokich sieci konwolucyjnych.

Podsumowując niniejsza rozprawa ma na celu wniesienie istotnego wkładu w rozwój
ELM poprzez opracowanie nowoczesnych narzedzi programistycznych takich jak biblio-
teka TfELM, optymalizację algorytmiczną SSA i MRFO oraz praktyczne zastosowania w
analizie obrazów biologicznych. Hipoteza badawcza niniejszej rozprawy zakłada, że ELM
może zostać istotnie udoskonalona poprzez rozwój jej technik algorytmicznych - w szcze-
gólności dzięki zastosowaniu wspomnianych wcześniej rozszerzeń. Zmiany te nie tylko
poprawiają wydajność ELM, ale także poszerzają zakres jego zastosowań w rozwiązy-
waniu rzeczywistych, opartych na danych problemów. Uzyskane wyniki stanowią solidną
podstawę do dalszych badań nad wykorzystaniem ELM i jego wariantów w innych zada-
niach uczenia maszynowego.
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Chapter 1

Introduction

The foundations of Machine Learning (ML) stretch back to the 19th and early 20th
centuries, with key advancements in mathematics, logic, and cognitive science [1, 2]. Sta-
tistical and probabilistic methods, such as Bayesian probability introduced by P. Laplace,
the Gaussian distribution formalized by C.F. Gauss and F. Galton’s concepts of correla-
tion and regression analysis, established fundamental principles for data-driven learning
[3]. At the same time, early theories of learning and cognition emerged, with H. Helmholtz
proposing that both perception and cognition rely on inference, such concept that also
resonates with modern probabilistic learning models [4]. W. James and I. Pavlov explored
associative learning, emphasizing how experiences shape knowledge [5]. The evolution of
ML was not solely reliant on statistical methods. Indeed the new concepts required com-
putation power related to theoretical advancements. G. Boole’s development of boolean
algebra provided the logical framework for decision-making process in machines, while C.
Babbage, alongside A. Lovelace, envisioned the first mechanical computer. Additionally,
the contributions of D. Hilbert and B. Russell in formal logic helped to determine the
principles of algorithmic reasoning [6]. All these intellectual advancements converged in
1943 with the pioneering work of W. McCulloch and W. Pitts, who proposed a model of
artificial neurons resembling the biological ones [7]. Their work laid the foundation for
ML, following decades of research in logic, probability, and cognitive science.

The proposed model was further expanded by D. Hebb’s idea that neurons can be
wired together that mimics the strengthening of synaptic connections based on experience
[8]. Building upon these ideas F. Rosenblatt, a psychologist at Cornell University, devel-
oped in 1958 the perceptron as a practical model of learning based on McCulloch-Pitts
neurons and Hebbian principles [9]. This model was capable to separate two linearly-
separable classes using a linear decision boundary (upon finding appropriate weights).
Initially, Rosenblatt claimed that it could eventually be extended to recognize complex
patterns and even lead to machines with human-like intelligence (that nowadays is com-
monly called General Artificial Intelligence) [10]. The promises emerged U.S. Navy to
finance the Mark I Perceptron hardware, to demonstrate its capabilities. The excitement
surrounding halt in 1969 when M. Minsky and S. Papert mathematically proved the per-
ceptron could only learn linearly separable functions [11]. The criticism in Perceptrons
led to a decline in neural network research throughout the 1970s, a period often referred
to as the first AI winter.

In 1967, S. I. Amari was the first to introduce the use of gradient-based method for
training multilayer neural networks [12]. Noteworthy, his work remained largely unno-
ticed until 1986, when G. Hinton, D. Rumelhart, and R. J. Williams published a paper
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demonstrating that backpropagation could effectively train multilayer perceptrons (MLP)
[13] that hasn’t cited the Amari work. His contribution was also overlooked by the 2024
Nobel Prize Committee that rewarded G. Hinton for Nobel Price in physics for foun-
dational discoveries and inventions that enable machine learning with artificial neural
networks. Despite its promise, backpropagation was computationally demanding, limit-
ing its adoption that lead to the interest decline in neural networks during the second
AI winter in the 1990s. With advancements in computing power, large datasets, and
optimization techniques, backpropagation has since become the foundation of modern
deep learning, enabling the training of today’s most powerful AI models.

Convolutional Neural Networks (CNNs) originates is neuroscience, particularly the
work of D. Hubel and T. Wiesel in the late 1950s [14]. Their experiments on the visual
processing system of cats [15] revealed that neurons in the primary visual cortex respond
selectively to specific visual patterns, such as edges, corners, and orientations. This in-
sight laid the foundation for artificial neural architectures designed to imitate biological
vision. The first fully trainable CNN was introduced by Yann LeCun in 1989 [16], demon-
strating its effectiveness in handwritten digit recognition on the U.S. Modified National
Institute of Standards and Technology (MNIST) database. Due to the computational
limitations, CNNs remained largely unexplored until 2012, when AlexNet, developed by
A. Krizhevsky, I. Sutskever, and G. Hinton, won the ImageNet competition [17], proving
the immense potential of deep CNNs for large-scale image classification. Today, CNNs
remain the gold standard for computer vision tasks, offering exceptional performance and
ease of application. Unlike traditional methods that rely on handcrafted features, CNNs
can automatically extract meaningful representations from images, making them the first
choice for numerous real-world applications.

A pivotal theoretical breakthrough that preceded the development of the Single Hid-
den Layer Feedforward Network (SLFN) was the formulation of the Universal Approx-
imation Theorem. This theorem provides a rigorous mathematical foundation for the
expressive capabilities of neural networks in approximating real-valued functions. In a
seminal result published in 1989, G. Cybenko [18] proved that a feedforward neural net-
work with a single hidden layer employing a sigmoidal activation function is capable of
approximating any continuous function f : [0, 1]n → R to arbitrary precision, provided
the network contains a sufficiently large number of hidden units.

Cybenko showed that for any continuous function f defined on the unit cube [0, 1]n

and for any ε > 0, there exists a finite set of weights wi ∈ Rn, biases θi ∈ R, and output
coefficients αi ∈ R, such that the function

f̂(x) =
N∑

i=1

αi σ(w
⊤
i x+ θi)

approximates f uniformly on [0, 1]n within an error ε, that is,

sup
x∈[0,1]n

∣∣∣f(x)− f̂(x)
∣∣∣ < ε.

Here, σ : R → R is any sigmoid function satisfying

lim
x→−∞

σ(x) = 0, lim
x→∞

σ(x) = 1.

This result established that SLFNs with a non-linear sigmoidal activation are dense
in the space of continuous functions on compact subsets of Rn, thus justifying their use

15



as universal function approximators. Shortly thereafter, in the same year, K. Hornik,
along with M. Stinchcombe and H. White, extended and generalized Cybenko’s theorem
[19]. They showed that the universal approximation capability of feedforward networks
is not limited to the sigmoid function. More precisely, any non-polynomial, bounded,
and continuous activation function σ, under mild regularity assumptions, suffices for
the network to retain the universal approximation property. These foundational results
collectively demonstrated that even relatively shallow neural networks, those with only
a single hidden layer, possess immense representational power. The significance of these
theorems lies in their assertion of existence: they guarantee that, theoretically, a solution
exists within the SLFN function space for any desired approximation accuracy, though
they do not provide a constructive procedure to find the optimal weights and number
of neurons in hidden layer. In particular, the universal approximation theorems make
no assumptions about training algorithms, convergence behavior, or weight initialization
strategies. Nonetheless, they laid the theoretical groundwork for the adoption of SLFNs
in function approximation tasks and inspired a wealth of subsequent research into more
efficient architectures and learning algorithms.

In 2004, G.-B. Huang introduced the Extreme Learning Machine (ELM), a fast and
efficient alternative to traditional gradient-based MLPs [20]. Unlike MLPs, which were
evolving into deeper and more complex architectures, ELM focused on a simpler SLFN.
The key innovation of ELM was its training methodology: instead of iterative weight
adjustments using backpropagation, it randomly initializes the input-to-hidden layer
weights and biases, mapping input samples into a different feature space. Then, the
hidden-to-output layer weights are computed in a single step using the Moore-Penrose
pseudoinverse [21], providing the global optimal least-squares solution without iterative
gradient-based optimization. This approach makes ELM significantly faster than tra-
ditional backpropagation-based networks, while still achieving comparable accuracy in
many real-world applications [22]. Since it does not rely on gradient descent, ELM is in-
herently resistant to issues like vanishing or exploding gradients and local minima traps.

The concept of Extreme Learning Machines (ELMs) fundamentally revolves around
dense single-layer feedforward neural networks (see Fig. 1.1), which offer robust solutions
for both regression and classification tasks [23]. In a supervised setting, input data are
represented as pairs η = (xi, ti)

N
i=1, where XN×d denotes the input features for learning

and TN×c represents the corresponding targets. For classification, T consists of one-hot-
encoded class labels, whereas for regression, it relies on one or more continuous target
values. The architecture of an ELM typically involves input, single hidden, and out-
put layers. The input layer of the network consists of d neurons, corresponding directly
to the dimensionality of the input feature space. The hidden layer contains L neurons,
where L is a hyperparameter that must be specified a priori. Despite its critical impact on
model performance and generalization, there exists no universally efficient or theoretically
grounded method for determining the optimal value of L, current practices rely primarily
on heuristic strategies or empirical validation [24].. In classification tasks, softmax or
argmax functions are frequently employed as activation functions of the output layer to
identify the final class [25]. The uniform distribution function generates random weights
α between the input and hidden layers, as well as biases b, resulting in a random mapping
of the input data. The crux of ELM lies in the determination of weights β between the
hidden and output layers. These weights are computed by solving the equation Y = Hβ,
where H represents the output from the hidden layer, computed as H = f(Xα+ b), with
f(·) denoting any activation function. Directly solving this system is infeasible due to the
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irreversible nature of H [23]. Instead, β is estimated as the minimizer of the mean resid-
ual square error, given by the Moore-Penrose generalized inverse of H, denoted as H†,
and rendering the final result as β̂ = H†T [21]. The pseudoinverse matrix H† uniquely
determines β̂ such that Hβ̂ closely approximates Y in terms of mean square error [26].
ELMs offer a distinct advantage over traditional iterative learning methods by comput-
ing optimal weights in a single run, circumventing issues associated with vanishing or
exploding gradients and suboptimal solutions [27, 28, 29]. This non-iterative approach
ensures computational efficiency and mitigates common pitfalls encountered in iterative
learning algorithms. Compared to methods such as the Multilayer Perceptron algorithm
with Backpropagation, ELMs demonstrate remarkable speed and resource efficiency, with
learning rates hundreds of times faster [30, 31]. This efficiency makes ELMs particularly
well-suited for time-sensitive applications and large-scale datasets, offering a compelling
alternative for rapid model training. Over time, several variants of ELM have been de-
veloped to enhance its capabilities. Notable extensions include Kernel-based ELM, which
integrates kernel methods for improved non-linearity handling, and hybrid models that
leverage evolutionary algorithms (e.g., Genetic Algorithms or Particle Swarm Optimiza-
tion) to fine-tune parameters like weights or hyperparameters such as activation function
parameters, further improving performance and adaptability across various tasks [32].
Following the formulation of the ELM, the process of modifying the original solution
is initiated. The first idea involves incorporating the concept of ridge regression theory,
which suggests adding a positive value to the diagonal of HTH or HHT to achieve a more
stable solution and better generalization performance [33]. This concept is integrated into
ELM through an additional hyperparameter C passed to the model. Subsequent efforts
focus on optimizing the β weights after their calculation using Moore-Penrose pseudoin-
verse operations, minimizing the l1, l2, or combined l12 loss with a given optimization
method to form the Regularized ELM [34]. The l1 loss function minimizes the sum of
all absolute differences between the true value and the predicted value, whereas l2 mini-
mizes the sum of all squared differences between the true and predicted values. Still, the
challenge of determining the number of neurons in the hidden layer L persists. This is
addressed by the Kernel Extreme Learning Machine, which incorporates the evaluation
of the matrix HTH or HHT by the kernel matrix, leveraging the Mercer kernel theorem
[35]. Another approach involves tuning the randomly generated weights α using Meta-
heuristic Algorithms (MA), resulting in MA-ELM [36]. Specific ELM variants, such as
constrained and weighted variants, are developed to handle imbalanced datasets by gen-
erating specially crafted α weights. In addition, receptive fields can change these weights
to favor input in the center, as inspired by human vision in Receptive Fields ELM (RF-
ELM) [37]. Moreover, researchers explore not only supervised but also semi-supervised
and unsupervised methods, with the latter being ideal for data embedding and cluster-
ing tasks. To address the challenge of handling large-scale data, the Online Sequential
ELM (OS-ELM) is introduced, allowing learning from data chunks with minimal mem-
ory consumption [38]. Furthermore, multilayer ELM structures are developed based on
autoencoder ELM (AE-ELM), which maps input and target data into a different space
defined by ELM parameters [39]. This enables the formulation of multilayer structures
composed of stacked AE-ELMs and a typical ELM at the last layer.

One of the key applications of ML is image classification, where images or their frag-
ments are analyzed and assigned to predefined categories based on the information they
contain. This dissertation explores soil microorganism identification through microscopy
imaging, comparing various ML approaches and evaluating different ELM optimization
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Figure 1.1: Extreme Learning Machine topology.

strategies for this task. Soil microorganisms play a crucial role in ecosystems, while
some species are pathogenic or harmful, leading to significant agricultural losses, others
contribute to plant health by suppressing pathogens and enhancing crop growth [40].
Traditional identification methods involve isolating microorganisms from soil, examining
them under a microscope, and classifying them based on macro- and micromorphology,
often supplemented by phenotypic and molecular biology techniques. This process is
time-consuming, labor-intensive and depends often on expert knowledge. The goal is to
streamline and automate microorganism identification using ML-based image analysis,
relying solely on morphological traits that will facilitate the works of the other scientists
enabling the large scale research in this scope.

1.1 Research problem

This dissertation has several key targets aimed at advancing the field of ELMs through
optimization, performance evaluation, and application to real-world problems. These
targets are as follows:

(a) Open-Source Efficient Framework for ELM Calculation: A primary target
is the development of an open-source, efficient framework for ELM calculation utilizing
CUDA, TensorFlow, and scikit-learn. The framework is designed to support various ELM
variants, ensuring high efficiency and scalability. Written in Python, it enables seamless
integration with already established machine learning libraries, taking full advantage
of CUDA technology for optimized computations. The goal is to create a framework
that is intuitive, user-friendly, and compatible with existing tools and frameworks, while
remaining versatile and scalable for future use. Such approach supports researchers to
implement ELM models easily, promoting transparency, reproducibility, and accessibility
within the scientific community. Additionally, this open-source framework contributes
to the open science movement by ensuring that the corresponding implementations and
data sources are publicly available.

(b) Performance of ELM on Apple M-Series Processors: Another key thesis
target is to investigate the performance of ELM on Apple’s M-Series processors. With
the introduction of the M1 chip, Apple has produced highly integrated processors that
consume significantly less power than traditional PC-class devices, which makes them an
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attractive option for machine learning tasks. This dissertation investigates whether these
processors can effectively handle ELM models, particularly in the context of machine
learning tasks that demand high computational resources. The performed evaluation
accounts for trade-off between power consumption and performance, especially in light of
the current global energy challenges.

(c) Optimization of ELM: The third thesis target is to optimize the performance
of ELM through various strategies. One crucial area here is the selection of activation
functions. The dissertation aims to address the open research question of determining
the most suitable activation function for the specific tasks. Additionally, metaheuristic
algorithms (MAs) will be explored to optimize ELM parameters, especially the activation
function, as traditional approaches often rely on heuristic choices. Another focus is to
refine the random weights generation between the input and hidden layers, investigating
whether these weights can be fine-tuned using MAs or other optimization techniques. The
dissertation also addresses the impact of different random distributions and generator
implementations on the stability and performance of the model, ultimately seeking to
improve the computational efficiency, stability, and predictive accuracy of ELM.

(d) Applications of ELM in the Identification of Microorganisms: A key
application of the optimized ELM model aims on identification of soil microorganisms,
which play a significant role in effective agriculture. Traditional methods of microor-
ganism identification are labor-intensive and rely on manual observation of macro- and
micromorphological traits. The target of this dissertation is to automate such identifi-
cation process by developing an efficient machine learning model to accurately identify
soil microorganism genera based solely on morphological traits observed under the mi-
croscope. The dissertation in question explores whether such a model is applicable for
use across various datasets, including those generated through automated image capture.
The successful development of such a system will enable rapid and precise identification
of microorganisms, ultimately facilitating timely agricultural interventions to mitigate
the harmful effects of pathogenic microorganisms on crops and laboratory colonies.

1.2 Overview of state of the art

Before presenting the results of the thesis in details, a short review of the current state
of research related to the dissertation’s objectives is provided. This section summarizes
recent developments, identifies existing gaps, and highlights areas where further work is
still needed.

1.2.1 Open-sourced efficient framework for ELM calculation uti-
lizing CUDA, TensorFlow and scikit-learn

There are notable deficiencies in existing ELM implementations, particularly regarding
the lack of a comprehensive framework that integrates diverse ELM variants while main-
taining compatibility with modern ML tools like TensorFlow and scikit-learn. Currently,
there is a scarcity of available ELM implementations, with only four variants provided
in Python, none of which conform to modern TensorFlow 2 standards or to integrate
seamlessly with scikit-learn.

Many existing implementations are outdated or incompatible with current TensorFlow
versions. For example, a TensorFlow -based implementation from 2018 by Cornell covers
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only the fundamental ELM concept and has not been updated since its release, making
it difficult to run without executing several preparatory commands to adapt the code
to modern TensorFlow distributions [41]. Another example is the Online Sequential
Extreme Learning Machine (OS-ELM) from 2018 by Otenim, which relies on the numpy
module for calculations, limiting its ability to leverage GPU acceleration by CUDA [42].

Additionally, the core ELM implementation by Putra [43] utilizes pure Python for
computations, further restricting its performance and scalability. These limitations high-
light the need for an open-sourced, efficient ELM framework that supports CUDA acceler-
ation and ensures compatibility with TensorFlow 2 and scikit-learn, ultimately enhancing
performance and usability for modern ML workflows.

1.2.2 Performance of ELM on Apple M-Series Processors

The M-Series Processors by Apple have piqued the interest of researchers due to their
potential applications in scientific endeavors, particularly in optimization and ML calcu-
lations [44]. The main objective here is to evaluate different fundamental optimization
and ML algorithms across various datasets. A significant gap in the current literature has
been identified, where performance evaluations are often conducted on a single dataset
[45] or focus solely on a single ML method, as seen in the work by Kasperek et al.
[46]. This Ph.D. thesis contribution expands the research from [46] extending this work
to CUDA-enabled devices. In the research process of this thesis, a CUDA-compatible
RTX 3090 GPU was utilized. Previous experiments comparing the NVIDIA V100 and
A100 GPUs with Apple’s M1 and M1 Ultra showed promising results, with Apple Silicon
outperforming both GPUs in several tasks [45]. While these GPUs delivered strong per-
formance, they do not represent the most powerful GPUs currently available, with the
NVIDIA V100 offering 14.13 TFLOPS in Float32 precision compared to the RTX 3090’s
35.58, highlighting the importance of testing on more advanced hardware.

1.2.3 ELM Optimization

Huang et al. demonstrated that, unlike traditional gradient-based learning algorithms,
which require differentiable activation functions, ELM can employ non-differentiable or
piecewise differentiable activation functions [47]. In recent years, numerous new acti-
vation functions have been proposed (especially within deep learning scope), showing
promising results in ML applications. The selection of an activation function depends
on the specific input task and researchers continue to explore novel functions that could
enhance ELM performance across diverse class of problems [48]. Despite the develop-
ment of new activation functions, literature reviews indicate that sigmoid and hyperbolic
tangent functions remain the most commonly used in practical ELM applications [49].

A notable gap in the field is the lack of comprehensive comparisons between activation
functions across multiple datasets. For example, Ratnawati et al. [50] compared 11
activation functions but limited evaluation to a single dataset, raising concerns about
the generalizability of their findings. The study hypothesizes that the optimal choice of
activation function is highly dependent on dataset characteristics, suggesting that subsets
of functions may consistently perform better or worse on specific types of data that also
conforms to the fact that ELM random weights are representing the random mapping into
the higher dimensional space. This operation is strictly related to the data characteristics
itself and how the decision boundary is generated using a certain activation function.
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The typical random initialization of weights in ELM can be further optimized through
fine-tuning. Recent research has introduced hybrid Metaheuristic Algorithm-ELM (MA-
ELM) models that combine ELM with various metaheuristic algorithms to improve per-
formance Chia et al. [51] employed Particle Swarm Optimization, Moth-Flame Optimiza-
tion, and Whale Optimization Algorithm to enhance ELM performance. Similarly, Wu et
al. [52] utilized Genetic Algorithms, Ant Colony Optimization, Cuckoo Search Algorithm,
and Flower Pollination Algorithm. These studies highlight the superiority of hybrid MA-
ELM models over standard ELM approaches. However, most of this research focuses
on practical applications, with a notable lack of comprehensive comparative analyses of
metaheuristic algorithms within the ELM framework.

Another field of ELM optimization involves tuning the parameters of activation func-
tions. While previous studies have explored this topic, the use of MAs to optimize
activation function parameters remains unexplored. Traditionally, MA algorithms have
been applied to fine-tune network weights, but my study proposes focusing on activation
function parameters optimization. This approach offers potential advantages, such as
improved generalization and reduced computational overhead, as it involves optimizing a
limited set of parameters-typically between one and five-rather than the extensive search
required for tuning numerous weights in traditional MA-ELM methods.

Additionally, the influence of random number generators and distribution functions
on ELM performance has received limited attention in the literature. Despite the critical
role of random number generators in initializing weights and biases between the input
and hidden layers, there is a notable absence of studies evaluating their impact on ELM
outcomes. R. Wang’s 2012 study examined the influence of randomly assigned weights in
ELM compared to kernel methods used in Kernel Extreme Learning Machine (KELM)
[53]. The findings indicated that random initialization, which expands the feature space,
often outperforms kernel mappings for various classification and regression tasks. In 2016,
G. Dudek investigated how the type of activation function and the range of random
weights and biases affect ELM’s approximation capabilities [54]. Dudek’s experiments
demonstrated that ELMs perform better in function approximation tasks when input
weights are randomly selected within a narrow range.

1.2.4 Applications of ELM and other Machine Learning methods
in the identification of microorganisms

Extensive studies have explored the application of ML for detecting pathogenic fungi
based on leaf images, achieving remarkable accuracy levels. CNN models such as AlexNet,
GoogleNet, InceptionV3, and ResNets have reached AUC scores close to 99% in detecting
fungal pathogens through leaf images [55, 56]. These studies highlight the potential of
ML to accurately identify plant diseases. On the other hand, such approaches typically
identify threats only after symptoms have manifested, leading to significant delays that
can result in substantial agricultural losses, especially with diseases like Verticillium wilt
[57]. Conventional methods for identifying microorganisms in soil samples, including
phenotypic and molecular techniques, are often time-consuming and costly [58]. An
alternative is to utilize microscopic imaging for the identification of microorganism genera.
While soil fungi identification remains a niche area of study, initial insights can be drawn
from research focusing on human-pathogenic fungi.

Zieliński et al. addressed a similar challenge, demonstrating that microscopic images
can accelerate the identification process [59]. Their study showed that combining CNNs
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with bag-of-words techniques significantly reduces the time and cost of fungal species
identification by eliminating the need for extensive biochemical tests. Nevertheless, their
research was limited by a small dataset of 180 images, all captured under uniform lighting
conditions potentially introducing biases due to expert involvement.

Recent studies increasingly highlight the transformative potential of ML, particularly
deep learning, in microbiology. Research by Treebupachatsakul [60] and Khasim [61]
demonstrates the use of deep learning for microorganism recognition and classification,
with Khasim specifically emphasizing the effectiveness of CNNs. Qu [62] and Jiang [63]
provide comprehensive overviews of ML applications in microbiology, underscoring its
utility in classification tasks and its potential to enhance the organization and applica-
tion of microbiological knowledge. The popularity of CNNs in this domain is attributed to
their straightforward processing pipeline, which eliminates the need for complex feature
crafting and selection. Despite this, traditional ML methods involving feature engineer-
ing, such as Support Vector Machines, Random Forests and k-Nearest Neighbors [64],
remain prevalent in microbial studies. Kotwal [65], for example, discusses their applica-
tion in bacterial classification, demonstrating their continued relevance.

In a comprehensive review covering 100 studies on ML applications in microbial recog-
nition from 1995 to 2021, Rani [66] notes that only 12.1% of these studies concentrate
on fungi. One such focused study is by Liu et al. [67], which employs ML techniques
to detect and count fungal microorganisms in microscopic images. Similarly, Tahir et
al. [68] utilized SVMs for fungal spore detection, employing image patches, Gaussian
filtering, and handcrafted features to achieve an accuracy of 88%.

Microscopic images of soil-dwelling microorganisms pose significant challenges for
standard image processing methods [69]. These microorganisms display a wide range
of complex, non-rigid, and irregular shapes and textures, complicating segmentation and
analysis [70, 71]. Unlike bacteria, which exhibit more homogeneous structures [72], soil
fungi often feature diverse and irregular components such as hyphae, phialides, micro-
and macroconidia, conidia cells and zoospores.

1.2.5 Conclusions from literature review

The review of existing literature points out to several critical gaps and opportunities.

• Current ELM implementations lack compatibility with modern frameworks like
TensorFlow 2 and scikit-learn, and do not effectively leverage GPU acceleration.
Similarly, performance evaluations of optimization and ML algorithms on Apple
M-Series processors remain limited, particularly in terms of hardware diversity and
algorithmic variety.

• In the field of ELM optimization, although numerous metaheuristic-enhanced ap-
proaches have been proposed, comprehensive comparative studies are still missing,
especially regarding activation function parameter tuning and the influence of ran-
dom initialization strategies.

• While ML applications in microorganism identification have shown promising re-
sults, research on applying ELM methods to microscopic image analysis-particularly
for soil fungi remains scarce.

These limitations underscore the need for the development of a modern and efficient ELM
framework, accompanied by its deployment in novel application domains and supported
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by comprehensive studies on performance evaluation and architectural optimization.

1.3 Thesis main contributions

The thesis research outcomes addressing the identified literature gaps and research ob-
jectives and achievements are presented in the following subsections.

1.3.1 Open-sourced efficient framework for ELM calculation uti-
lizing CUDA, TensorFlow and scikit-learn

The development of TfELM [73] addresses a significant gap in the field of ELMs, offering
a comprehensive and efficient solution for both researchers and practitioners. Among
the 18 ELM variants implemented in TfELM, 14 were previously unavailable in Python,
and 16 had not been integrated within the TensorFlow framework. By ensuring seamless
compatibility with TensorFlow 2.15 and scikit-learn, TfELM aligns with contemporary
software development standards, enhancing usability and accessibility. A key contribu-
tion of TfELM is its fully modular, object-oriented design that adheres to scikit-learn
principles, making it approachable for both novice and experienced ML practitioners.
This modular architecture not only simplifies usage but also enables researchers to ex-
periment with novel ELM configurations, thereby broadening the potential applications
of ELM in ML. To optimize computational efficiency without compromising flexibility,
extensive preliminary experiments were conducted on five standard benchmark datasets.
These evaluations covered both GPU-accelerated and CPU-based implementations. Per-
formance assessments across diverse hardware configurations consistently demonstrated
that TfELM outperforms existing ELM implementations, achieving substantial reduc-
tions in execution time. Detailed implementation insights and complete source code are
provided in publication, supporting reproducibility and further development. TfELM ’s
contributions extend beyond Informatics, offering valuable tools for various disciplines
that utilize ML thereby promoting interdisciplinary research and practical applications.

Paper related to this part of dissertation refers to [73].

1.3.2 Performance of ELM on Apple M-Series Processors

To comprehensively evaluate the performance of the selected ML classifiers across diverse
hardware platforms and data types, six benchmark datasets from UCI [74] were utilized.
They vary in the number of samples, features, and classes, ranging from particularly
small to moderately sized datasets. The objective here is to measure the execution time
of each classifier on three distinct hardware platforms: Apple’s M1 with 8GB RAM, M2
with 16GB RAM, a high-performance NVIDIA RTX 3090 GPU with 24GB memory, and
a mid-range laptop featuring an Intel Core i5 11500H processor paired with an NVIDIA
RTX 3050 Ti graphics card. The experiment also aimed to compare the performance of
mobile devices (M1/M2) against an i5-powered laptop. Unexpectedly, the unplugged i5
exhibited an average execution time four times longer than when plugged in, while the
M1/M2 devices maintained consistent computational performance regardless of battery
status. The comprehensive evaluation extends beyond previously explored GPUs, offering
valuable insights into the real-world performance of ML classifiers across a range of hard-
ware configurations. A variety of ML methods were evaluated, including ELM, k-Nearest
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Neighbors, Multi-Layer Perceptron, Random Forest, and Support Vector Machine. In-
terestingly, the research outcomes clarify that applicability of M-Series Processors is the
most prominent for the small or moderate datasets, where the SoC provides clear ad-
vancements in terms of limited data swapping operations between RAM and VRAM as
it occurs in PC-class devices.

The research presented in this section is closely related to the study published in [75].

1.3.3 ELM optimization

To address the gaps identified in the literature concerning the application of various
activation functions in ELM and their impact on performance, this thesis study presents
a comprehensive evaluation of 36 distinct activation functions across 10 diverse datasets.
The primary objective is to determine whether specific activation functions consistently
outperform others and to assess how the optimal choice may vary based on the dataset’s
characteristics. Notably, this work incorporates a wide range of activation functions,
including several that have not been previously explored in the context of ELM, such
as Mish, introduced in 2019 [76]. These novel activation functions may offer superior
generalization capabilities compared to traditionally options used, positioning them as
adequate candidates for enhancing ELM performance in classification tasks.

As part of this dissertation, an in-depth evaluation of hybrid ELM combined with
MA was conducted, focusing on the influence of MA selection and parameter tuning
on model performance. The study investigated the performance of MA-ELM on two
benchmark datasets: MNIST Handwritten Digits and Wine Quality White [77]. Multiple
MAs were applied, and their effects on both classification accuracy and computational
time were systematically analyzed. A core objective of the research was to investigate
different parameter configurations impact on MA-ELM performance. Specifically, the
study explored the influence of key parameters, including the number of neurons in the
hidden layer of the ELM, the population size of the MA, and the stopping conditions
used during optimization. The results revealed that the hybrid MA-ELM could achieve
higher accuracy even with a reduced number of neurons in the hidden layer compared
to traditional ELM, leading to significantly faster prediction times. One notable finding
was the effect of termination criteria on MA performance. For the MNIST dataset, the
most efficient results were obtained with a hard stop at just five iterations, whereas the
Wine Quality White dataset benefited from a longer optimization process, with the best
outcomes observed at fifty iterations. These insights highlight the importance of dataset-
specific parameter tuning in hybrid MA-ELM systems and contribute valuable guidelines
for future applications of metaheuristic optimization in ELM frameworks.

To validate the research question of whether MA can be used to optimize activation
function parameters instead of fine-tuning the weights, this dissertation includes an ex-
tensive study evaluating the performance of 24 distinct activation functions across five
diverse datasets. The selected benchmark datasets: Ionosphere, Breast Cancer, Aus-
tralian Credit, Musk, and Banana are widely used for ML performance evaluations [74].
These datasets were intentionally chosen to represent a broad range of characteristics and
complexities. The study aims to evaluate activation function performance in terms of ac-
curacy and execution time while investigating whether integrating MA enhances overall
results. A rigorous experimental setup was employed, utilizing a 50-times repeated 10-fold
cross-validation to ensure reliable and robust outcomes. Mean accuracy across multiple
runs served as the primary evaluation metric, providing an objective measure of model
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performance. Significant variations in accuracy based on the chosen activation functions
and their parameters were observed. The findings show that the MA-ELM approach is
beneficial, especially when it achieves better or comparable results with fewer neurons in
the hidden layer, resulting in more efficient models.

The experiments conducted within this study examined the impact of random number
generators and distribution function choices on the performance and stability (obtaining
comparable results every time the algorithm is run) of ELMs. A comprehensive eval-
uation was carried out, resulting in a total of 28,600 experimental setups that varied
across datasets, distribution functions, random number generators and the number of
neurons in the hidden layer. The study utilized five widely recognized datasets from the
UCI repository [74], incorporating 13 different distribution functions, 22 random number
generators from Python’s randomgen package, and hidden layer sizes ranging from 50 to
10,000 neurons. Traditionally, ELMs employ uniform distribution functions for random
initialization, but the findings of this research highlight significant performance varia-
tions across datasets when alternative distributions are used. The choice of randomness
source in ELMs was found to substantially influence final accuracy, challenging established
norms. Remarkably, certain distribution functions consistently outperformed others on
specific datasets, indicating the necessity of considering dataset-specific characteristics
when selecting randomness sources. The Pareto distribution, for example, demonstrated
superior performance, particularly on the Australian and Banana datasets. These results
underscore the need for a more nuanced approach to randomness in ELMs, promoting
enhanced performance and stability tailored to the dataset in question.

The publications of the PhD Candidate referring to this part of the dissertation include
[78, 79, 80, 81].

1.3.4 Applications of ELM in the identification of microorgan-
isms

The study forming this dissertation core also addresses the need for rapid and cost-
effective identification of soil microorganisms while establishing a robust testing frame-
work. The proposed model was validated across multiple datasets, each prepared under
various conditions, including scenarios where datasets were generated fully automati-
cally, with the microscope capturing images sequentially and non-overlappingly to cover
the sample area. The research utilized five distinct datasets specifically curated for this
study. The initial dataset, comprising 128 images, was meticulously prepared by an ex-
pert microbiologist and served as a basis for fine-tuning the image processing pipeline.
This foundational set was expanded into a second dataset with 303 images. Subsequently,
three additional datasets are created using automated image acquisition techniques, col-
lectively contributing to a total of 2,866 images. To ensure the findings are both robust
and interpretable, the study integrated Explainable AI (XAI) techniques. This approach
not only evaluated the model’s performance but also elucidated the rationale behind the
classification of individual instances and overall test sets. A key aspect of the research
was the comparison between traditional handcrafted feature approaches and CNNs. Ad-
ditionally, the research aimed to advance practical applications where prediction time is
critical, especially during large-scale tests. The study employed the ELM known for its
rapid training and exceptionally fast prediction times that suited for real-world applica-
tions where quick predictions are essential [82].

The following papers of the Candidate contribute to this section topic: [83, 84, 85].
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Chapter 2

Overview of dissertation and publications

This dissertation is based on original research conducted by the Candidate, who served
as the first author and primary contributor in all related publications. The specific
contributions to each work are given below.

2.1 Publications constituting to the dissertation

1. Identification of soil bacteria with machine learning and image processing techniques
applying single cells’ region isolation
Karol Struniawski, Aleksandra Konopka, and Ryszard Kozera.
In: I. Praca, E. Maia, P. Geril (Eds.), Modelling and Simulation 2022. The Euro-
pean Simulation and Modelling Conference 2022, Porto (Portugal), EUROSIS-ETI,
2022, pp. 76–81. ISBN 9789492859242.
Contribution: 60% — Concept development, method implementation, computa-
tional experiments, first manuscript draft, and conference presentation.
Conference paper with presentation, 70 pkt. MNiSW (Polish Ministry of Science
and Higher Education Points)

2. Performance of selected nature-inspired metaheuristic algorithms used for Extreme
Learning Machine
Karol Struniawski, Ryszard Kozera, and Aleksandra Konopka.
In: J. Mikyška, C. de Mulatier, M. Paszynski, V. V. Krzhizhanovskaya, J. J. Don-
garra, P. M. A. Sloot (Eds.), Computational Science – ICCS 2023, Prague (Czechia),
Lecture Notes in Artificial Intelligence, vol. 10475, Springer, 2023, pp. 498–512.
ISBN 978-3-031-36023-7. DOI: 10.1007/978-3-031-36024-4_38.
Contribution: 70% — Concept development, method implementation, computa-
tional experiments, initial manuscript draft, and conference presentation.
Conference paper with presentation, 140 pkt. MNiSW

3. Performance evaluation of activation functions in Extreme Learning Machine
Karol Struniawski, Aleksandra Konopka, and Ryszard Kozera.
In: M. Verleysen (Ed.), ESANN 2023: Proceedings, Brugge (Belgium),Ciaco, 2023,
pp. 351–356. ISBN 9782875870872. DOI: 10.14428/esann/2023.es2023-31.
Contribution: 70% — Study conceptualization, method implementation, compu-
tational experiments, first manuscript draft, and conference poster preparation.
Conference paper with presentation, 70 pkt. MNiSW
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4. Metaheuristic algorithms in Extreme Learning Machine for selection of parameters
in activation function
Karol Struniawski, Aleksandra Konopka, and Ryszard Kozera.
In: R. Vingerhoeds, P. De Saqui-Sannes (Eds.), Modelling and Simulation’2023.
The 2023 European Simulation and Modelling Conference, Toulouse (France),
EUROSIS-ETI, 2023, pp. 239–244. ISBN 9789492859280.
Contribution: 70% — Study conception, implementation, computational experi-
ments, first manuscript draft, and conference presentation.
Conference paper with presentation, 70 pkt. MNiSW

5. Exploring Apple Silicon’s potential from simulation and optimization perspective
Karol Struniawski, Aleksandra Konopka, and Ryszard Kozera.
In: L. Franco, C. de Mulatier, M. Paszynski, V. V. Krzhizhanovskaya, J. J. Don-
garra, P. M. A. Sloot (Eds.), Computational Science – ICCS 2024, Malaga (Spain),
Lecture Notes in Computer Science, vol. 14836, Springer, 2024, pp. 35–42. ISBN
978-3-031-63775-9. DOI: 10.1007/978-3-031-63775-9_3.
Contribution: 70% — Concept development, implementation, computational ex-
periments, first manuscript draft, and conference poster design.
Conference paper with presentation, 140 pkt. MNiSW

6. TfELM: Extreme Learning Machines framework with Python and TensorFlow
Karol Struniawski, and Ryszard Kozera. SoftwareX, Elsevier, vol. 27, 2024, Ar-
ticle 101833, pp. 1–9. DOI: 10.1016/j.softx.2024.101833.
Contribution: 90% — Full conceptualization, complete framework implementa-
tion, computational experiments, repository preparation, documentation, and first
manuscript draft.
Research article, 200 pkt. MNiSW, 2.4 Impact Factor (IF)

7. Automated Identification of soil fungi and Chromista through Convolutional Neural
Networks
Karol Struniawski, Ryszard Kozera, Paweł Trzciński, Anna Lisek, and Lidia Sas-
Paszt.
Engineering Applications of Artificial Intelligence, Elsevier, vol. 127B, 2024, Arti-
cle 107333, pp. 1–12. DOI: 10.1016/j.engappai.2023.107333.
Contribution: 60% — Study design, method implementation, computational ex-
periments, and first manuscript draft.
Research article, 140 pkt. MNiSW, 7.5 Impact Factor (IF)

8. Credibility of randomness in Extreme Learning Machine
Karol Struniawski, Aleksandra Konopka, and Ryszard Kozera.
In: J. Paliszkiewicz, J. Gołuchowski (Eds.), Trust and Artificial Intelligence: De-
velopment and Application of AI Technology, Routledge, 2025, pp. 92–106. ISBN
978-1-032-62632-1. DOI: 10.4324/9781032627236-10.
Contribution: 70% — Study conceptualization, method implementation, compu-
tational experiments, and writing of the first manuscript version.
Book chapter, 50 pkt. MNiSW
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9. Extreme Learning Machine for identifying soil-dwelling microorganisms cultivated
on agar media
Karol Struniawski, Ryszard Kozera, Paweł Trzciński, and Agnieszka Marasek-
Ciołakowska, and Lidia Sas-Paszt.
Scientific Reports, Nature Publishing Group, vol. 14, 2024, Article 31034, pp. 1–23.
DOI: 10.1038/s41598-024-82174-4.
Contribution: 70% — Study conception, implementation, computational experi-
ments, and preparation of the initial manuscript.
Research article, 140 pkt. MNiSW, 3.8 Impact Factor (IF)

Summarizing:

• Number of publications contributing to PhD: 9 papers.

• Polish Ministerial points (MNiSW): 1020 points.

• Summarized Impact factor: 13.7.

2.2 Synopsis of research articles constituting the thesis

In publication "TfELM: Extreme Learning Machines framework with Python and Ten-
sorFlow" a flexible and accessible framework is discussed for applying Extreme Learning
Machines (ELM) in Python, seamlessly integrating with TensorFlow, CUDA, and scikit-
learn is introduced. To support open science, the framework is made publicly available
via the Python Package Index, enabling researchers and practitioners to easily utilize it.
TfELM is the only ELM framework fully compatible with TensorFlow 2 and scikit-learn,
ensuring a smooth transition for users familiar with Python-based machine learning (ML)
workflows. By adhering to scikit-learn, it facilitates essential functionalities such as auto-
mated metric computation through repeated cross-validation, model saving and loading,
and Explainable Artificial Intelligence (XAI) techniques. The framework includes 18
ELM variants, offering a comprehensive set of options for researchers. Performance eval-
uations presented in the accompanying manuscript demonstrate that TfELM surpasses
existing ELM implementations in both time execution, versatility and accuracy metrics.

In paper "Exploring Apple Silicon’s potential from simulation and optimization per-
spective" the capabilities of Advanced Reduced Instruction Set Computing Machine Sys-
tem on a Chip architectures based on Apple’s M-series processors were analyzed and
compared to the NVIDIA RTX 3090 and a mid-range laptop equipped with an NVIDIA
RTX 3050Ti. The study highlighted the power consumption differences, with M-series
processors operating within a range of 10 to 31W, whereas PC-class systems with high-
performance GPUs and CPUs can reach up to 800W at peak usage. Given the increasing
importance of energy efficiency, the potential of such architectures for computational
tasks was evaluated, considering their shared memory architecture and ability to allocate
significant memory resources for intensive calculations. Various ML methods, including
ELM, were tested across datasets with varying feature and sample sizes. The results
demonstrated that the M2 processor is a viable option for ELM computations, offering
an energy-efficient alternative for specific machine learning tasks.

ELM approach typically involves randomly initializing the weights between the input
and hidden layers, though there are variants of ELM that are subject of further optimiza-
tion processes. In publication "Performance of selected nature-inspired metaheuristic al-
gorithms used for Extreme Learning Machine" various Metaheuristic Algorithms (MAs)
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are applied to optimize these weights, and their performance is evaluated and compared
across different benchmark datasets. One of the key findings is that fine-tuning the
weights with MAs requires fewer iterations and for moderate population sizes, the hybrid
MA-ELM model outperforms traditional ELM implementations. Conversely, researchers
must carefully select the appropriate MA algorithm, as the results (measured in terms of
accuracy) can vary significantly. Among the MAs tested, the Salp Swarm Algorithm and
Manta Ray Foraging Optimization have shown particularly promising results.

While the tangent hyperbolic function is commonly used in ELMs, the ELM Theorem
states that any activation function can be applied. In the paper "Performance evaluation
of activation functions in Extreme Learning Machine" 36 different activation functions
were compared across 10 datasets. The findings suggest that the choice of activation
function should be closely tied to the specific dataset in use. However, the most versatile
activation functions identified were those previously unexplored in ELM, specifically the
Mish and Sexp functions, which are typically used in Deep Neural Networks.

The next paper, entitled "Metaheuristic algorithms in Extreme Learning Machine for
selection of parameters in activation function" builds upon the MA-ELM framework by
focusing not on optimizing the weights which require an extensive search of the feature
space with thousands of parameters but on using MAs to optimize the parameters of the
activation function itself. This study also extends the research on activation functions.
Here 24 activation functions were compared across different datasets, with their param-
eters being subject to optimization. The results showed that, overall, the MA-driven
optimization of activation function parameters led to an accuracy increase of the model.

Finally, concluding the study on optimizing ELM, the paper "Credibility of random-
ness in Extreme Learning Machine" examines the impact of random weight generation in
ELM and how the choice of random generator implementation affects the results across
different datasets. The study demonstrates that using a random generator can signif-
icantly impact the accuracy and stability of the results, as well as the selection of the
distribution function for initializing the weights. Notably, the Pareto distribution func-
tion consistently delivered exceptional performance in the experiments.

The paper "Identification of soil bacteria with Machine Learning and Image Processing
Techniques applying Single Cells’ Region Isolation" explores the use of ELM in compar-
ison to Support Vector Machine and Random Forest for soil bacteria classification. The
study begins with microscopic images undergoing various image processing techniques to
extract subimages containing single bacterial cells. These subimages enable the extrac-
tion of color, texture, and geometric features, which are then refined through a feature
selection process. Classification is performed at the single-instance level, with results
evaluated either individually or aggregated using a majority-voting rule. The findings
highlight the efficiency of ELM in accurately classifying soil bacteria at the genus level,
demonstrating its strong potential for single-instance processing based on statistical fea-
tures.

Next, in the publication "Automated identification of soil fungi and Chromista through
Convolutional Neural Networks" a newly curated dataset of soil fungi and Chromista was
used to evaluate single-instance-driven identification with Convolutional Neural Networks
(CNNs). The study tested classification at both the instance level and using the majority-
voting method for genus identification. The CNNs demonstrated high accuracy in distin-
guishing classes, proving that the single-instance approach, which was effective for soil
bacteria, is also applicable to soil fungi-despite their greater variation in shape. This
work serves as a valuable reference point for ELM-based classification using statistical
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image features.
Finally, the paper "Extreme Learning Machine for identifying soil-dwelling microor-

ganisms cultivated on agar media" significantly expands the dataset of soil microorgan-
isms, creating the most comprehensive collection of microscopic images in this field.
Dataset 1, derived from previous research, allows for direct comparisons with earlier
studies, while additional datasets were generated fully autonomously using an automated
microscope, without expert biologist intervention. This study focuses on testing classifi-
cation models against new data to assess their robustness. Various classifiers, including
CatBoost, Random Forest, and ELM, were used alongside CNN-based feature extraction
methods. The results were analyzed not only with standard classification metrics but also
through Shapley Additive Explanations to provide insights into ELM’s decision-making
process and feature importance. Thanks to the TfELM framework, the study demon-
strated that full-image classification, with preliminary background removal, is effective.
Interestingly, the results showed that handcrafted features outperformed CNN-based fea-
tures in this classification task.
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Chapter 3

Content of thesis

3.1 TfELM : Extreme Learning Machines framework
with Python and TensorFlow

Publication:
K. Struniawski and R. Kozera, "TfELM: Extreme Learning Machines framework

with Python and TensorFlow", SoftwareX, Vol. 27, 2024, doi: 10.1016/j.softx.2024.101833.

Abstract : TfELM introduces an innovative Python framework leveraging TensorFlow
for Extreme Learning Machines (ELMs), offering a comprehensive suite for diverse ma-
chine learning (ML) tasks. Existing solutions in the ELM landscape lack comprehensive
implementations. TfELM fills this gap by consolidating 18 ELM variants (including 14
so-far unimplemented in Python) into a unified framework. It conforms to established
scikit-learn standards and emphasizes modularity, facilitating seamless integration into
ML pipelines. Harnessing TensorFlow ’s GPU acceleration, TfELM ensures rapid train-
ing and compatibility across varied computing environments. Notably, TfELM marks
the inaugural ELM implementation in TensorFlow 2, featuring high-performance model
saving/loading via HDF5 format, thus enhancing its novelty and alignment with contem-
porary standards. Performance evaluations demonstrate that TfELM outperforms other
solutions, achieving significant speed enhancements across various computing platforms,
with improvements of up to nine times tested on five standard UCI datasets.

40

https://doi.org/10.1016/j.softx.2024.101833


Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

TfELM: Extreme Learning Machines framework with Python and TensorFlow
Karol Struniawski a,∗, Ryszard Kozera a,b

a Institute of Information Technology, Warsaw University of Life Sciences - SGGW, ul. Nowoursynowska 166, Warsaw, 02-787, Masovian Voivodeship, Poland
b School of Physics, Mathematics and Computing, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Western Australia, Australia

A R T I C L E I N F O

Keywords:
Extreme Learning Machine
Machine learning
Artificial intelligence
Neural networks
Python
TensorFlow

A B S T R A C T

TfELM introduces an innovative Python framework leveraging TensorFlow for Extreme Learning Machines
(ELMs), offering a comprehensive suite for diverse machine learning (ML) tasks. Existing solutions in
the ELM landscape lack comprehensive implementations. TfELM fills this gap by consolidating 18 ELM
variants (including 14 so-far unimplemented in Python) into a unified framework. It conforms to estab-
lished scikit-learn standards and emphasizes modularity, facilitating seamless integration into ML pipelines.
Harnessing TensorFlow’s GPU acceleration, TfELM ensures rapid training and compatibility across varied
computing environments. Notably, TfELM marks the inaugural ELM implementation in TensorFlow 2, featuring
high-performance model saving/loading via HDF5 format, thus enhancing its novelty and alignment with
contemporary standards. Performance evaluations demonstrate that TfELM outperforms other solutions,
achieving significant speed enhancements across various computing platforms, with improvements of up to
nine times tested on five standard UCI datasets.
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1. Motivation and significance

The concept of Extreme Learning Machines (ELMs) fundamentally
revolves around dense single-layer feedforward neural networks, which
offer robust solutions for both regression and classification tasks [1].
In a supervised setting, input data is represented as pairs 𝜂 = (𝑥𝑖, 𝑡𝑖)𝑁𝑖=1,
where 𝑋𝑁×𝑑 denotes the input features for learning and 𝑇𝑁×𝑐 represents
the corresponding targets. For classification, 𝑇 consists of one-hot-
encoded class labels, whereas for regression, it relies on one or more
continuous target values. The architecture of an ELM typically involves
input, single hidden and output layers. The input layer comprises
neurons equal to the dimensionality 𝑑 of the input data, while the

∗ Corresponding author.
E-mail address: karol_struniawski@sggw.edu.pl (Karol Struniawski).

number of neurons 𝐿 in the hidden layer is determined beforehand,
lacking a known efficient evaluation method [2]. In classification tasks,
softmax or argmax functions are frequently employed as activation
function of output layer to identify the final class [3].

The uniform distribution function generates random weights 𝛼 be-
tween the input and hidden layers, as well as bias 𝑏, resulting in
a random mapping of the input data. The crux of ELM lies in the
determination of weights 𝛽 between the hidden and output layers.
These weights are computed by solving the equation 𝑌 = 𝐻𝛽, where
𝐻 represents the output from the hidden layer, computed as 𝐻 =
𝑓 (𝑋𝛼 + 𝑏), with 𝑓 (⋅) denoting any activation function. Directly solving
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this system is infeasible due to the irreversible nature of 𝐻 [1]. Instead,
𝛽 is estimated as the minimizer of the mean residual square error,
given by the Moore–Penrose generalized inverse of 𝐻 , denoted as 𝐻†

and rendering the final result as 𝛽 = 𝐻†𝑇 [4]. The Pseudo-inverse of
matrix 𝐻† uniquely determines 𝛽 such that 𝐻𝛽 closely approximates 𝑌
in terms of mean square error [5].

ELMs offer a distinct advantage over traditional iterative learn-
ing methods by computing optimal weights in a single run, circum-
venting issues associated with vanishing or exploding gradients and
suboptimal solutions [6–8]. This non-iterative approach ensures com-
putational efficiency and mitigates common pitfalls encountered in
iterative learning algorithms. Compared to methods such as the Mul-
tilayer Perceptron algorithm with Backpropagation, ELMs demonstrate
remarkable speed and resource efficiency, with learning rates hundreds
of times faster [9,10]. This efficiency makes ELMs particularly well-
suited for time-sensitive applications and large-scale datasets, offering
a compelling alternative for rapid model training.

Following the formulation of the ELM, the process of modifying the
original solution is initiated. The first idea involves incorporating the
concept of ridge regression theory, which suggests adding a positive
value to the diagonal of 𝐻𝑇𝐻 or 𝐻𝐻𝑇 to achieve a more stable
solution and better generalization performance [11]. This concept is
integrated into TfELM through an additional parameter 𝐶 passed to the
model. Subsequent efforts focus on optimizing the 𝛽 weights after their
calculation using Moore–Penrose pseudoinverse operations, minimizing
the l1, l2, or combined l12 loss with a given optimization method to
form the Regularized ELM [12]. l1 Loss Function is used to minimize
the error which is the sum of the all the absolute differences between
the true value and the predicted value, whereas l2 is the sum of the
all the squared differences between the true and the predicted value.
Still, the challenge of determining the number of neurons in the hidden
layer 𝐿 persists. This is addressed by the Kernel Extreme Learning
Machine, which incorporates the evaluation of the matrix 𝐻𝑇𝐻 or
𝐻𝐻𝑇 by the kernel matrix, leveraging the Mercer kernel theorem [13].
Various kernels, including combined kernels, are further explored and
also implemented in TfELM. Another approach involves tuning the
randomly generated weights 𝛼 using Metaheuristic Algorithms (MA),
resulting in MA-ELM [14]. Specific ELM variants, such as Constrained
and Weighted variants, are developed to handle imbalanced datasets
by generating specially crafted 𝛼 weights. In addition, receptive fields
can change these weights to favor input in the center, as inspired by
human vision in Receptive Fields ELM (RF-ELM). Moreover, researchers
explore not only supervised but also semi-supervised and unsupervised
methods, with the latter being ideal for data embedding and clustering
tasks. To address the challenge of handling large-scale data, the Online
Sequential ELM (OS-ELM) is introduced, allowing learning from data
chunks with minimal memory consumption. Furthermore, multilayer
ELM structures are developed based on autoencoder ELM (AE-ELM),
which maps input and target data into a different space defined by
ELM parameters. This enables the formulation of multilayer structures
composed of stacked AE-ELMs and a typical ELM at the last layer.
The TfELM framework’s modular architecture and object-oriented pro-
gramming facilitate interchangeable usage and the creation of custom
utilities. This flexibility permits the exploration of various ELM variant
combinations not previously addressed in the literature, offering ample
opportunities for future research endeavors.

The motivation for development of TfELM lies in response to the
identified deficiencies within existing ELMs implementations.

1. Current solutions lack a comprehensive framework capable of in-
tegrating diverse ELM variants while maintaining compatibility
with modern ML tools like TensorFlow and scikit-learn.

2. Compounding this challenge is the scarcity of available ELM
implementations, with only four variants provided in Python,
none of which is conforming to modern TensorFlow 2 or is
integrating seamlessly with scikit-learn.

Table 1
Summary of the existing implementations: TF denotes TensorFlow, PY Python, and TF2
signifies TensorFlow version 2, while SK refers to scikit-learn. All 18 variants of TfELM
adhere to Python with the latest TensorFlow version 2.15 and scikit-learn.

Version of ELM Reference PY TF TF2 SK

Basic [1] ✓ ✓ ✗ ✗

Constrained [17] ✗ ✗ ✗ ✗

Deep [18] ✗ ✗ ✗ ✗

Deep Representation [19] ✗ ✗ ✗ ✗

Enhanced Deep Representation [19] ✗ ✗ ✗ ✗

Graph Regularized Autoencoder [20] ✗ ✗ ✗ ✗

Kernel [13] ✗ ✗ ✗ ✗

Local Receptive Field [21] ✗ ✗ ✗ ✗

Metaheuristic [22] ✗ ✗ ✗ ✗

Multi-layer [23] ✓ ✗ ✗ ✗

Online Sequential [24] ✓ ✗ ✗ ✗

Regularized [12] ✓ ✓ ✗ ✗

Receptive Fields [25] ✗ ✗ ✗ ✗

Residual Compensation [26] ✗ ✗ ✗ ✗

Semi-Supervised [27] ✗ ✗ ✗ ✗

Subnetwork [10] ✗ ✗ ✗ ✗

Unsupervised [28] ✗ ✗ ✗ ✗

Weighted [29] ✗ ✗ ✗ ✗

3. The proposed tool effectively fills up this significant gap in the
realm of ELMs. In Table 1 the summary of already existing
solutions is presented.

4. Notably, 14 implemented variants covered by TfELM have yet
to be implemented in Python, and 16 remain unexplored in
TensorFlow.

5. TfELM for all of its 18 variants conforms to the Object Oriented
Programming paradigm in Python with newest TensorFlow of
2.15 and scikit-learn modules compatibility (details with source
code are provided in Code metadata).

This application covers a significant need in publicly available ELM
solutions, catering to a wide spectrum of users ranging from students to
experts. Existing implementations are either outdated or lack compat-
ibility with current TensorFlow versions. For instance, one TensorFlow-
based implementation from 2018 by Cornell covers only the funda-
mental ELM concept and has not been updated since its release [15].
Another implementation, the OS-ELM from 2018 by Otenim [16], does
not offer compatibility with modern TensorFlow versions.

TfELM’s novelty stems from its adherence to scikit-learn and its fully
modular nature, enabling new users to leverage it effortlessly within
existing ML pipelines. The modular design empowers researchers to
explore novel combinations of ELM variants, filling a crucial void in
the ELM landscape.

TfELM leverages TensorFlow’s GPU acceleration to ensure swift
training and compatibility across diverse computing environments.
Supported by the documentation, examples, and model persistence
capabilities, TfELM streamlines the exploration and deployment of
ELM-based solutions with remarkable efficiency. TfELM’s compatibility
with modern TensorFlow versions ensures its usability across various
devices, from high-performance GPUs to CPU-based systems like Ap-
ple’s M-series processors. Such versatility extends TfELM’s applicability
to a broad spectrum of computing environments, further enhancing its
significance in the field of ML.

One of the crucial goals of TfELM is to optimize performance
while maintaining versatility. Extensive preliminary experiments were
conducted on five standard datasets to optimize operations within ELM,
focusing on both GPU-compatible and non-GPU users. Performance
evaluations conducted on different devices demonstrate TfELM’s su-
periority over existing solutions, showcasing significant speedups in
execution times. These observations underscore TfELM’s potential to
revolutionize ELM implementations. The primary research question
tackled here is whether it is possible to develop a versatile frame-
work that combines different ELMs, integrates the latest modules,
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and still delivers high performance. TfELM goes beyond state-of-the-
art solutions, being the first ELM implementation to conform to both
TensorFlow 2 and scikit-learn.

2. Software description

TfELM is a Python and TensorFlow framework for ELMs, renowned
for simplicity and efficiency. It offers efficient training, versatile ap-
plications, model persistence and a modular design for various ELM’s
types. With comprehensive documentation and examples, it facilitates
seamless implementation of ELMs for various tasks.

2.1. Extreme learning machines

The concept of ELMs fundamentally revolves around dense single-
layer feedforward neural networks, which offer robust solutions for
both regression and classification tasks [1]. The uniform distribution
function generates random weights between the input and hidden
layers, as well as bias, resulting in a random mapping of the input
data. The main crux of ELM lies in the determination of weights be-
tween the hidden and output layers by the Moore–Penrose generalized
inverse [4]. ELMs offer a distinct advantage over traditional iterative
learning methods by computing optimal weights in a single run, cir-
cumventing issues associated with vanishing or exploding gradients
leading to potentially suboptimal solutions [6–8]. This non-iterative ap-
proach ensures computational efficiency and mitigates common pitfalls
encountered in iterative learning algorithms.

Following the initial formulation of ELM in 2005, numerous vari-
ants emerged, from which we meticulously selected and eventually
implemented 18. The comprehensive list of these variants is presented
in Table 1. Notably, each variant encompasses numerous sub-variants,
such as different methods for calculating Weighted ELMs, initially dis-
persed across various papers. In essence, TfELM encompasses more than
18 distinct versions, thanks to its expansive coverage of sub-variants
and methodologies within the framework.

2.2. Software architecture

The framework is structured into distinct directories for ease of nav-
igation and understanding. The Data directory contains sample datasets
sourced from the UCI repository [30], serving as an initial resource for
researchers engaging with the framework. Within the Examples direc-
tory, users can find 26 exemplary code snippets meticulously annotated
to illustrate the application of specific methods on various datasets.
For tasks involving feature embedding in Unsupervised ELM [28], these
examples also provide visual representations of the results.

The core functionalities of the framework are encapsulated within
the Layers, Models and Optimizers directories. Layers contain a
diverse range of ELM layers, each comprising input, hidden and out-
put layers. These modules offer fundamental utilities such as fitting,
prediction, building and saving functionalities, allowing researchers to
construct custom ELM variants not covered in the initial framework
version thanks to Object Oriented Paradigm applied to TfELM.

The most crucial component i.e. the Models forms specifically
crafted classes designed as subclasses of BaseEstimator and Clas-
sifierMixin or RegressorMixin from scikit-learn package. These
classes facilitate seamless integration with popular scikit-learn functions
like cross_val_score, supporting also probability metrics through
the implementation of the predict_proba method. TfELM’s models
also possess loading and saving capabilities, enhancing their versatility.
The models can accept one or more layer instances from Layers (for
multilayer ELMs, the add function facilitates the stacking of layers).
This flexibility enables the combination of various ELM layer variants,
including i.e. Kernel or SubELMLayer, across all multilayer models.
Such adaptability is invaluable for accommodating future variants.

Optimizers directory encompasses optimizers tailored for Meta-
heuristics (MAs) and regularized ELMs, optimizing wages based on
regularization norms such as 𝑙1, 𝑙2. Notably, TfELM uses the mealpy
package for its MAs, which is the widely recognized golden standard
for Python implementations. The module contains hundreds of MA
implementations and is open to new ones, allowing users to implement
any custom MA that conforms to mealpy ’s requirements and easily
utilize the newest ones for ELMs [31–33]. The Resources directory
houses additional supporting functions, while the docs directory serves
as the source for GitHub Pages documentation.

2.3. Software functionalities

TfELM forms a robust and a comprehensive solution for a myr-
iad of tasks covering classification, regression, feature mapping and
embedding. It refers to methods catering to supervised, semi-supervised
and unsupervised learning modes, covering a wide spectrum of ELM
techniques that seamlessly integrate with each other. The foundational
Basic ELMLayer serves not only as a provider for ELMModel but also
as one of the layers in the Multilayer ELM.

These algorithms underwent rigorous transformation for TensorFlow
compatibility and optimization. For instance, the Nyström approxima-
tion (see - [34]) of the kernel matrix was employed to enhance the
efficiency of Kernel and Multilayer Kernel ELM which is not covered in
the literature. Noteworthy, the versatility of TfELM extends beyond the
listed models. More specifically:

• Most layers and models are interchangeable.
• Users have the flexibility to mix and match various methods,

adjust parameter values and even combine methods to suit their
specific requirements.

• Some of these combinations might not have been previously fully
explored in the literature, offering fertile ground for new research
endeavors.

2.4. Performance evaluation

After constructing the module, close attention was paid to its per-
formance, employing various optimization techniques to enhance cal-
culation speed. Subsequently, comparisons were made, focusing on
implementations suitable for benchmarking against basic ELM. Three
specific implementations are considered:

• the initial implementation by Putra [35] utilizing core Python,
• the second by Otenim [16] employing the numpy module,
• the last utilizing TensorFlow 1 [15].

Following preliminary experiments, the TensorFlow 1 implementa-
tion was discarded due to its notably poorer performance. The re-
maining two implementations were evaluated against TfELM using
well-established and used as reference datasets in ML field including
ionosphere, musk, abalone, navigation, and eyestate. They are publicly
available through UCI Repository [30], on two distinct devices. The
first device, a PC running Windows 11 with specifications including
Ryzen 7 3700X, 64 GB RAM, and RTX 3060 12 GB VRAM, utilized
TensorFlow 2.10 and Python 3.10, with both GPU-enabled (TfELM-G)
and disabled (TfELM-C) modes tested. The second device, a MacBook
Air 15 from 2023 equipped with an M2 processor and 16 GB RAM,
ran TensorFlow 2.15 and Python 3.10 on MacOS 14.2.1. The details
about utilized datasets are provided in Table 2. Given the significance
of hidden nodes amount in ELMs, the algorithm was executed with
10 repetitions of 10-fold cross-validation to ascertain optimal per-
formance. This approach minimized random noise in measurements,
ensuring statistically meaningful results. Final conclusions were drawn
from the ionosphere and eyestate datasets, chosen to represent both ends
of the spectrum in terms of size, with ionosphere being the smallest and
eyestate being the largest.
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Fig. 1. Execution time comparison on PC for the ionosphere and eyestate datasets.

Table 2
UCI datasets: number of features and samples.
Dataset No. features No. samples No. classes

Ionosphere 34 351 2
Abalone 8 4177 3
Navigation 14 5456 4
Musk 166 6598 2
EyeState 14 14,980 2

Table 3
Performance metrics for UCI datasets.
Dataset ACC F1-Macro AUC

ionosphere 0.938 0.928 0.979
navigation 0.721 0.640 0.902
musk 0.967 0.964 0.991

The findings from ionosphere dataset, conducted on a Windows
device, consistently demonstrate TfELM-C’s superior performance over
both Putra [35] and Otenim [16] implementations across all evaluated
setups (see Fig. 1). The advantages of employing GPU calculations are
evident, with execution times being up to nine times faster compared to
alternative solutions. Additionally, results obtained from the eyestate
dataset further underscore the remarkable computational efficiency
achieved by both TfELM-C and TfELM-G.

Fig. 2 refers to the execution times of the code on an M2 processor
for the ionosphere and eyestate datasets. The plot consistently demon-
strates shorter execution times across all configurations for TfELM. This
showcases the superior efficiency and optimization of TfELM for the
given task, making it a favorable choice for machine learning tasks on
the M2 processor.

Additionally, during the experiments we noted the classifier’s accu-
racy, F1-macro and AUC for basic ELM algorithm with 1000 neurons
and mish activation function — see Table 3. These experiments point
out the ELM potential capabilities even in core version.

For a further comprehensive comparison, TfELM is also evaluated
against other ML methods, demonstrating superior capabilities in high-
performance computing. Indeed, that was one of the crucial aims
in designing the proposed framework. TfELM outperforms all other
ML methods, including high-performance ones like SVM, as shown in
Table 4 and Fig. 3. Performance evaluation was performed on MacBook
Air 15 M2 16 GB, Python 3.10, Tensorflow 2.15, Catboost 1.2.5, scikit-
learn 1.5.0, xgboost 2.0.3 that are standard frameworks for a given
model.

Table 4
Execution time of various ML methods (in seconds).
Method Ionosphere Navigation Musk

SVM 0.1453 3.188 3.256
GradientBoosting 17.5287 212.7845 367.5672
RandomForest 6.8334 42.0421 81.4316
AdaBoost 5.1562 41.0533 72.8829
MLPClassifier 127.4873 524.6581 376.6111
XGBoost 4.3851 15.8917 11.0553
CatBoost 258.6639 557.0551 540.0941
ELM (TfELM) 1.8310 1.7619 2.0921

3. Illustrative examples

The highlighted example demonstrates the practical implementation
of the Unsupervised Kernel ELM (USKELM) with a combination of
multiple kernels. Utilizing the USKELMModel, the data embedding
process is facilitated by the designated USKELMLayer, incorporating
the predefined kernels. The objective is to leverage the provided dataset
(in this case, G50C dataset) and project it into a two-dimensional space.
Refer to Fig. 4 for the corresponding code snippet and Fig. 5 for the
output visualization.

The second example (see Fig. 6) refers to the Multilayer ELM.
TfELM facilitates the creation of custom ELMLayer instances, which
are incorporated into the model using the add method. ELMLayers
can vary from one another; for instance, some may be Kernel ELM
Layers (KELMLayer — see Fig. 7), while others may apply denoising,
with parameters passed to the ELMLayer. This flexibility makes the
framework highly versatile. Following the algorithm’s formulation, it
is fitted to the example dataset – in this case, the ionosphere dataset
– and evaluated using RepeatedKFold from scikit-learn, with ac-
curacy serving as the metric. Subsequently, the saving and loading
functionalities are demonstrated. Lastly, the Fuzzy variant of ELM [36]
is represented as Fig. 8 showcasing versatility of the TfELM framework.

4. Impact

The TfELM addresses an urgent need for a comprehensive toolkit
to implement and experiment with ELMs using Python and Tensor-
Flow. The significance of the software lies in its ability to bridge
the gap in ELM implementations by offering a comprehensive frame-
work equipped with various ELM variants and utilities. By providing
researchers and practitioners with easy access to powerful tools for
building and evaluating ELM models, the software facilitates seamless
experimentation and deployment of ELM-based solutions across diverse
domains.
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Fig. 2. Execution time comparison on M2 for the ionosphere and eyestate datasets.

Fig. 3. Execution Time of Various ML Methods (in seconds).

Fig. 4. Code example demonstrating the implementation of Unsupervised Kernel Extreme Learning Machine for embedding tasks into a two-dimensional space. This code is applied
on the G50C dataset (data preprocessing steps omitted for clarity).
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Fig. 5. Visualization depicting the effect of running the G50C data embedding task into a two-dimensional space using USKELM.

Fig. 6. Code example demonstrating the implementation of Multilayer Extreme Learning Machine.
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Fig. 7. Code example demonstrating the implementation of Kernel Multilayer Extreme Learning Machine.

Fig. 8. Code example demonstrating the implementation of Fuzzy Extreme Learning Machine.
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ELMs find application across a wide array of domains, showcasing
their versatility and importance in addressing real-world challenges.
The availability of easily accessible frameworks for researchers is cru-
cial for advancing the application of ELMs in practical tasks. These
tasks span a multitude of domains, including disease forecasting [37],
breast cancer detection [38], intrusion detection [39], water pipeline
leak detection [40], corporate failure detection [41], speech emotion
detection [42], wind power prediction [43], state of battery charge
estimation [44] and countless others. The versatility of ELM software,
coupled with its implementation of numerous methods and open-source
nature as TfELM, plays a pivotal role in solving engineering problems.
This accessibility and adaptability not only facilitate the development
of ELM applications but also contribute to the advancement of various
disciplines by providing efficient solutions to complex problems.

5. Conclusions

In conclusion, this paper presents a comprehensive framework —
TfELM, for implementing and experimenting with ELMs using Python
and TensorFlow. The framework offers a versatile toolkit for various
tasks including classification, regression, feature learning and embedding.
By leveraging TensorFlow’s computational graph and optimization al-
gorithms, TfELM provides efficient training times, making it suitable
for large-scale datasets. Together with extensive documentation and
18 implemented models, TfELM facilitates seamless integration with
scikit-learn functions and offers flexibility for custom ELM variants. Ul-
timately, TfELM makes ELM approaches more accessible by providing
an open-source option for researchers and practitioners.TfELM’s perfor-
mance assessments demonstrate its superiority over competing systems,
showing significant time-execution speed-ups across x64 platform with
GPU enabled/disabled and ARM based tested on five different datasets.
This addresses the research question of whether a complex framework
can still perform exceptionally well. The current limitations of TfELM
are primarily related to the GPU memory of the device running the
given algorithm which are in question. A significant performance boost
is observed until the memory limit is reached, at which point swap
memory is used, resulting in natural performance disadvantages. This
drawback of GPU calculations is common across all frameworks that
rely on GPU. Developers working with large datasets require substan-
tial GPU memory. Future research and development directions may
possibly refer to the issue of TfELM enhancement. The latter includes
to enhance TfELM include implementing the framework in core C++
and NVIDIA CUDA, and creating a port for the Python environment to
further boost performance.
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Abstract :
This study explores the performance of Apple Silicon processors in real-world research

tasks, with a specific focus on optimization and Machine Learning applications. Diverging
from conventional benchmarks, various algorithms across fundamental datasets have been
assessed using diverse hardware configurations, including Apple’s M1 and M2 processors,
NVIDIA RTX 3090 GPU and a mid-range laptop. The M2 demonstrates competitiveness
in tasks such as BreastCancer, liver and yeast classification, establishing it as a suitable
platform for practical applications. Conversely, the dedicated GPU outperformed M1 and
M2 on the eyestate1 dataset, underscoring its superiority in handling more complex tasks,
albeit at the expense of substantial power consumption. With the technology advances,
Apple Silicon emerges as a compelling choice for real-world applications, warranting fur-
ther exploration and research in chip development. This study underscores the critical
role of device specifications in evaluating Machine Learning algorithms.
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Abstract. This study explores the performance of Apple Silicon pro-
cessors in real-world research tasks, with a specific focus on optimization
and machine learning applications. Diverging from conventional bench-
marks, various algorithms across fundamental datasets have been as-
sessed using diverse hardware configurations, including Apple’s M1 and
M2 processors, NVIDIA RTX 3090 GPU and a mid-range laptop. The
M2 demonstrates competitiveness in tasks such as breast cancer, liver
and yeast, establishing it as a suitable platform for practical applica-
tions. Conversely, the dedicated GPU outperformed M1 and M2 on the
eyestate1 dataset, underscoring its superiority in handling more complex
tasks, albeit at the expense of substantial power consumption. With the
technology advances, Apple Silicon emerges as a compelling choice for
real-world applications, warranting further exploration and research in
chip development. This study underscores the critical role of device spec-
ifications in evaluating machine learning algorithms.

Keywords: Machine Learning, Optimization, Simulation, Apple Sili-
con, Extreme Learning Machine

1 Introduction

In November 2020, Apple introduced a new line of processors, starting with the
M1 chip that adopts a System on a Chip (SoC) design with unified memory.
The M1 processor, built using 5nm process technology and containing 16 billion
transistors, also integrated the task specific modules like Apple Neural Engine.
Over subsequent years, Apple released upgraded versions like the M1 Pro/M1
Max in 2021, Ultra in 2022, M2 in 2022, M2 Pro/Max/Ultra in 2023, and M3,
M3 Pro/Max in 2023, all promising improved performance. The Apple M1 SoC is
a highly integrated processor unit that includes all of the necessary components
for a fully working computer while consuming less power in general, making it
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available to customers in the markets without losing performance. The technol-
ogy innovations in this field have promising future and grant more investigation
and research toward the development of the chips [10, 14].

In addition to noteworthy features such as prolonged battery life and fanless
design in MacBook Air models, contributing to their quiet and portable na-
ture, these devices have piqued the interest of researchers due to their potential
applications in scientific endeavors. More specifically, researchers can harness
the computational capabilities of Apple Silicon for tasks like optimization and
Machine Learning (ML) calculations [3]. This study aims to evaluate the prac-
ticality and effectiveness of Apple Silicon-powered devices in tasks commonly
undertaken by researchers, with a focus on performing calculations.

The primary objective in this study is to evaluate various fundamental op-
timization and ML algorithms across diverse datasets. The notable gap in the
existing literature is detected, where performance assessments are conducted on
a single dataset [9] or are limited to a single ML method [8]. This paper is an
extension of the work by Kasperek et al., who suggested the possibility of fur-
ther expanding their research to CUDA-enabled devices. In this study, a CUDA
device, the RTX 3090, was utilized.

2 Apple Silicon Overview

The Apple Silicon processors, such as the M1, utilize a Unified Memory Archi-
tecture (UMA) that allows for shared memory access across different modules of
the SoC [6]. This means that the RAM is a single pool of memory that all parts of
the processor can access, enabling the GPU to utilize more system memory while
other parts of the SoC ramp down, without the need to shuttle data between
different memory spaces [9]. In contrast, traditional CPU devices have separate
memory spaces for the GPU and CPU, requiring data movement between these
spaces, which can be inefficient. The benefits of UMA are particularly evident in
the context of ML tasks, where the Apple Silicon chip offers hardware accelera-
tion support, making it a tempting option for researchers. Additionally, the use of
Unified Memory has been found to be beneficial when only a small random por-
tion of data is accessed for a set of benchmarks, highlighting its efficiency [13]. In
the realm of SoC architectures, many-core architectures with shared memory are
preferred for flexible and programmable solutions in computationally intensive
application domains, including ML and embedded processing [11].

The MacOS operating system leverages the concept of shared memory to en-
hance performance by expanding UMA with swap memory, albeit with a trade-off
in effectiveness [12]. This approach allows a more flexible allocation of memory
resources, particularly in the context of Apple Silicon devices, where different
RAM sizes are available. Therefore, comparing the performance of devices with-
out considering the RAM utilization may lead to incorrect conclusions.

The low-energy SoC chip offers clear advantages, notably in terms of extended
battery life and optimal performance per watt. Significantly, the operational effi-
ciency of Apple Silicon devices remains consistent whether operating on battery
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power or when connected to an external power source, a capability not commonly
observed in conventional computing systems.

These advantages become even more pronounced given the escalating en-
ergy prices in Europe following the aftermath of the conflict in Ukraine [2]. For
instance, the M1-powered Mac mini demonstrates an average power consump-
tion ranging from 10W to 31W [5]. In contrast, a PC-class device equipped
with an AMD R9 or Intel i9 CPU and dedicated GPU like the NVIDIA RTX
3090 can consume up to 800W at peak performance (calculated based on the
cumulative peak power consumption of individual PC components as per man-
ufacturer specifications). The significance of power consumption is underscored
by the current global scenario, where electricity demand is outpacing the growth
of renewable sources [7]. Highlighting this, the Cinebench R23 Single Package
Power Efficiency metric reflects favorably on the SoC, registering 297 Points per
Watt. In comparison, competitors such as the Ryzen 5 5600U score 90.8 and the
Intel i5-1240P scores 64 points [1]. This underlines the efficiency and energy-
conscious performance of the low-energy SoC chip in a landscape where power
consumption considerations are paramount.

3 Methodology

In preceding experiments that compared the NVIDIA V100 and A100 GPUs with
the M1 and M1 Ultra, the obtained results were promising, showcasing the supe-
rior performance of Apple Silicon over both GPUs [9]. While the aforementioned
GPUs produced impressive results, they do not represent the pinnacle of current
GPU capabilities, with the NVIDIA V100 providing 14.13 TFLOPS Float32 pre-
cision to the RTX 3090’s 35.58. To comprehensively assess the performance of
selected ML classifiers across diverse hardware platforms and data types the six
benchmark datasets are employed [4], wherein the number of samples, features
and classes for each task is specified (see Tab. 1). The objective is to measure the
execution time of each classifier on three distinct hardware platforms: Apple’s
M1 with 8GB RAM and M2 with 16GB RAM, a high-performance NVIDIA
RTX 3090 GPU with 24GB memory and a mid-range laptop configuration fea-
turing an Intel Core i5 11500h processor and an NVIDIA RTX 3050ti graphics
card. The intended experiment also aimed to compare the performance of mo-
bile devices (M1/M2) with an i5-powered laptop. Surprisingly, the unplugged i5
showed four times longer performance on average compared to the plugged-in
scenario. On the other hand, the M1/M2 devices maintained consistent compu-
tational power on battery. Regrettably, the i5’s limited battery life led to the
decision to forgo the experiment before completion.

This approach ensures a comprehensive evaluation that extends beyond the
previously explored GPUs, providing insights into the real-world performance
of the classifiers across a spectrum of hardware configurations. A variety of ML
methods, including Extreme Learning Machine (ELM), k Neighbors Classifier
(kNN), Multi-Layer Perceptron (MLP), Random Forest (RF) and Support Vec-
tor Machine (SVM), are employed for the datasets.
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BreastCancer eyestate1 liver musk waveform yeast
Samples 699 762 345 1682 500 150
Features 9 14 6 166 21 8
Classes 2 3 4 2 10 10

Table 1. Details of datasets utilized in performance evaluations.

4 Experimental Results

All experiments were conducted in Python 3.11 using Tensorflow 2.15, scikit-
learn 1.4.0 and numpy 1.26.3 on MacOS 14.2.1 or Windows 11. The outcomes,
illustrated in Figures 2-6, represent the time taken for training and testing dur-
ing 10 times repeated 10-fold cross-validation, ensuring result significance by
mitigating odd observations.
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Fig. 1. Extreme Learning Machine with 100 neurons in hidden layer time of execution.
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Fig. 2. Extreme Learning Machine with 1000 neurons in hidden layer time of execution.
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Fig. 3. K Neighbours classifier time of execution.
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Fig. 4. Multi Layer Perceptron time of execution.
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Fig. 5. Random Forest time of execution.
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Fig. 6. Support Vector Classifier time of execution.

Device bc eyestate1 liver musk waveform yeast sum
Laptop i5 11500h, 3050ti, 32GB 657 16210 670 2516 46898 3360 70311
M1 8GB MacBook Air 13 2020 661 69000 700 17777 38621 3034 129792
M2 16GB MacBook Air 15 2023 331 38477 342 3055 22585 1582 66372
Ryzen 9 3900x, RTX 3090, 64GB 401 6058 376 1170 17816 1633 27454

Table 2. Performance Evaluation Results, where bc states as BreastCancer.

5 Discussion

In the case of ELM with 100 hidden layer units, subtle differences emerge, with
the most notable discrepancy found in the execution time on the M1 8GB device,
which is approximately twice as long as the M2 16GB counterpart (see Tab. 1).
Surprisingly, the i5 laptop yields comparable results to the M2 16GB. Notably,
the performance of the RTX 3090 is unexpectedly inferior to the M2 on each
dataset. The differences in results across various datasets for the RTX 3090 are
minimal, indicating that the GPU’s memory allocation necessitated longer pro-
cessing time. Despite this, the RTX 3090’s rapid CUDA cores and ample 24GB
memory mitigate the dataset size impact for this classifier. The eyestate1 dataset
requires the most time for processing by the classifier, with both the i5 and M1
machines struggling for ELM with 1000 neurons (see Tab. 2). Specifically, the
M1 requires times longer than the M2 and the M2 takes twice as long to execute
compared to the RTX 3090. Conversely, for the other datasets, the differences
between M2 and the RTX 3090 are less pronounced and appear comparable.

Moving to kNN, M2 emerges as the fastest across all devices, surpassing
the RTX 3090 by a few times for the waveform dataset. Inexplicably, the RTX
3090 delivers suboptimal results despite having updated drivers and configura-
tions, consistent across repeated experiments (see Tab. 3). Similar patterns are
observed with MLP with topology (10,10), where the RTX 3090 consistently
produces the worst results, yet for the waveform dataset, the i5 device is the
fastest, followed by the M1 and then the M2 (see Tab. 4).
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In the context of RF, the RTX 3090 once again yields subpar results, while
the M2 proves to be the fastest (see Tab. 5). Similar trends persist for the
SVM method, with the RTX 3090 delivering suboptimal results and the M2
demonstrating the fastest performance (see Tab 6).

Considering the real-world scenario where all classifiers run on a given dataset,
the aim is to compare the models’ overall performance. Combining the total time
required for a device to run all classifiers on different datasets, along with the
ultimate sum of running all classifiers on all datasets, reveals interesting insights
(see Tab. 4). The RTX 3090 emerges as the leader with a combined time of 27454
seconds, whereas the M2 is twice as slow. The i5 device demonstrates compa-
rable performance to the M2, while the M1 lags as the slowest due to memory-
intensive tasks. A closer examination highlights the substantial impact of the
eyestate1 dataset, where the RTX 3090 outperforms the M2 sixfold, showcasing
the dedicated GPU’s potential for more complex datasets. Conversely, M2 excels
in tasks such as BreastCancer, liver and yeast, underscoring its competitive edge
in certain scenarios against an 800W machine with a 30W device.

6 Conclusion

In conclusion, the results reveal nuanced variations in the performance of ML
classifiers across diverse datasets and hardware configurations. The ELM with
100 hidden layer units showcases subtle differences, with notable disparities in
execution times between devices. ELM with 1000 neurons introduces new dy-
namics, impacting performance across datasets.

In specific algorithms like kNN, MLP, RF and SVM, the Apple M2 processor
consistently demonstrates promising performance compared to the Nvidia RTX
3090 GPU, highlighting the efficacy of Apple Silicon in real-world applications,
especially taking into account the performance per watt power.

These findings underscore the importance of considering device specifications
and configurations when assessing the practicality and effectiveness of ML algo-
rithms. The competitive edge of Apple Silicon, particularly the M2 processor, is
evident in various scenarios, showcasing its potential for tasks such as Breast-
Cancer, liver and yeast, even against higher-power GPU counterparts.
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3.3 ELM optimization
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1 Introduction

Mathematical optimization algorithms play a vital role in many contemporary
technology applications such as e.g. GPS or IT banking sector tools. In addition,
the optimization driven behavior is also prevalent within all living organisms
commonly relying on it while e.g. hunting or trying to move more e�ciently.
In fact, searching for the e�ciency in nature can be a matter of life and death.
Among all the latter is physically demonstrated by the reproduction capabilities.
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Thus, organisms that perform life activities more e�ciently are better adopted
to the environment and are more likely to pass these abilities to their o�springs
by genes according to the Darwin's Theory [7].

Scientists attempt to describe "optimized" activities of organisms in terms of
mathematical modeling [27] commonly called Metaheuristic Algorithms (MA).
The combination of bio-inspired optimization algorithms with machine learning
models may improve their performance [30]. Here one of such approaches is called
Extreme Learning Machine (ELM) - the Machine Learning method with growing
popularity since its formulation in 2004 [14].

Recently, a hybrid MA-ELM that combines ELM with Metaheuristic Algo-
rithms (MA) is proposed and evaluated in practical applications. In doing so,
Chia et al. [8] used particle swarm (PSO), moth-�ame (MFO) and whale op-
timization algorithm (WOA). In other practical related context, Wu et al. [30]
applied genetic algorithm (GA), ant colony optimization (ACO), cuckoo search
algorithm (CSA) and �ower pollination algorithm (FPA). The above research
demonstrates superiority of hybridized ELM over the regular one. Neverthe-
less, most of the works in this topic deal with the practical applications of these
methods. There is a shortage in literature on comprehensive comparison of meta-
heuristic algorithms used in ELMs. In this paper we evaluate hybrid ELM on
MNIST handwritten and Wine Quality White datasets [9] for di�erent MA. The
comparison analysis for a separate set of parameters to investigate their impact
on attained accuracy and registered computational time is also performed for
each examined algorithm. The experiment is carried out on a single machine in
MATLAB R2021b, Ryzen 9 3900X CPU, 64GB RAM, GTX 1660TI GPU.

2 Extreme Learning Machine

Extreme Learning Machine (ELM) is a dense feed-forward neural network classi-
�er and regressor introduced by Huang et al. in 2004 [14]. The network's topology
consists of input layer, a single hidden-layer and an output layer of neurons. The
numbers of selected neurons in input and output layer depends on the task char-
acteristics. The number of hidden layer units requires an empirical determination
as a consequence of the theoretical method scarcity permitting to determine up-
front its optimal numbers controlling the topology of the ELM.

2.1 Classi�cation

Input data regarding supervised classi�cation task with N observations can be
described as pairs of values {(xi, ti)}Ni=1, where xi is i-th vector of d features
and ti is i-th label of class to which selected xi belongs. Here, ti = 0, . . . ,M − 1,
whereM is the amount of distinctive classes in the classi�cation task in question.
Note here that for multiclass classi�cation (when object belongs to more than one
class) ti is a vector. Based on the latter, matrixX = (x1, x2, . . . , xN ) ∈ Md×N (R)
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is formed, where xi ∈ Rd with vector T = {ti}Ni=1:

X =



x11 . . . x1N

...
. . .

...
xd1 . . . xdN


 and T =



t1
...
tN


 .

The ELM input layer comprises of d neurons and its output layer consists of units
number equal to M . As an output of the network, the corresponding N values
{yi}Ni=1 are calculated forming the matrix Y = (y1, y2, . . . , yN ) ∈ MN×M (R),
where yi ∈ RM . The recognition of a given input xi is performed based on
extracting the maximal value of yi observed on the p-th index which assigns xi

to the p-th class. Thus, matrix Y is actually reformatted as N values {yi}Ni=1,

where yi = [0, . . . ,
p

1, . . . , 0]. Subsequently, one has to properly format T in order
to facilitate comparison with Y . In the next step 1 − of −K scheme is applied
to the vector T - see [6]. Such procedure is designed to reformat ti as {tij}Mj=0

that yields all values set to zero except one element at s-th index that in turn

is set to one. Consequently, ti can be written as ti = [0, . . . ,
s
1, . . . , 0], where s-th

element indicates that i-th input vector of X a�liates to the s-th class. Correct
classi�cation is observed if and only if s = p for a given input vector xi.

Let L be a number of neurons in hidden layer that is chosen a priori. Weights
between input and hidden layer determine the matrix W ∈ Md×L(R), where wij

represent the weights associated with the connection of i-th input layer neuron
with j-th in hidden layer (see left equation (1)). Bias connections are represented
by a vector b = {bi}Ni=1. In learning process of ELM coe�cients of W and b are
computed using uniform distribution function U(−1, 1). The outputs of hidden
layer neurons are stored in matrix H ∈ MN×L(R) (see right equation (1)):

W =



w11 . . . w1L

...
. . .

...
wd1 . . . wdL


 , H =



f(
∑d

i=1 xi1wi1 + b1) . . . f(
∑d

i=1 xi1wiL + b1)
...

. . .
...

f(
∑d

i=1 xiNwi1 + bN ) . . . f
∑d

i=1 xiNwiL + bN )


 .

(1)
The activation function f : R → R represents in our investigation a sigmoid
function f(x) = fα(x) = 1

1+e−αx , with α = 1. The weights β between hidden
and output layer can be computed upon solving the following equation Y = Hβ.
The system cannot be directly solved since H with probability equal to 1 is
irreversible and ||Hβ − Y || = 0 (see Huang et al. [14]). We estimate β as a
minimizer of mean residual square error:

β̂ = argmin
β

∥Hβ − T∥2 = H†T, (2)

where H† de�nes a Moore-Penrose generalized inverse of H [26]. The Pseudo-
inverse of matrix H† is uniquely determined and in the case of a non-singular
matrix H it coincides with an ordinary inverse i.e. H† = H−1. The matrix H†

gives solution β̂ so that Hβ̂ is close to Y in terms of mean square error (MSE).
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Assigning random values to weights and bias between input and hidden ELM
layer makes the network not susceptible to overtraining. Most importantly, the
computed solution β̂ is a global minimizer of (2). The latter contrasts with Multi-
Layer Perceptron (MLP) supervised training procedure. Indeed Backpropagation
Algorithm �nds generically only a local minimizer of the given network's loss
function that measures how well the neural network classi�es the training data
[12]. In addition, the optimal value of β̂ is found here upon performing a non-
iterative procedure in (2). The learning speed of ELM can be thousands times
faster than other methods like MLP (see [15]).

3 Genetic Extreme Learning Machine

The original concept of ELM relies on selecting weights between input and hid-
den layer together with bias values as randomly generated. This principle has a
remarkable advantage in terms of computational e�ciency [15]. Still such ran-
domness in weights generation in ELM can lead to the unstable performance
[4]. The idea here is to somehow estimate weights and bias values in order to
maximize the accuracy and stability of the model. A possible remedy to this
problem is to combine the Genetic Algorithm (GA) (see [13]) with ELM to form
the so-called hybridized Genetic Extreme Learning Machine (GELM). GAs are
created as a computational representation of Darwinian evolution theories to
search for the optimal solution of global non-linear optimization task by simu-
lating the process of biological natural selection concept [16]. Our hope is that
re�ecting the natural processes of selection, crossover and mutation the �ttest
individuals are selected for reproduction that will provide better o�spring in
terms of improving an appropriate �tness evaluation function [5].

4 Nature-Inspired Metaheuristic Algorithms

In general, the constrained optimization problem can be formulated in terms of
minimizing some objective function: minimizef(x) with x = (x1, . . . , xn) ad-
mitted to ful�ll either some equality(ies) and/or inequality(ies) [31]. All modern
nature-inspired algorithms are called Metaheuristic Algorithms [17]. Up to now
there is no commonly accepted de�nition of MA, but one can outline the fol-
lowing selected principles of MA adopted in the literature (see [27, 31, 24]): a
strategy that the main aim is to guide the search process avoiding the disad-
vantages of iterative improvement allowing the local search to escape from local
optima; starting to �nd solutions in more intelligent way than just providing ran-
dom initial solutions; dealing with randomness in an biased form incorporating
search experience (in a form of memory) to guide the search; in the simulation
stage considered as a set of assumptions about the natural environment.

The search strategies of di�erent MA are highly dependent on the philoso-
phy of the metaheuristic itself. In this paper, as a comparison of the MA applied
in ELM learning process, we use methods simulating behaviors of living organ-
isms in terms of the following optimization processes: Arti�cial Ecosystem-based
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Optimization (AEO) [35], Arti�cial Hummingbird Algorithm (AHA) [34], Arti�-
cial Rabbits Optimization (ARO) [29], African Vultures Optimization Algorithm
(AVOA) [2], Coyote Optimization Algorithm (COA) [25], Dandelion Optimizer
(DO) [32], Fast Cuckoo Search (FCS) [23], Gorilla Troops Optimizer (GTO)
[3], Grey Wolf Optimizer (GWO) [20], Hybrid Grey Wolf and Cuckoo Search
Optimization Algorithm (GWO-CS) [11], Improved Grey Wolf Optimizer (I-
GWO) [21], Leader Harris Hawks Optimization (LHHO) [22], Mountain Gazelle
Optimizer (MGO) [1], Manta Ray Foraging Optimization (MRFO) [36], North-
ern Goshawk Optimization (NGO) [10], Pelican Optimization Algorithm (POA)
[28], Hybrid Particle Swarm Optimization and Gravitational Search Algorithm
(PSOGSA) [19], Sea-horse Optimizer (SHO) [33] and lastly Salp Swarm Algo-
rithm (SSA) [18].

5 Experiments and Results

The metaheuristic algorithms (brie�y outlined in the previous section) used in
this work have common prerequisites. In particular, from now on, the term MA
directly refers to the algorithms exclusively used in this paper (see Section 4).

MA de�ne a concept of population as a set S of Sn candidate solutions, where
si, i = 1, . . . , Sn is a solution vector called also an individual and implement
the concept of intelligent iterative ransacking search space taking as an input
dimension of the vector Sd = dim(si), number of population Sn and constraints
applied to si. A termination condition for the algorithm and appropriate �tness
function must be determined. As MA fall into iterative methods, in k-th iteration
the set Sk called generation is produced with ski ∈ Sk representing generation's
individual, where k = 1, . . . , kn. The output of MA smin = skn

i yields a minimal
value of a given �tness function in the last generation of the algorithm.

To integrate MA with ELM we �rst need to specify input parameters for
MA. Analogously to GELM our aim is to evaluate optimal values of weights
between input and hidden layer including bias. In fact, the output of the MA is
a vector smin ∈ RSd , where Sd = dN + N . As a consequence we can reformat
smin properly constructing W and b:

W =



smin
11 . . . smin

1N
...

. . .
...

smin
d1 . . . smin

dN


 and b =



smin
dN+1
...

smin
dN+N


 .

Vector smin forms the �nal, optimal value of W smin

and bs
min

. Fitness func-
tion g is prepared based on the response of the ELM network represented
as Y k

i for a given ski (forming W k
i and bki ) compared to the expected results

T , g(X,W k
i , b

k
i , T ) = 1

N

∑N
j=1(Y k

ij − Tj)
2, where Y k

i = Hβ, β = H†T and

H = f(XTW k
i + bki ) (see also (1)). The inequality constraints −1 < sij < 1

(with j ∈ [1, . . . Sd] for each i ∈ [1, . . . , Sn]) enforce si ∈ [−1; 1]Sd ⊆ RSd . The
impact of parameters Sn and the termination condition on the algorithm per-
formance is investigated in this research. The admitted values for Sn are equal
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to 50, 100 or 200. It is noteworthy that lowering the vales of Sn led to un-
stable results, while higher Sn values resulted in impractically long evaluation
times for our experiment. Two di�erent approaches of selecting stopping con-
ditions of MA are here considered. First, the stopping �ag is activated once
one of two conditions is ful�lled. More speci�cally, the upper limit on k iter-
ations is a priori set (here kn = 10000). In conjunction with the latter, the
optimization procedure terminates once the following a posteriori condition is
met

∣∣g(X,W k
i , b

k
i , T ) − g(X,W k+1

i , bk+1
i , T )

∣∣ < ε holding for longer than 200 it-
erations (here ε = 0.0001). In further presentation of calculation results the �rst
variant of stopping condition is marked as "Limit 0". Second, the impact of �x-
ing ad hock an upper bound k on number of iterations is also analyzed here for
kn = 1, kn = 5 and kn = 50 that can be recognized in further considerations as
"Limit 1", "Limit 5" and "Limit 50", respectively.

Another parameter taken also here into consideration is the number of neu-
rons L in hidden layer of ELM. At this point one should mention a dilemma of
evaluating results applying testing and training sets once MA is used for opti-
mizing W and b. A core principle of the Machine Learning (ML) is to examine
results returned by a selected method on data that cannot be used for training
process. To enforce the latter the data is usually a priori divided into training
and testing sets or alternatively one resorts to a cross-validation method [12].
Cross-validation is an iterative method that uses di�erent portions of data to
test and to train a model applying randomness. Thus, matrices W and b are
optimized upon using MA on training data exclusively and cannot be speci�ed
as optimal on testing set. A similar approach should be adopted for β evalua-
tion while computing weights between hidden and output layer of ELM. It is
implicitly assumed here that dependencies for both training and testing sets are
similar. Therefore the optimized W and b based on training set can equally suc-
cessfully operate on testing set. The case of unbalanced number of observations
obtained on training and testing sets deserves a short note. Indeed, should the
latter occurs, the matrices W and b generated by MA on training set cannot
be directly applied to estimate Y on testing set. In ML there exists an implicit
assumption that the testing set should be essentially smaller than a training
one. Typically, the proportion of observations abides from 9:1 to 7:3 ratio. Con-
sequently, smin is too large to be properly re-formatted to W and b which can
still act on testing set. Assuming testing set contains N test observations we solve
this problem by taking k = N test × d �rst elements of smin transforming them
into matrix W smin

Ntest×d and last N test elements of smin creating vector bs
min

:

W smin

=



smin
1 . . . smin

N
...

. . .
...

smin
k−N . . . smin

k


 and bs

min

=



smin
Sd−Ntest

...
smin
Sd


 .

The entire calculation process is presented in the �owchart (see Fig. 5).
First, we evaluate the model in question for a di�erent number of neurons

L in hidden layer, population size Sn and MA termination condition taken as
"Limit 0". Unfortunately, even for Sn = 50 and L = 100 computation time for
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Fig. 1. Flowchart of MA-ELM training and testing process.

most of the methods exceeded a few hours. Then, a full comparison to the other
Limits is impossible. Therefore we discarded "Limit 0" calculations and leave it
for a future investigation. For our research two exemplary datasets are used. The
�rst set is called MNIST handwritten digits. The dataset contains 60000 training
and 10000 testing samples that are handwritten digits saved as greyscale images
of size 28 × 28 pixels. Thus, input vectors' size is 784 after �atten operation
is applied to the original image transforming image to the row by row vector.
The dataset is a typical example of classi�cation task where accuracy of the
classi�er is evaluated. The second set is called Wine Quality White which is
composed of features describing chemical and physical parameters of white wine
i.e. �xed acidity, volatile acidity, pH etc. Our task is to assign to a given wine
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sample the quality measure ranging from 0 to 10. Here classi�cation performance
is measured with MSE as we recognize di�erences between inappropriate class
assignments i.e. attaching a wine which is truly categorized as 0 to class 9 is a
graver mistake than assigning this wine to class 1. The dataset does not contain
separate training and testing subsets and because of that to obtain the most
meaningful results a 20% cross-validation method is applied that is repeated 50
times to properly estimate a statistically signi�cant value of MSE and to discard
randomness in�uence on the �nal results.

ACC [%] 100 200 300 400 500 600 700 800 900 1000

AEO 78.31 79.04 82.05 85.19 85.06 86.14 84.95 78.74 88.89 88.00

AHA 77.08 81.02 83.80 84.17 86.77 85.22 87.89 88.29 85.29 89.61

ARO 73.74 83.43 81.06 83.17 83.76 85.96 88.27 89.20 88.08 88.02

AVOA 68.50 82.11 84.06 81.66 84.46 85.78 86.55 88.85 89.84 89.60

COA 72.75 78.67 83.83 84.62 86.36 86.04 86.28 89.36 88.47 90.09

DO 73.48 81.41 83.61 80.31 87.55 81.95 89.22 86.20 87.54 85.98

FCS 72.89 80.43 80.94 86.15 85.77 87.17 86.76 89.25 88.02 88.80

GTO 78.54 81.73 78.35 84.67 75.38 88.85 84.99 80.26 83.8 84.41

GWO 69.42 74.79 81.01 83.28 83.95 88.52 87.58 85.05 88.65 90.08

GWO-CS 46.43 51.76 63.67 68.60 62.92 70.41 68.98 70.54 73.66 71.76

I-GWO 71.36 79.02 82.68 80.52 86.51 86.38 88.23 86.47 84.77 85.78

LHHO 72.48 81.02 80.57 87.39 84.42 86.93 85.53 87.43 87.88 87.84

MGO 71.59 78.65 78.06 80.13 86.27 86.93 86.93 88.36 88.42 88.92

MRFO 73.52 81.21 86.47 83.36 82.47 88.8 88.34 89.16 90.01 89.25

NGO 69.89 81.43 84.35 84.63 84.9 86.17 87.09 88.54 89.72 90.70

POA 69.81 81.06 83.16 84.73 85.89 87.31 87.83 88.09 87.36 89.60

PSOGSA 74.91 78.97 83.23 84.25 85.34 86.70 86.36 84.90 86.89 90.19

SHO 72.87 81.92 81.92 84.57 86.44 84.13 83.34 89.73 89.49 85.07

SSA 74.92 80.61 81.97 82.41 82.41 86.66 88.8 87.78 87.21 87.77
Table 1. Accuracy of ELM with selected MA applied for a given number of neurons
in hidden layer, population size 50 and limit of iterations equal to 1 used directly as a
classi�er on MNIST handwritten digits dataset.

For MNIST similarly to the ELM (see Tab. 7) for MA-ELM we obtain better
results upon increasing number of neurons (see Tab. 1). Then it was decided to
�x L to the value of 1000 in further calculations of MA-ELM. In contrast, for
Wine Quality White dataset the best results are observed for L = 100 (see Tab.
2), so this value will be �xed analyzing the dataset. Fitting process (see Tab.
3) for MNIST, L = 1000, Sn = 50 and selected limit of iterations combined
with a method in question may take from a few seconds to some hours. The
fastest methods turned out to be AVOA, DO, PSOGSA, SHO and SSA. In
particular, the last one yields the most prominent results with 8s, 284s and
2784s �t time for limit kn set to 1, 5 and 50, respectively. One can also notice
that raising the number of iterations more or less linearly increases the resulting
computation time. Di�erences in �tting time between various methods testify
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MSE 100 200 300 400 500 600 700 800 900 1000

AEO 0.641 0.647 0.659 0.679 0.692 0.699 0.725 0.734 0.755 0.775

AHA 0.634 0.645 0.661 0.669 0.685 0.701 0.718 0.731 0.759 0.768

ARO 0.648 0.650 0.654 0.670 0.684 0.697 0.716 0.739 0.747 0.765

AVOA 0.645 0.647 0.663 0.675 0.688 0.706 0.722 0.739 0.753 0.776

COA 0.639 0.647 0.659 0.680 0.690 0.712 0.721 0.738 0.751 0.771

DO 0.653 0.652 0.661 0.681 0.692 0.708 0.725 0.743 0.754 0.768

FCS 0.647 0.650 0.659 0.677 0.694 0.707 0.727 0.738 0.762 0.761

GTO 0.650 0.650 0.659 0.661 0.674 0.719 0.712 0.723 0.740 0.756

GWO 0.648 0.647 0.661 0.678 0.690 0.709 0.719 0.741 0.757 0.774

GWO-CS 0.625 0.628 0.641 0.642 0.671 0.672 0.726 1.105 0.722 1.056

I-GWO 0.644 0.651 0.668 0.672 0.693 0.709 0.723 0.747 0.749 0.770

LHHO 0.630 0.638 0.660 0.676 0.695 0.681 0.722 0.727 0.758 0.794

MGO 0.635 0.637 0.656 0.668 0.695 0.694 0.721 0.726 0.726 0.752

MRFO 0.641 0.642 0.656 0.657 0.674 0.711 0.720 0.730 0.751 0.765

NGO 0.647 0.654 0.664 0.674 0.686 0.708 0.726 0.739 0.751 0.771

POA 0.656 0.651 0.664 0.676 0.691 0.704 0.724 0.745 0.756 0.773

PSOGSA 0.647 0.648 0.662 0.677 0.695 0.703 0.732 0.737 0.758 0.772

SHO 0.651 0.649 0.659 0.677 0.696 0.710 0.723 0.738 0.756 0.772

SSA 0.647 0.652 0.663 0.675 0.696 0.708 0.720 0.742 0.755 0.767
Table 2. MSE of Extreme Learning Machine with selected Metaheuristic Algorithms
applied for a given number of neurons in hidden layer, population size 50 and limit of
iterations equal to 1 used directly as a classi�er on Wine Quality White dataset.

their practical applicability i.e. MGO needs fourfold more time for "Limit 1" to
achieve comparable results with SSA. It should be emphasized here that there is
no correlation between more computational time involved versus achieving better
results. Indeed, a GWO method surpasses in terms of ACC the other methods
that still need twice longer time to be executed. In previous section MA are
de�ned as methods that tend to create the new generations with individuals
characterized by lower �tness function value. Simultaneously, as we stated the
low MSE value for a given individual being MA solution cannot be directly
recognized as better in terms of accuracy upon applying on a testing set, because
of the fact that in training and testing di�erent subsets of dataset are used.
Surprisingly, for many of the methods increasing number of iterations does not
improve ACC (see Tab. 3). For most of them we observe a slight increase of
ACC between "Limit 1" and "Limit 5". The decrease of ACC between "Limit

5" and "Limit 50" was not expected. For some of the methods the lowest ACC
is obtained for "Limit 50". The classi�er performance on Wine Quality White
con�rms results obtained on MNIST. For the majority of methods we do not
observe signi�cant changes of MSE. Setting kn to higher value even increases
MSE in the case of AHA, COA, GWO-CS, LHHO, MGO and PGOGSA. For
the remaining methods change of kn from 1 to 5 results in a slight decrease of
MSE. Methods AEO, AVOA, DO, FCS, GWO, MGO, MRFO and NGO can
be characterized by decreasing MSE once kn changes from 1 to 5. In terms of
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MNIST Wine Quality White

Fit time [s] ACC [%] Fit time [s] MSE

Method / kn 1 5 50 1 5 50 1 5 50 1 5 50

AEO 237 571 5697 88.00 86.79 84.95 0.6 2.4 21.6 0.641 0.635 0.641

AHA 155 312 3989 89.61 88.98 84.62 0.3 1.7 10.7 0.634 0.646 0.631

ARO 156 309 4028 88.02 88.15 81.87 0.3 1.4 11.0 0.648 0.637 0.636

AVOA 78 258 4050 89.60 84.94 77.36 0.1 1.0 10.9 0.645 0.629 0.634

COA 278 692 7274 90.09 82.7 88.83 0.6 3.2 26.6 0.639 0.643 0.624

DO 77 273 2666 85.98 88.46 86.9 0.1 1.3 11.5 0.653 0.649 0.650

FCS 233 564 5041 88.80 86.51 77.86 0.5 2.5 20.9 0.647 0.647 0.651

GTO 103 567 5062 84.41 89.99 89.89 0.5 2.6 20.5 0.650 0.637 0.633

GWO 250 277 2705 90.08 88.57 87.78 0.2 1.1 11.8 0.648 0.648 0.653

GWO-CS 270 311 3046 71.76 72.99 87.88 0.2 1.3 13.7 0.625 0.643 0.630

I-GWO 445 608 5466 85.78 88.99 86.67 0.6 3.2 24.7 0.644 0.643 0.635

LHHO 240 896 8879 87.84 89.87 76.34 0.6 3.6 36.7 0.630 0.635 0.623

MGO 236 1218 11486 88.92 90.55 89.89 1.0 5.6 52.6 0.635 0.633 0.640

MRFO 232 566 5069 89.25 88.14 83.28 0.5 2.9 21.3 0.641 0.642 0.643

NGO 141 566 5038 90.70 91.45 87.42 0.5 2.6 21.5 0.647 0.645 0.647

POA 212 556 4974 89.60 81.25 86.32 0.5 2.8 20.6 0.656 0.647 0.638

PSOGSA 82 507 4800 90.19 85.8 90.81 0.5 2.6 24.6 0.647 0.655 0.649

SHO 22 471 4152 85.07 87.37 72.69 0.5 2.4 17.0 0.651 0.644 0.634

SSA 8 284 2784 87.77 87.71 88.90 0.2 1.5 12.8 0.647 0.647 0.643
Table 3. Fit time and accuracy of Extreme Learning Machine with selected Meta-
heuristic Algorithms applied for L = 1000 neurons in hidden layer, population size
Sn = 50 and kn = 1, 5 or 50 used directly as a classi�er on MNIST handwritten digits.
For L = 100, Sn = 50, kn = 1, 5 or 50 on Wine Quality White dataset.

�tting time we observe more or less a linear growth of computational time when
kn is enlarged. In Tab. 4 we tested a di�erent population size Sn. It shows that
increasing Sn expands the �tting time, but to a lesser extent with exceptions
like SSA method that needs almost 14× computation time for Sn = 100 as
compared to Sn = 50. Such tendency is similar for SHO method. Fitting time
between Sn = 100 and Sn = 200 for most of the methods expand twice. In terms
of accuracy, we do not observe a signi�cant increase when population size is
enlarged. The methods that are bene�cial to this increase are DO, FCS, GTO,
GWO-CS, I-GWO, LHHO, MGO, MRFO and SSO. Noticeably, for DO, FCS,
I-GWO, MGO and MRFO the highest accuracy is registered for Sn = 100 and
the lowest for Sn = 200. The observed dependencies on MNIST are even more
visible for Wine Quality dataset. The lowest MSE for all methods is obtained
for Sn = 50 and increases substantially when Sn = 100 or Sn = 200 is used.
For standard ELM classi�er applied on MNIST handwritten dataset the highest
accuracy 91.41% is generated for 4000 and 5000 neurons in hidden layer (see
Tab. 7). In comparison, for MA-ELM the highest ACC of 91.45% is reached for
NGO metaheuristic algorithm, 1000 neurons, limit of 5 iterations, population
size 50 and 91.43% ACC for MRFO with 1000 neurons, limit of 1 iteration and
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MNIST Wine Quality White

Fit time [s] ACC [%] Fit time [s] MSE

Method / Sn 50 100 200 50 100 200 50 100 200 50 100 200

AEO 237 331 675 88.00 86.47 88.50 0.6 30 57 0.641 0.743 0.741

AHA 155 211 428 89.61 86.46 86.07 0.3 19 36 0.634 0.804 0.788

ARO 156 208 435 88.02 84.53 86.26 0.3 19 36 0.648 0.732 0.771

AVOA 78 104 215 89.60 88.13 88.87 0.1 9. 18 0.645 0.745 0.712

COA 278 369 785 90.09 89.42 88.25 0.6 35 68 0.639 0.717 0.744

DO 77 102 209 85.98 89.93 87.88 0.1 9 17 0.653 0.704 0.734

FCS 233 313 654 88.80 90.06 88.67 0.5 29 57 0.647 0.737 0.711

GTO 103 321 649 84.41 80.56 89.26 0.5 28 54 0.650 0.804 0.716

GWO 250 115 231 90.08 88.99 88.85 0.2 11 21 0.648 0.750 0.731

GWO-CS 270 142 315 71.76 84.23 89.93 0.2 16 34 0.625 0.733 0.759

I-GWO 445 345 721 85.78 89.06 87.23 0.6 33 65 0.644 0.747 0.736

LHHO 240 422 845 87.84 88.39 89.68 0.6 39 71 0.630 0.715 0.749

MGO 236 657 1574 88.92 89.59 87.32 1.0 69 153 0.635 0.731 0.729

MRFO 232 318 673 89.25 91.43 82.92 0.5 30 60 0.641 0.774 0.788

NGO 141 312 651 90.70 86.34 88.46 0.5 29 56 0.647 0.737 0.749

POA 212 306 628 89.60 87.06 89.96 0.5 28 53 0.656 0.732 0.717

PSOGSA 82 296 996 90.19 87.65 88.91 0.5 42 140 0.647 0.664 0.747

SHO 22 286 593 85.07 88.07 89.39 0.5 28 56 0.651 0.717 0.743

SSA 8 110 229 87.77 90.69 88.18 0.2 10 20 0.647 0.687 0.746
Table 4. Fit time and accuracy of Extreme Learning Machine with selected Meta-
heuristic Algorithms applied for 1000 neurons in hidden layer, limit of iterations equal
to 1 and a di�erent population size Sn = 50, 100 or 200 used directly as a classi�er on
MNIST handwritten digits dataset and 100 neurons in hidden layer, limit of iterations
equal to 1 and a di�erent population size Sn = 50, 100 or 200 used directly as a clas-
si�er on Wine Quality White dataset.

Method Sn L kn Fit MSE Fit time [s] Prediction time [s] ACC [%]

NGO 50 1000 5 0.059 566 0.074 91.45

MRFO 100 1000 1 0.057 318 0.082 91.43

GTO 50 900 5 0.058 471 0.081 90.88

GTO 200 900 5 0.057 2928 0.069 90.85

SSA 50 900 5 0.062 236 0.065 90.81

PSOGSA 50 1000 50 0.060 4800 0.068 90.81
Table 5. The 6 highest ACC for Extreme Learning Machine with selected Metaheuris-
tic Algorithms used directly as a classi�er on MNIST handwritten digits dataset.

population size 100 (see Tab. 5). Here we obtained comparable results of ELM
and MA-ELM but for a di�erent number of neurons. Training time, that is stated
as a �t time for MA-ELM, is a lot longer than in case of typical ELM. Note here
that in many practical application cases of ML a short prediction time is crucial.
The time is extended when net is composed of more hidden layer units. Focusing
on prediction time we should compare nets with 1000 hidden layer neurons, then
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Method Sn L kn Fit MSE Fit time [s] Prediction time [s] MSE

LHHO 50 100 50 0.417 36.706 0.008 0.623

COA 50 100 50 0.414 26.659 0.008 0.624

GWO-CS 50 100 1 0.425 0.285 0.005 0.625

GWO-CS 50 200 1 0.398 0.561 0.010 0.628

AVOA 50 100 5 0.421 1.073 0.008 0.629
Table 6. The 5 lowest MSE for Extreme Learning Machine with selected Metaheuristic
Algorithms used directly as a classi�er on Wine Quality White dataset.

Neurons Fit Time [s] Prediction Time [s] ACC [%]

1000 3 0.069 88.69

2000 7 0.134 90.57

3000 14 0.256 91.26

4000 26 0.268 91.41

5000 45 0.412 91.41

6000 71 0.511 91.30

7000 115 0.527 90.58

8000 165 0.707 90.83
Table 7. Extreme Learning Machine used directly as a classi�er on MNIST handwrit-
ten digits dataset results.

Neurons Fit Time [s] Prediction Time [s] MSE

100 0.004 0.0003 0.646

200 0.008 0.0014 0.652

300 0.021 0.0032 0.660

400 0.028 0.0034 0.677

500 0.025 0.0025 0.691

600 0.040 0.0033 0.710

700 0.052 0.0037 0.721

800 0.053 0.0041 0.744

900 0.105 0.0061 0.757

1000 0.130 0.0084 0.770
Table 8. Extreme Learning Machine used directly as a classi�er on Wine Quality
White results.

MA-ELM achieve ACC higher by 3pp (percentage points) over EML. Prediction
time is highly dependent on L, then there is no di�erence of prediction time
between MA-ELM and ELM. When we compare a similar ACC from the both
methods (for MA-ELM L = 1000 and ELM L = 4000) prediction time for 1000
is 6 times shorter which can be very bene�cial in models that require short
classi�cation time. Summing up the results obtained for the Wine Quality with
ELM classi�er applied leads to a rise of MSE when number of neurons in hidden
layer increases (see Tab. 8). The lowest MSE=0.646 is generated for L = 100 with
training time of the net equal to 0.004s and prediction coinciding with 0.0003s.
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According to Tab. 6 which presents the top 5 lowest MSE across all exploited
parameters' values of MA-ELM the best results are produced for Sn = 50,
L = 100 and kn = 50 for LHHO and COA methods. The lowest observed
MSE=0.623 for MA-ELM is a better result than using core ELM method for
which MSE=0.646 is detected. Both classi�ers for this dataset have comparable
prediction time as the best results are reached for the same value of L.

6 Conclusions

In this paper the concept of hybridized ELM with MA is introduced. Subse-
quently, the in�uence of the parameters' value selection on �nal results is ex-
amined. More precisely, the impact on the results of the number of neurons in
hidden layer of ELM, the size of the population and the stopping conditions for
MA are investigated. Based on this research we conclude that higher accuracy of
the hybridized ELM can be detected even for lower number of neurons in hidden
layer than in typical ELM. The latter leads to a signi�cant fall in prediction time
of the model. Surprisingly, the best results assessing MA termination condition
of MA are registered as a hard limit of 5 iterations for MNIST handwritten and
of 50 iterations for Wine Quality White dataset. Unfortunately, we were not
able to examine termination condition of MA as a limit of 10000 iterations or
changes of �tness less than ε = 0.0001 because of the computational complexity
involved. This aspect should be further investigated. The population sizes exam-
ined in our study were set to 50, 100, and 200, as lower values led to unstable
results, and higher values resulted in impractically long evaluation times for our
experiment. In total 19 MA methods are tested and across all SSA and MRFO
stand out for their high accuracy combined with shorter training times com-
pared to other methods. Notwithstanding, one ought to emphasize that there
is no method that yields excellent results on both datasets. It is worth noting
that there is no direct correlation between increased computational time and
improved results. The selection of the appropriate MA algorithm for a partic-
ular task should be based on comprehensive evaluation. However, in our work,
we observed that certain algorithms exhibit a high computational complexity
without a signi�cant improvement in classi�cation accuracy. Therefore, MGO,
AEO, COA, and LHHO may not be suitable for hybridized ELM and can be
discarded from further consideration.
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3.3.2 Performance evaluation of activation functions in Extreme
Learning Machine

Publication:
K. Struniawski, A. Konopka, and R. Kozera, "Performance Evaluation of Activa-

tion Functions in Extreme Learning Machine", in ESANN 2023 : Proceedings, 2023, p.
351–356. doi: 10.14428/esann/2023.es2023-31.

Abstract : This study investigates the performance of 36 different activation functions
applied in Extreme Learning Machine on 10 distinct datasets. Results show that Mish
and Sexp activation functions exhibit outstanding generalization abilities and consistently
perform well across most datasets, while other functions are more dependent on the char-
acteristics of the task at hand. The selection of an activation function is intricately linked
to the applied dataset and novel activation functions may possess superior generalization
capabilities comparing to commonly employed alternatives. This study provides valuable
insight for researchers and practitioners seeking to optimize Extreme Learning Machine
performance for solving classification tasks.
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Abstract. This study investigates the performance of 36 different ac-
tivation functions applied in Extreme Learning Machine on 10 distinct
datasets. Results show that Mish and Sexp activation functions exhibit
outstanding generalization abilities and consistently perform well across
most datasets, while other functions are more dependent on the charac-
teristics of the task at hand. The selection of an activation function is
intricately linked to the applied dataset and novel activation functions
may possess superior generalization capabilities comparing to commonly
employed alternatives. This study provides valuable insight for researchers
and practitioners seeking to optimize Extreme Learning Machine perfor-
mance for solving classification tasks.

1 Introduction

Extreme Learning Machine (ELM) is a type of neural network that was intro-
duced by Huang et al. in 2004 [1]. The ELM architecture comprises of an input
layer, a single hidden layer and an output layer of neurons. The number of neu-
rons in the input and output layer are adapted to the specific task at hand. Due
to the scarcity of theoretical methods, it is difficult to determine upfront the
optimal number of hidden units for the ELM. Consequently, the latter is usu-
ally established through empirical evaluations. ELM has been widely applied in
various fields, including image classification [2], medical diagnosis [3] and soil mi-
croorganism identification [4]. It is shown to be highly computationally efficient
in both classification and regression tasks [5]. The ELM has become an increas-
ingly popular Machine Learning (ML) technique in recent years as its versatility
and effectiveness make it a valuable tool for a wide range of applications.

Extreme Learning Machine utilizes the McCulloch-Pitts neurons [6] for which
an activation function needs to be determined. Huang et al. proved that in
contrast to conventional gradient-based learning algorithms that are exclusively
applicable to differentiable activation functions, ELM may also employ non-
differentiable or piecewise differentiable activation functions [7].

In recent years, new activation functions are proposed that yield promising
results in ML. The Rectified Linear Unit (ReLU) [8] is one of the activation
functions that is adopted in Convolution Neural Networks (CNN). Another ac-
tivation function that has gained popularity in recent years is the Exponential



Linear Unit (ELU) function that can achieve better performance than the ReLU
in certain scenarios e.g. in networks with more than 5 layers [9].

The choice of activation function depends on the specific input task and re-
searchers are continuously exploring new activation functions that can improve
the performance of ELM applied to a wide range of problems [10]. In practi-
cal applications of ELM, literature overview shows that despite novel activation
functions being developed the sigmoid and hyperbolic tangent functions remain
the most widely used in ELM [11]. The insufficient treatment of complex com-
parison of activation functions applied for different datasets has been detected
in the field in question. In one of the works that provide comparison between 11
different activation functions only one dataset is examined [12]. The observed ac-
tivation function’s performance on a single dataset raises concerns regarding its
generalizability. To address this issue, we present a comprehensive performance
investigation of the 36 different activation functions on 10 distinct datasets. The
aim of this study is to determine whether certain activation functions outper-
form others and to assess whether the optimal selection varies depending on the
dataset. Our hypothesis is that the activation function selection is intricately
linked to the characteristics of the dataset used for which subset of functions can
be identified that consistently exhibit superior or inferior performance. Note-
worthy, this paper has utilized a diverse set of activation functions for the ELM,
many of which have not been previously investigated in the literature like Mish,
originally introduced in 2019 [13]. Novel activation functions may possess su-
perior generalization capabilities in comparison to the commonly employed al-
ternatives, rendering remarkable candidates for enhancing the performance of
classification tasks using ELMs.

2 Extreme Learning Machine Classifier

In a supervised classification task N observations are represented as pairs of
values denoted by {(xi, ti)}Ni=1. The i-th vector xi is composed of d features,
while the corresponding i-th label ti identifies the class to which the vector
belongs. For a classification problem with M distinctive classes, ti ranges from
0 to M−1. The input data is used to construct a matrix X = (x1, x2, . . . , xN ) ∈
Md×N (R) with each xi ∈ Rd, along with a vector T = (t1, . . . , tN ).

The input layer of an ELM neural network is composed of d neurons, while
its output layer has a number of units equal to M . The network calculates
N values {yi}Ni=1 as its output, which are then used to form the matrix Y =
(y1, y2, . . . , yN ) ∈ MN×M (R). To recognize a given input xi, the maximal value
of yi observed on the p-th index is extracted. This assigns xi to the p-th class.
Suppose that a fixed number of neurons, denoted by L is selected for the hidden
layer in advance. The weights connecting the input and hidden layers define the
matrix W ∈ Md×L(R), where wij corresponds to the weight associated with the
connection between the i-th input layer neuron and the j-th neuron in the hidden
layer. The bias connections are represented by a vector b = (b1, . . . , bN ). During
the learning process of the ELM, the coefficients of W and b are determined



using a uniform distribution function U(−1, 1). The outputs of the hidden layer
neurons are stored in the matrix H. In ELM, the activation function f : R → R
introduces non-linearity to the hidden layer output, which is crucial for the
network’s performance on tasks that involve complex relationships between input
and output variables [1]. The weights β between the hidden and output layer in
ELM can be calculated by solving the equation Y = Hβ. This system cannot
be directly solved since H is non-invertible and ∥Hβ−Y ∥ = 0 (see Huang et al.
[1]). Instead, we estimate β as the minimizer of the mean residual square error:

β̂ = arg min
β

∥Hβ − T∥2 = H†T , where H† is the Moore-Penrose generalized

inverse of H [14]. The pseudo-inverse of matrix H† is uniquely determined and
in the case of a non-singular matrix H, it coincides with an ordinary inverse,
i.e. H† = H−1. The matrix H† gives the solution β̂ so that Hβ̂ is close to Y in
terms of mean square error.

3 Methodology and results

The use of ELM’s techniques necessitates the selection of an appropriate ac-
tivation function and requires determination of the number of hidden layer
units denoted by L. To enable clear comparison of results, we propose a lu-
cidity experiment involving running ELM on a specific dataset using a fixed
activation function and conducting 50 repetitions of 10% cross-validation. A
search over the range of L values, from 100 to 5000 in increments of 100, is
then performed to identify the optimal classification accuracy. The reported
results reflect the highest accuracy obtained using a particular dataset and ac-
tivation function at various values of L. In light of the extensive use of various
activation functions in this study, it is recommended that each applied acti-
vation function should be referenced to the relevant scientific literature. Ac-
tivation functions taken here into consideration are: identity f(x) = x, Bi-
nary Step Function (BSF ) f(x) = {1 : x ≥ 0; 0 : x < 0}, TanhRe f(x) =
tanh(x) + x, HTan1 f(x) = min(max(x,−1), 1), Sine f(x) = sin(x), ASin
(Inverse Sine) f(x) = arcsin(min(max(x,−1), 1)), Cosine f(x) = cos(x), Soft
Exponential (Sexp) f(x) = max(x, 0) + ln(1 + exp{−|x|}), Inverse Square Root
Linear Unit (ISRLU ) f(x) = x

1+e−1.5x , Inverse Square Root Linear Units
(ISRLUs) fα(x) = x√

1+αx2
, Asymmetric Rectified Linear Unit (AReLU )

f(x) = {x : x ≥ 0; 0.1x : x < 0}, Bent’s Exponential Linear Units (BELUs)

f(x) =
√
x2+1−1

2 + x, Exponential Linear Units with Maxout (Max-ELUs)
fα(x) = max(x, αex − 1), Tilted Exponential Linear Units (TELUs) fα(x) =
{x : x ≥ 0;αex − 1 : x < 0}, Soft Clip Exponential Linear Units (SCELU )
fα(x) = {x : x ≥ 0;αex : x < 0}, Scaled Exponential Sine Linear Units
(SESLUs) fα,β(x) = {x : x ≥ 0;αsin(βx) : x < 0}, Square Non-Linearity

(SQNL) f(x) = {−1 : x < −2; x+x2

4 : x < 0; x−x2

4 : x ≥ 2}, Soft Clip-
ping f(x) = {−1 : x ≤ −1;x : x > −1 and x > 1; 1 : x ≥ 1}, SineReLU
f(x) = max(0, sin(x)), Rectified Square Root (ReSQRT ) f(x) =

√
max(0, x),



# Samples 690 569 1k 6k 208 14k 13k 351 3k 846
# Features 14 30 11 166 60 14 16 34 180 6
Activation A B C D E F G H I J
identity 77 95 77 96 74 64 90 82 95 76
BSF 60 57 2 56 55 55 16 74 39 31
Sigmoid 76 94 84 95 74 88 91 84 94 77
Swish 77 94 84 93 77 88 91 83 93 79
ELiSH 76 93 81 94 74 77 90 85 94 75
TanH 75 94 82 94 72 86 90 80 93 75
HardTanH 70 88 76 86 72 61 64 81 90 62
ReLU 72 90 79 87 74 62 89 88 88 67
TanhRe 75 94 82 94 71 86 90 81 94 75
ELUs 76 93 81 94 74 77 90 85 94 75
Soft-Plus 77 95 84 94 77 89 91 86 94 79
LReLU 71 90 79 88 74 63 90 88 88 68
SeLU 76 94 83 93 72 86 90 81 93 74
ReLU6 71 90 79 87 74 62 89 88 88 66
HTan1 73 90 79 92 74 63 74 82 93 70
Sinusoidal 75 93 84 94 77 90 91 80 93 77
Asin 69 88 78 89 73 61 67 83 93 63
Cosine 47 48 1 40 37 41 1 34 12 14
Sexp 78 95 84 95 77 89 91 85 94 79
Mish 78 95 84 94 77 89 91 83 94 80
ISRLU 77 94 83 92 76 87 91 82 92 77
RReLU 73 92 80 87 75 73 90 86 86 70
GELU 76 94 83 92 76 87 91 83 92 78
SELU 74 91 79 94 71 72 90 82 94 72
ISRLU 75 94 82 94 72 85 90 80 93 74
AReLU 72 91 79 89 74 62 90 87 90 69
BELU 77 94 83 95 77 82 91 84 95 78
Max-ELU 79 91 80 94 74 91 91 81 90 80
TELUs 76 93 81 94 74 74 90 85 94 74
SCELU 61 86 24 71 66 67 21 84 56 37
SESLU 76 94 82 94 72 78 90 82 94 76
SQNL 76 93 81 94 73 70 87 81 94 74
Soft Clip 73 90 79 92 73 63 74 82 93 70
SineReLU 71 89 79 86 72 65 88 84 86 64
ReSQRT 68 88 77 84 73 61 84 86 89 58
SiLU 77 95 84 93 77 86 91 83 93 79

Table 1: The accuracy (ACC) [%] of the Extreme Learning Machine (ELM)
for a particular activation function and dataset with given samples and features
number. The bold values indicate the top five ACC for a selected dataset among
activation functions, while the italicized values represent the five functions with
the lowest ACC.



Sigmoid Linear Unit (SiLU ) f(x) = x
1+e−x ,. For the following activation func-

tions details can be obtained in [15]: Sigmoid , Swish , Exponential Linear
Squashing (ELiSH ), TanH , HTanH , Rectified Linear Unit (ReLU ), Expo-
nential Linear Units (ELUs), SoftPlus, Leaky ReLU (LReLU ), Scaled Ex-
ponential Linear Unit (SeLU ), ReLU6 , Mish , Gaussian Error Linear Units
(GELUs), Scaled Exponential Linear Units (SELU ), Randomized Leaky ReLU
(RReLU ). In this paper, α and β are set to 1 as the selection of activation func-
tion parameters is beyond the scope of this research.

To provide the meaningful comparison between various activation functions
10 different datasets were used. The datasets are made publicly available by the
UCI Machine Learning Repository for the purpose of classification tasks and are
commonly used in ML [16]. For simplicity in further considerations datasets are
marked as A, . . . , J , where A - Australian credit card applications, B - Breast
Cancer, C - Wine-Red, D - Musk, E - Sonar, F - EyeState, G - Dry Bean, H -
Ionosphore, I - DNA and J - Vehicle. The experiment’s results are presented in
Tab. 1 and are analyzed in the conclusions section below.

4 Conclusions

The results (see Tab.1) indicate that some activation functions performed poorly,
including BSF, Cosine and SCELU, which exhibited the worst results for all
datasets (being 10 times in bottom 5 ACC). With high confidentiality we can
exclude these functions from practical usage for ELM. On the other hand, the
Mish (9 times), Sexp (8), SoftPlus (6), Maxout-ELUs (4) exhibited superior per-
formance across datasets being in top 5. Noteworthy, each of these functions has
never been chosen as the worst 5 for a given dataset. Identity and sinusoidal
functions were in the top 5 for the 4 times, but simultaneously each of these was
also once noted as the bottom 5. Their usage may be beneficial only for some
of the assignments. Our experimental results demonstrate the exceptional gen-
eralization capabilities of Mish and Sexp activation functions for ELM. These
functions have consistently performed well across 10 diverse datasets, encom-
passing various classification tasks. They have exhibited strong performance
even when applied to datasets with varying numbers of features and samples.
In contrast, the effectiveness of other activation functions has been more reliant
on the specific characteristics of the tasks. Notably, the accuracy of the ELM
classifier can differ significantly, up to 80 percentage points, depending on the
chosen activation function. Therefore, it is crucial to evaluate the efficacy of
activation functions for each task to ensure optimal classifier performance. Our
experimental results highlight the promising potential of Mish activation func-
tion for ELM. Mish, a relatively new activation function in Deep Learning, has
not been extensively utilized in ELM until now. Based on the obtained results
we can straightforward conclude that the ELM’s performance with selected acti-
vation cannot be measured on a single dataset as there is no guarantee that the
activation function’s generalization abilities will be sufficient for a given task.
The analysis did not reveal any significant correlations between the number of



features or samples and the performance of activation functions. Instead, the
results suggest that the performance is closely tied to the characteristics of the
specific classification task. This observation opens up avenues for future research,
particularly in exploring the implications of Universal Approximation theorems
for ELM. Further research on the Mish and Sexp activation functions applied in
ELM should be conducted to examine their performance on more datasets. It
would also be beneficial to introduce optimization strategies to the values of α
and β for specific activation functions.
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3.3.3 Metaheuristic Algorithms in Extreme Learning Machine
for selection of parameters in activation function

Publication:
K. Struniawski, A. Konopka, and R. Kozera, "Metaheuristic Algorithms in Extreme

Learning Machine for Selection of Parameters in Activation Function", in Modelling and
Simulation’2023. The 2023 European Simulation and Modelling Conference, 2023, p.
239–244.

Abstract : This research investigates the fusion of Metaheuristic Algorithms (MAs)
with the Extreme Learning Machine (ELM) model to optimize parameters of activation
function. While MAs have traditionally been employed for weights selection, a method-
ology that utilizes MA for the selection of activation function parameters was proposed.
The performance of 24 distinctive activation functions was evaluated on diverse and
widespread benchmark datasets: Ionosphere, Breast Cancer, Australian Credits, Musk
and Banana. The results demonstrate a strong dependence on selecting an optimal ac-
tivation function for each task, with variations in accuracy ranging up to 60 percentage
points. The MA-ELM approach shows promising results, providing improved accuracy
and reducing the number of required neurons in certain cases. The approach offers an
efficient alternative to the typical MA-ELM method, requiring evaluation of only a few
parameter values compared to the optimization of hundreds or thousands of weights. This
approach enhances the generalization abilities of core ELM method and reduces compu-
tational time in comparison to typical MA-ELM. These findings validate the effectiveness
of the proposed MA-ELM approach, contributing to the understanding of integrating MA
with activation functions in ELM and offering insights for enhancing model performance
in various applications.
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ABSTRACT

This research investigates the integration of Metaheuris-
tic Algorithms (MAs) with the Extreme Learning Ma-
chine (ELM) model to optimize parameters of activa-
tion function. While MAs have traditionally been em-
ployed for weights selection, a methodology that utilizes
MA for the selection of activation function parameters
was proposed. The performance of 24 distinctive activa-
tion functions was evaluated on diverse and widespread
benchmark datasets: Ionosphere, Breast Cancer, Aus-
tralian Credits, Musk and Banana. The results demon-
strate a strong dependence on selecting an optimal ac-
tivation function for each task, with variations in accu-
racy ranging up to 60 percentage points. The MA-ELM
approach shows promising results, providing improved
accuracy and reducing the number of required neurons
in certain cases. The approach offers an efficient alter-
native to the typical MA-ELM method, requiring eval-
uation of only a few parameter values compared to the
optimization of hundreds or thousands of weights. This
approach enhances the generalization abilities of core
ELM method and reduces computational time in com-
parison to typical MA-ELM. These findings validate the
effectiveness of the proposed MA-ELM approach, con-
tributing to the understanding of integrating MA with
activation functions in ELM and offering insights for en-
hancing model performance in various applications.

INTRODUCTION

Metaheuristic Algorithms (MAs) have proven to be ef-
fective in solving optimization problems in a variety of

domains. In the field of Machine Learning (ML), com-
bining MA with the parameter selection of activation
function has the potential to improve the performance of
learning models (Wu et al. 2019). The Extreme Learn-
ing Machine (ELM) is a ML model that has gained pop-
ularity due to its computational efficiency and versatility
(Huang et al. 2004) making it an attractive choice for
a wide range of ML applications. Its unique approach,
characterized by random initialization of hidden layer
weights and a single-pass learning process, has simplified
training while maintaining competitive performance.

In recent research, a hybrid approach combining ELM
with MA has been proposed and evaluated in practi-
cal applications. The work (Chia et al. 2021) utilized
particle swarm, moth-flame and whale optimization al-
gorithm (WOA) to improve weight selection in ELM.
Similarly, (Wu et al. 2019) applied genetic algorithms:
ant colony optimization, cuckoo search algorithm and
flower pollination algorithm in their practical context.
A recent study successfully estimated the uniaxial com-
pressive strength of rocks using the hybrid MA-ELM
approach (Qiu et al. 2022). The results demonstrated
the superiority of the WOA-powered MA-ELM model
over the conventional ELM. The WOA-ELM model ex-
hibited lower relative, minimum and mean residual er-
rors with higher performance indices. These findings
collectively indicate the enhanced performance of the
hybridized ELM approach.

The choice of an appropriate activation function plays
a crucial role in the performance and generalization ca-
pabilities of the ELM (Huang et al. 2015). Thoughts
traditional sigmoid and hyperbolic tangent functions
have been widely used in ELM, recent advancements
have introduced novel activation functions (Glorot et al.
2011) primarily designed for Convolutional Neural Net-
works (CNNs). The effectiveness and suitability of these
novel activation functions in the context of ELM are
still largely unexplored. Additionally, many activation



functions require the specification of parameter values,
typically fixed to a default value such as 1.
In this study, we propose a novel methodology that uti-
lizes MA to optimize activation function parameters in
ELM. While MAs have been traditionally employed for
weights selection, our approach focuses on the evalu-
ation of optimal activation function parameters. This
solution offers potential benefits, including improved
generalization abilities and reduced computational time
compared to typical MA-ELM methods. Unlike the core
method that seeks to find hundreds or even thousands of
optimal weights through the MA process, our approach
requires evaluating a maximum of only 5 parameter val-
ues (number of examined activation function’s parame-
ters is equal to 1, 2 or 5).
To validate our proposed concept, we conducted an ex-
tensive study evaluating the performance of 24 distinc-
tive activation functions on five diverse datasets. The
chosen widespread benchmark datasets: Ionosphere,
Breast Cancer, Australian Credits, Musk and Banana
are commonly used for ML performance evaluation
(Kelly et al. 2023). Intentionally the datasets are chosen
to yield a broad range representation and to exhibit di-
verse characteristics. We aim to assess the performance
of activation functions in terms of accuracy, execution
time and investigate whether the integration of Meta-
heuristic Algorithms improves the overall results. To
accomplish this, a rigorous experimental setup was em-
ployed. A 50-times repeated cross-validation technique
with 10 folds was utilized to ensure reliable and robust
results. The evaluation metric of mean accuracy is used
across multiple runs, providing an objective measure of
model’s performance.
In addition to evaluating the activation functions,
we integrated five different metaheuristic algorithms
from the python’s mealpy package (Nguyen and
Seyedali 2023) into the ELM framework. These al-
gorithms, namely OriginalHBA, OriginalSMA, Orig-
inalTSO, OriginalARO and OriginalTSA were specif-
ically chosen due to their exceptional performance in
terms of accuracy and execution time. Among the over
175 different methods implemented in the mealpy pack-
age, these algorithms showed promising results in the
pre-experimental setup. By leveraging the optimization
capabilities of MAs, our aim was to investigate whether
they can further enhance the performance of ELM. The
research necessitates utilization of MA with different pa-
rameters such as population size or number of iterations,
and ELM that solely requires the quantity of neurons in
hidden layer.

EXTREME LEARNING MACHINE

ELM is a dense feed-forward neural network classifier
and regressor (Huang et al. 2004). It consists of an in-
put, a single hidden and an output layer of neurons.
The number of hidden layer units is empirically estab-

lished as there is no theoretical method to determine
the optimal number upfront. In a supervised classifica-
tion task, observations are represented as pairs (xi, ti),
where xi is the input vector with d features, ti is the
corresponding one-hot encoded class label Potdar et al.
(2017). The input data is used to construct matrices X
and T . The bias and weights between input and hid-
den layer are determined using a uniform distribution
function U(−1, 1). The activation function introduces
non-linearity to the hidden layer, which is essential for
handling complex relationships (Hassoun 1995). The
weights between hidden and output layer, denoted by
β, are estimated by Moore-Penrose generalized inverse
H† (Rao and Mitra 1971) of the hidden layer matrix H.

The solution β̂ minimizes mean residual square error
between Hβ and T .

METAHEURISTIC ALGORITHMS

MAs have gained significant attention in the field of
mathematical optimization and have found applications
in various technological domains. The concept of op-
timization is not only prevalent in technology but also
observed in the natural world, where organisms rely on
efficient behaviors for survival and reproduction, as ex-
plained by Darwin’s Theory of evolution (Brooks 1996).
Scientists have attempted to model and describe these
optimized activities of organisms using mathematical
techniques, which are nowadays commonly referred to
as MAs (Stützle 1999). The performance of models can
be improved (Wu et al. 2019) combining bio-inspired
optimization algorithms with ML.

In general, a constrained optimization problem involves
minimizing an objective function, subjected to certain
equality and/or inequality constraints (Venkatraman
and Yen 2005). MAs are a class of nature-inspired al-
gorithms that aim to guide the search process to avoid
getting trapped in local optima (Yang 2010). They em-
ploy strategies such as intelligent initialization of solu-
tions, incorporating randomness in a biased manner and
utilizing search experience or memory to moderate the
process (Lan and DePuy 2006). These algorithms sim-
ulate various natural behaviors and make assumptions
about the environment to optimize the algorithm (Lar-
rau and Potvin 2010). The search strategies employed
by different MAs vary based on their underlying philoso-
phies. In this study, we compare different MAs applied
in the learning process of ELM.

RESULTS

The previous research highlighted the effectiveness of
using a low number of algorithm iterations and small
population size to optimize the weights in typical MA-
ELM setup (Struniawski et al. 2023). This work per-
forms a detailed investigation on parameter selection for



Table 1: Results of the experiment on the application of MA method for a given dataset with different activation
functions. The table is in details described in Results section.

Dataset Method Activation act p n e p ACC [%] t [s]

Ionosphere

OriginalHBA cubic spline 5 5000 1000 200 95.69 39
OriginalARO cubic spline 5 5000 1000 200 95.63 39
OriginalARO cubic spline 5 5000 5 50 95.57 10
OriginalHBA cubic spline 5 5000 1000 50 95.54 10
no method srelu - 4000 - - 95.31 -
OriginalSMA selu 2 400 1000 200 64.00 16

Breast Cancer

no method softshrink - 400 - - 93.51 -
OriginalARO sqrelu 2 500 5 50 93.41 7
OriginalSMA sqrelu 2 100 5 50 93.40 4
no method softshrink - 600 - - 93.37 -
OriginalHBA aqrelu 2 500 1000 50 93.34 6
OriginalARO aq 2 100 1000 100 37.14 8

Australian

OriginalHBA aq 2 400 1000 50 71.70 9
OriginalHBA sqrelu 2 300 5 50 71.60 7
OriginalSMA sqrelu 2 400 5 100 71.60 24
OriginalTSO sqrelu 2 400 5 100 71.60 20
no method aq - 700 - - 71.60 -
OriginalHBA cubic spline 5 800 5 50 53.08 11

Musk

no method isru - 3000 - - 96.70 -
no method softshrink - 3000 - - 96.70 -
no method elu - 3000 - - 96.70 -
OriginalSMA aqrelu 2 1000 5 200 96.60 85
no method prelu - 3000 - - 96.60 -
no method smooth sigmoid - 5000 - - 48.10 -

Banana

OriginalARO cubic spline 5 800 1000 100 95.90 29
OriginalHBA cubic spline 5 900 5 50 95.90 22
OriginalTSA cubic spline 5 900 1000 50 95.80 19
OriginalTSO cubic spline 5 800 1000 200 95.70 56
no method hard shrink - 2000 - - 93.60 -
OriginalSMA selu 2 200 5 200 40.63 1

MA within the context of ELM. The primary focus in
this study was to explore the performance of MA-ELM
once applied to search for optimal values of activation
functions. The latter has received limited attention in
prior literature. The approach involved designing a com-
prehensive set of experiments by varying different acti-
vation functions and their parameters. The activation
functions applied in our study included: cubic spline,
aqrelu, selu, softshrink, leaky relu, isru, smooth sigmoid,
prelu, sqrelu, isrlu, smooth hard tanh, elu, hard shrink,
hard sigmoid, hardshrink, mish, sine, aq, swish, softexp,
srelu, leaky softplus, softclip and gswish. Their formu-
las can be found in the corresponding references in the
field of ML that provide detailed explanations of each
activation function. Noteworthy, most of these activa-
tion functions were originally developed and widely used
for CNNs. However, they have not been extensively ex-
plored or applied in the context of ELM. To ensure a reli-
able evaluation, we conducted multiple runs and utilized
appropriate assessment metric of mean accuracy. The
objective was to testify the impact of MA on the per-

formance of activation functions, particularly in terms
of achieving high accuracy.

The experimental setup involved dividing the dataset
randomly into training and testing sets using 10-fold 50-
times repeated cross-validation (resulting in total 500
sets). The first set was utilized for MA evaluation,
where we optimized the activation function parameter
value by changing it during the MA process and evalu-
ating the current fitness using mean square error. The
MA algorithm searched for the optimal parameter or
parameters, depending on the requirements of the ac-
tivation function. Selected MA iterated for a specific
number of iterations and population size, resulting in
an optimal parameter value that minimizes given fit-
ness function within a maximal number of epochs. This
optimal value was stored in a memory and utilized in
the remaining 499 folds of the cross-validated set (see
flowchart Fig. 1). This approach ensured statistically
meaningful results that were resistant to the random-
ness of cross-validation. As the final result, we observed
the mean accuracy, which provided a robust assessment
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Figure 1: MA-ELM pipeline flowchart for ELM
activation function’s parameters optimization process.

of performance. The calculations were performed on PC
class computer with Ryzen 9 3900X CPU, 64GB 3200
MHz DDR4 RAM, RTX 3090 GPU and Python 3.10
with Tensorflow 2.10.

In the results Tab. 1 the column act p represents the
number of parameters for activation function. The pa-
rameters used in the experiment are as follows: n de-
notes the number of neurons, e indicates the number of
epochs and p represents the population size. The ACC
column shows the mean accuracy obtained from 50 runs
of 10-fold cross-validation, where the values of activa-
tion function’s parameters were estimated in the first
fold during MA evaluation. The t column represents
the execution time of the MA method in seconds. The
no method indicates raw ELM evaluation using default
parameters (set to 1) if needed. For each dataset we in-
cluded 4 top ACC obtained, the no method with highest
accuracy as the core ELM reference point as well as the
worst obtained performance to represent the impact of
activation function and it’s parameter selection to the
final ACC (if in top 4 ACC no method is present then
we select top 5 ACC combined with worst noted result).

The results presented in Tab. 1 highlight the strong de-
pendence on the selection of an optimal activation func-
tion for each specific task. For the Ionosphere dataset,
the highest achieved accuracy (ACC) of 95.69% was gen-
erated using the OriginalHBA method coupled with the
cubic spline activation function. This combination, with
a hidden layer size of n = 5000, e = 1000 epochs and a
population size p of 200, outperformed other activation
functions. It demonstrated a slight improvement com-
pared to the core MA model using the Smooth Rectified

Linear Unit (srelu) function and achieved over a 30 per-
centage point (p.p.) increase in accuracy compared to
the worst-performing activation function. These results
underscore the importance of properly evaluating the
model’s parameters.
In the case of Breast Cancer dataset, the core ELM
model with the Soft Shrink (softshrink) activation func-
tion achieved the highest ACC, surpassing the MA-ELM
models using other activation functions. The difference
in ACC between the best and worst-performing activa-
tions was 60 p.p. indicating the significant impact of
the chosen activation function.
Once applied to the Australian Credit dataset, the Orig-
inalHBA method with the Asymmetric Quadratic Func-
tion (aq) yielded better results than the core ELM with
the same activation function. Additionally, the MA-
ELM approach achieved higher ACC with a smaller
number of hidden layer units compared to the core ELM
model. This demonstrates the advantage of using MA
in reducing computational complexity, particularly in
terms of prediction time.
Interestingly, for the Musk dataset, the core ELM model
without MA application outperformed the MA-ELM
models in terms of ACC for the activation functions In-
verse Square Root Unit (isru), softshrink, Exponential
Linear Unit (elu) and Parametric ReLU (prelu). No-
tably, the core ELM model with the smooth sigmoid
function achieved an ACC that was 50 p.p. lower than
the top-performing MA-ELM model. However, it is im-
portant to mention that the MA-ELM models required
three times fewer hidden layer units.
In the case of Banana dataset, the cubic spline activa-
tion function combined with the MA methods yielded
the highest ACC of 95.90%. This result was over 2 p.p.
better than the core ELM model with the Hard Shrink
activation function, which also required more than twice
as many hidden layer neurons.

CONCLUSIONS

In this study, the effectiveness of integrating MA with
the ELM model to optimize activation function param-
eters was investigated. The significant variations in
ACC based on the chosen activation function and its
parameters were observed. For example, the Original-
HBA method combined with the cubic spline activa-
tion function achieved the highest ACC of 95.69% on
the Ionosphere dataset, outperforming other activation
functions. Our findings demonstrate that the MA-ELM
approach can be beneficial in applications where it sig-
nificantly improves or provides comparable results with
a lower number of required neurons. However, we also
observed cases where the core ELM model without MA
outperformed the MA-ELM models, indicating the im-
portance of carefully selecting the activation function
based on the dataset characteristics. The core ELM
model with the softshrink activation function yielded



the highest ACC on the Breast Cancer dataset, surpass-
ing the MA-ELM models. Obtained results emphasize
the need to evaluate activation functions thoroughly, as
the performance differences between the best and worst-
performing functions can be as high as 60 p.p. in terms
of ACC. These findings suggest that activation function
selection plays a critical role in achieving optimal perfor-
mance and generalization capabilities in ELM models.

Furthermore, our study demonstrates the potential of
MA in enhancing the performance of activation func-
tions and reducing computational complexity. By in-
tegrating MA algorithms, we achieved improved results
with fewer hidden layer units, leading to computational
efficiency benefits. Based on these outcomes, we recom-
mend considering the MA-ELM approach for optimizing
activation function parameters in ELM models. How-
ever, it is essential to conduct experiments on actual
datasets and carefully evaluate the performance before
deciding between the core ELM application and the pro-
posed MA-ELM approach.

In conclusion, our research contributes to the under-
standing of MA integration with activation functions in
ELM. These findings highlight the importance of func-
tion selection and validate the effectiveness of MA-ELM
approach in enhancing model’s performance.
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Abstract : Extreme Learning Machine (ELM) is a type of neural network introduced in
2004 by Huang et al. with increasing popularity over the last two decades. The core prin-
ciples of ELM are simplicity of network topology and training process that finds a global
minimum using algebraic transformations in a single iteration. This work focuses on test-
ing credibility of randomness in ELM performance. Commonly, in typical applications of
ELM, a uniform distribution function is applied as a stochastic number generator. We
examine how the choice of randomness source in ELM impacts the final results achieved
by this network in practical applications. The credibility of the applied stochastic number
generators in ELM is a field of our examination using statistical test suits. The question
dealt here is whether other distribution functions applied as a source of randomness in
ELM have an impact on the network performance. The research highlights significant
variations in model outcomes across diverse distribution functions and demonstrates no-
table effects associated with various random number generators, including those with top
accuracy that fail to meet NIST criteria.
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Extreme	Learning	Machine	(ELM)	is	a	type	of	neural	network	introduced	in	2004	
by	 Huang	 et	 al.	 with	 increasing	 popularity	 over	 the	 last	 two	 decades.	 The	 core	
principles	of	ELM	are	straightforward	network	topology	and	training	process	that	
finds	a	global	minimum	using	algebraic	transformations	in	a	single	iteration.	This	
paper	focuses	on	testing	credibility	of	randomness	in	Extreme	Learning	Machine	
performance.	 Commonly,	 in	 typical	 applications	 of	 ELM,	 a	 uniform	 distribution	
function	is	applied	as	a	stochastic	number	generator.	We	examine	how	the	choice	
of	randomness	source	in	ELM	impacts	the	final	results	achieved	by	this	network	in	
practical	applications.	The	credibility	of	the	applied	stochastic	number	generators	
in	ELM	is	a	field	of	our	examination	using	statistical	test	suits.	The	question	dealt	
here	is	whether	other	distribution	functions	applied	as	a	source	of	randomness	in	
ELM	 have	 an	 impact	 on	 the	 network	 performance.	 The	 research	 highlights	
significant	variations	in	model	outcomes	across	diverse	distribution	functions	and	
demonstrates	notable	effects	associated	with	various	random	number	generators,	
including	those	with	top	accuracy	that	fail	to	meet	NIST	criteria.	

Introduction 
The	Extreme	Learning	Machine	(ELM)	represents	an	efficient	machine	learning	technique,	
distinguished	by	 its	 single-hidden	 layer	 feedforward	neural	 network	 (SLFN)	 architecture.	
Throughout	this	paper,	ELM’s	weights	between	input	and	hidden	layer	are	represented	as	𝛼	
accompanied	by	a	bias	term	𝑏,	along	with	the	weights	connecting	hidden	layer	to	output	layer	
denoted	as	𝛽	(bias	is	restricted	only	to	the	input	layer).	

The	 conventional	 characterization	 of	 the	 learning	 process	 often	 involves	 an	 intelligent	
exploration	of	the	search	space	that	may	be	achieved	by	employing	methods	like	stochastic	
gradient	 descent	 in	 conjunction	with	 the	 backpropagation	 algorithm	 (BA)	 (Amari	 1993).	
Once	 we	 allow	 the	 adaptability	 of	 parameters	 𝛼,	 𝛽	 and	 𝑏	 the	 SLFNs	 are	 referred	 to	 as	
universal	approximators.	 In	 the	context	of	BA,	several	 techniques	 for	weight	 initialization	
play	a	crucial	role	in	the	iterative	optimization	process.	Among	these	techniques,	the	most	



commonly	employed	method	entails	initializing	weights	with	small	random	values,	thereby	
enhancing	the	solution’s	robustness	and	guarding	against	network	overfitting.	Alternatively,	
other	initialization	methods	take	into	account	specific	characteristics	of	the	input	data,	such	
as	the	number	of	input	vectors	or	features.	Noteworthy,	examples	include	the	Glorot	(Xavier)	
and	He	initialization	techniques	(Nguyen	2021).	Research	findings	consistently	underline	the	
sensitivity	of	BA	to	initial	conditions	(Kolen	and	Pollack	1990).	

ELM	distinguishes	itself	from	conventional	SLFNs	in	its	unique	approach	to	learning	process.	
In	ELM,	the	parameters	𝛼	and	𝑏	are	randomly	initialized	and	remain	constant	throughout	the	
training	process.	Notably,	the	values	of	𝛽	are	determined	not	through	iterative	procedures	
but	upon	solving	an	algebraic	equations	once,	aimed	at	achieving	an	optimal	solution	in	terms	
of	mean	square	error.	

This	paper	delves	into	research	focused	on	two	primary	areas.	Firstly,	the	experiments	are	
conducted	to	investigate	how	the	choice	of	the	distribution	function	for	random	weights	of	𝛼	
and	𝑏	influences	the	ultimate	outcomes.	Secondly,	the	various	random	number	generators	are	
examined,	evaluating	their	statistical	properties	using	the	U.S.	National	Institute	of	Standards	
and	Technology	(NIST)	tests	for	randomness	and	pseudorandomness.	This	evaluation	aims	
to	ascertain	their	credibility	in	generating	truly	random	numbers	and	assesses	their	impact	
on	the	final	performance	of	ELM.	The	experiments	reveal	that	different	distribution	functions	
have	 a	 significant	 impact	 on	 the	 performance	 of	 models,	 while	 various	 random	 number	
generators	 exhibit	 a	 moderate	 influence.	 These	 findings	 underscore	 the	 research’s	
importance.	

Review of Literature 
In	the	field	of	evaluating	the	influence	of	random	number	generators,	along	with	their	quality	
assessment	 using	 statistical	 test	 suites	 and	 considering	 the	 utilization	 of	 distribution	
functions	in	the	initialization	process	of	weights	𝛼	and	bias	𝑏,	there	is	a	noticeable	dearth	of	
existing	literature	dealing	with	that	issue.	Surprisingly,	no	prior	research	has	concentrated	
on	investigating	the	ramifications	of	random	number	generators	within	the	context	of	ELM.	
Dealing	with	ELM	it	is	essential	to	determine	the	values	of	𝛼,	𝑏,	the	number	of	hidden	units	
and	the	activation	function	along	with	its	associated	parameters.	

In	2012,	R.	Wang	conducted	a	study	examining	the	influence	of	randomly	assigned	weights	
between	the	input	and	hidden	layer	within	the	context	of	the	ELM	(Wang,	Kwong,	and	Wang	
2012).	 The	 fundamental	 objective	 of	 this	 research	 is	 to	 investigate	 whether	 the	 use	 of	
randomly	 assigned	 weights	 could	 positively	 impact	 on	 the	 performance	 of	 ELM.	 The	
experimental	 findings	demonstrated	here	that,	 for	numerous	classification	and	regression	
problems,	 the	 expansion	 of	 feature	 space	 dimensions,	 achieved	 through	 the	 random	
initialization	 of	weights	𝛼	 and	 biases,	 yielded	 better	 performance	 than	 kernel	mappings.	
Kernel	 mappings	 involve	 techniques	 for	 either	 reducing	 or	 expanding	 the	 feature	 space	
through	 the	 application	 of	 kernel	 functions,	 commonly	 Mercer	 kernels	 (Srivastava,	
Schumann,	and	Fischer	2005).	



In	2016,	G.	Dudek	conducted	an	analysis	of	the	ELM	approximation	capabilities,	examining	
how	 they	 depend	 on	 the	 type	 of	 activation	 function	 and	 on	 the	 ranges	 from	which	 input	
weights	 and	biases	 are	 randomly	 generated	 (Dudek	2016).	 The	 finding	 of	 this	 study	was	
experimental	evidence	confirming	that	ELM,	when	applied	to	function	approximation	tasks,	
demonstrates	clear	benefits	when	the	input	weights	are	randomly	selected	within	a	narrow	
range.	We	 decided	 to	move	 these	 findings	 even	 further	 to	 testify	 a	 different	 distribution	
functions.	

Methodology 
This	section	provides	a	detailed	description	of	ELM	and	outlines	the	methods	for	generating	
random	numbers	based	on	selected	distribution	functions	concluding	with	a	comprehensive	
overview	of	the	experimental	setup.	

Extreme Learning Machine 

Extreme	Learning	Machine	is	a	dense	feed-forward	neural	network	introduced	in	2004	by	
Huang	 et	 al.	 (Huang,	 Zhu,	 and	 Siew	 2004).	 ELM	 stands	 out	 for	 its	 remarkable	 speed	 in	
training,	especially	when	compared	to	other	machine	learning	techniques	such	as	Multilayer	
Perceptron	trained	with	BA	(Li	et	al.	2019).	Due	to	the	random	selection	of	weights	between	
the	input	layer	and	the	hidden	layer,	the	network	is	highly	resistant	to	overfitting.	ELM	can	
be	used	for	classification	and	regression	tasks	being	applied	in	various	fields	such	as:	signal	
processing,	pattern	recognition,	market	analysis,	aviation	and	aerospace	(Ding	et	al.	2015),	
big	data	security,	medical	diagnosis	and	predicting	protein	structure	(Chen	et	al.	2017).	

The	network	consists	of	input,	single	hidden	and	output	layer	of	neurons.	The	input	matrix	
of	features	for	the	training	process	is	denoted	as	𝑋%×',	where	each	of	𝑛	analyzed	samples	is	
described	 by	𝑑	 features.	 The	 number	 of	 neurons	 in	 input	 layer	 is	 equal	 to	𝑑.	 Number	 of	
neurons	in	a	hidden	layer	𝐿	needs	to	be	a	priori	determined.	Number	of	neurons	in	output	
layer	𝑀	reflects	the	number	of	classes	to	which	each	sample	is	being	assigned.	The	matrix	of	
weights	between	 input	and	hidden	 layer	 is	denoted	as	𝛼%×(	 and	 the	bias	𝑏 = {𝑏)})*!' .	The	
coefficients	 of	𝛼%×(	 and	 values	 of	 𝑏	 are	 randomly	 generated	 from	 a	 selected	 probability	
distribution.	Uniform	distribution	is	commonly	applied	on	the	interval	(−1,1)	for	evaluation	
of	𝛼	and	on	(0,1)	for	𝑏.	

The	weights	between	hidden	and	output	layer,	denoted	as	𝛽,	are	computed	using	algebraic	
transformations.	 To	 compute	𝛽	 a	matrix	 equation	𝐻𝛽 = 𝑇	 needs	 to	be	 solved.	𝐻'×(	 is	 an	
output	 from	 the	hidden	 layer	which	 is	 computed	as	𝐻 = 𝑓(𝑋+𝛼 + 𝑏).	 Activation	 function,	
denoted	here	as	𝑓,	 is	usually	 selected	as	 tangensoidal	or	 sigmoidal	 function	 (Huang	et	 al.	
2015).	The	matrix	𝑇'×, 	 is	structured	such	that	each	row,	denoted	as	{𝑡)})*!' ,	 consists	of	a	
vector	of	length	𝑀	containing	one-hot-encoded	values	for	the	𝑖’th	of	the	𝑛	classified	samples.	
This	encoding	results	in	𝑡) ∈ {0,1}, ,	ensuring	that	each	row	contains	exactly	one	occurrence	
of	 the	 value	 1	 among	 its	 elements.	 The	 latter	means	 that	 e.g.	 if	 𝑡$ = {0,0,1,0}	 the	 second	
sample	(of	all	𝑛	samples)	is	labeled	to	be	assigned	to	the	third	out	of	𝑀 = 4	possible	classes.	
The	matrix	𝐻,	due	to	the	fact	that	generically	it	is	not	a	quadratic	matrix,	it	is	non-invertible,	



so	the	value	of	𝛽	cannot	be	directly	computed	but	it	needs	to	be	estimated.	The	estimation	of	
𝛽,	denoted	as	𝛽; ,	is	computed	by	means	of	mean	square	error	between	𝐻𝛽	and	𝑇	(see(1)):	

𝛽; = 𝑎𝑟𝑔𝑚𝑖𝑛
-

∥∥𝐻𝛽 − 𝑇∥∥$ = 𝐻.𝑇.																					(1)	

The	 value	 of	 𝛽; 	 is	 computed	 with	 𝛽; = 𝐻.𝑇,	 where	𝐻.	 is	 Moore-Penrose	 pseudo-inverse	
operation	(Rao	and	Mitra	1971).	In	classification	tasks,	the	output	of	the	network	is	a	matrix	
𝑌'×, .	Each	of	the	rows	in	𝑌	denoted	as	{𝑦)})*!' 	corresponds	to	each	of	the	classified	samples.	
The	classification	result	is	inferred	transforming	the	𝑌	matrix	to	one-hot-encoded	𝑇D 	applying	
argmax	function	which	sets	all	values	in	a	given	row	to	0	except	of	the	maximal	number	in	
this	 row	which	 is	 set	 to	 1	 as	 it	 corresponds	 to	 the	 label	 of	 class	 to	which	 the	 sample	 is	
assigned.	

Generating random numbers for a given distribution function 

The	 algorithm	 for	 generating	 random	 numbers	 from	 a	 specified	 distribution	 function	 is	
necessary	for	initializing	𝛼	and	𝑏	in	ELM.	

Random number generators 

The	use	of	randomness	in	computing	has	a	historical	origin	in	methods	that	relied	on	physical	
phenomena,	 such	 as	 radioactive	 decay	 or	 electronic	 noise	 generation,	 to	 obtain	 random	
numbers	through	experiments.	Today,	a	wide	range	of	Pseudorandom	Number	Generators	
(PRNGs)	exist,	which	simulate	randomness	algorithmically.	

In	 practical	 terms,	 statistical	 testing	 plays	 a	 crucial	 role	 in	 establishing	 evidence	 that	 a	
generator	is	capable	of	producing	numbers	that	exhibit	the	appearance	of	randomness	(Soto	
and	 Rukhin	 1999).	 To	 address	 this	 concern,	 the	 U.S.	 National	 Institute	 of	 Standards	 and	
Technology	(NIST)	has	developed	a	comprehensive	testing	suite	designed	for	assessing	the	
randomness	of	random	number	generators.	This	suite	comprises	a	collection	of	 tests	 that	
evaluate	 various	 aspects	 of	 randomness,	 aimed	 at	 determining	 whether	 a	 sequence	 of	
numbers	possesses	the	characteristics	expected	of	truly	random	data.	

Distribution functions 

The	first	step	in	obtaining	random	numbers	based	on	the	given	distribution	function	is	to	
generate	random	numbers	using	the	selected	algorithm	and	then	to	calculate	the	value	of	the	
inverse	 cumulative	 distribution	 function	 (ICDF)	 for	 the	 generated	 random	 numbers.	 In	
particular,	to	obtain	random	weights	𝛽%×(	from	the	uniform	distribution	function	𝑈(−1,1)	
with	parameters	𝑈/ = −1	 and	𝑈0 = 1	 the	distribution	 function	 (as	per	 (2))	 and	 ICDF	 (as	
outlined	 in	 (3))	 are	 utilized.	 To	 achieve	 this,	 a	matrix	𝑅%×( ∈ (0,1)%×( ⊆ ℝ%×(	 containing	
random	 numbers	 is	 generated	 using	 an	 algorithm	 like	 PCG64	 (implemented	 in	 Python’s	
randomgen	package)	is	initially	created.	Subsequently,	𝛽%×(	is	obtained	by	applying	the	ICDF,	
denoted	as	𝐹1!,	to	the	matrix	𝑅:	𝛽%×( = 𝐹2(1!,!)

1! (𝑅).	Notably,	the	ICDF	is	employed	because	
random	generators	are	typically	configured	to	produce	real	numbers	within	the	0	to	1	range,	
which	 can	 be	 interpreted	 as	 probabilities	 𝑝.	 Therefore,	 the	 aim	 is	 to	 determine	 the	
corresponding	 values	 of	𝑥	 for	which	 the	 cumulative	 distribution	 function	𝐹	 (of	 the	 given	



probability	function	with	density	function	𝑓)	equals	𝑝.	This	can	be	expressed	as	𝑥 = 𝐹1!(𝑝)	
or	by	finding	𝑥	based	on	the	probability	density	function	(as	described	in	(2),	(3)	and	(4)).	

𝑓(𝑥; 𝑈/ , 𝑈0) = M
!

2!12"
, if	𝑈/ ≤ 𝑥 ≤ 𝑈0;

0, otherwise,
	 (2)	

𝐹1!(𝑝) = 𝑈/ + 𝑝 ⋅ (𝑈0 − 𝑈/),	 	 (3)	

𝑝 = ∫ 𝑓5
16 (𝑘)𝑑𝑘.	 	 	 	 (4)	

Both	𝛼	 and	 bias	weights	were	 generated	 using	 the	 following	 distribution	 functions,	 their	
ICDFs	are	well	formed	in	literature:	

1. Chi-squared	(Chisq).	

2. Lognormal	(Lognorm).	

3. Normal.	

4. Pareto.	

5. Uniform.	

6. Weibull.	

The	respective	parameter	values	employed	in	the	above	distribution	functions	are	discussed	
in	detail	in	Section	3.3.	These	parameters	can	either	be	explicitly	provided	or	estimated	using	
two	well-known	 initialization	methods:	 the	Glorot/Xavier	method	or	 the	He	 initialization	
method.	 In	 the	 case	 of	 the	 Glorot	 method,	 it	 involves	 utilizing	 a	 parameter	 within	 the	
respective	ICDF	(as	outlined	in	(5)).	The	Glorot/Xavier	method	is	a	widely	adopted	weight	
initialization	 technique	 in	 neural	 networks	 (Glorot	 and	Bengio	 2010).	 Conversely,	 the	He	
initialization	method,	which	 estimates	 the	 parameter’s	 value	 (based	 on	 (6)),	 is	 originally	
designed	to	complement	rectified	linear	activation	functions	(ReLU)	and	their	variants.	The	
He	initialization	method	enhances	the	stability	and	efficacy	of	training	deep	neural	networks	
(He	 et	 al.	 2015).	 This	method	 calculates	 the	 standard	 deviation	 for	 weight	 initialization,	
taking	into	account	the	number	of	input	features:	

std_glorot = !

7#$%
&

,	 (5)	

std_he = R$
%
	.		 (6)	

Experimental Setup 

The	experiments	in	this	research	were	conducted	using	a	blend	of	the	following	elements:	

1. Dataset.	

2. Distribution	function.	

3. Random	number	generator.	

4. Number	of	neurons	in	the	hidden	layer.	

These	computations	produced	a	total	of	28600	setups.	



Dataset 

The	results	are	tested	on	five	well-known	publicly	available	UCI	repository	(Dua	and	Graff	
2017)	datasets:	

1. Australian	dataset	stands	as	credit	risk	assessment	comprising	a	total	of	690	entries	
and	14	features	concerning	credit	card	applications,	encompassing	parameters	 like	
income,	age	and	employment	history.	

2. Banana	has	emerged	as	a	testbed	for	navigating	the	complexities	of	non-linearly	of	
synthetic	data	with	task	to	detect	enigmatic	shape	reminiscent	of	a	banana	with	a	total	
of	5300	instances	and	two	classes.	

3. BreastCancer	with	569	instances	and	30	features	derived	from	medical	images,	the	
dataset	encapsulates	minute	structural	nuances.	The	quest	is	to	distinguish	between	
malignant	and	benign	breast	masses.	

4. Ionosphere	with	351	instances	and	34	attributes	is	the	binary	classification	challenge	
of	differentiating	between	"good"	signals	that	pass	through	the	ionosphere	without	
interference	and	the	"bad"	category	corresponds	to	 instances	that	are	disrupted	or	
reflect	radar	signals,	making	them	less	useful.	

5. Musk	dataset	is	a	collection	of	information	about	various	chemical	compounds.	This	
dataset	 contains	 6598	 samples	 and	 describes	 each	 of	 these	 compounds	 using	 166	
features	 or	 properties.	 The	 goal	 of	 this	 dataset	 is	 to	 help	 distinguish	 between	
compounds	that	are	associated	with	the	scent	of	musk	and	those	that	are	not.	

Distribution Function 

Both	𝛼	and	𝑏	weights	are	generated	using	the	following	distribution	functions	forming	13	
different	combinations:	

1. 𝛼:	chisq(2)	and	𝑏:	chisq(2),	

2. 𝛼:	chisq(glorot)	and	𝑏:	chisq(2),	

3. 𝛼:	chisq(he)	and	𝑏:	chisq(2),	

4. 𝛼:	lognorm(0,1)	and	𝑏:	lognorm(0,1),	

5. 𝛼:lognorm(glorot)	and	𝑏:	
lognorm(0,1),	

6. 𝛼:	lognorm(he)	and	𝑏:	lognorm(0,1),	

7. 𝛼:	normal(0,1)	and	𝑏:	normal(0,1),	

8. 𝛼:	normal(glorot)	and	𝑏:	normal(0,1),	

9. 𝛼:	normal(he)	and	𝑏:	normal(0,1),	

10. 𝛼:	pareto(1)	and	𝑏:	pareto(1),	

11. 𝛼:	uniform(-1,1)	and	𝑏:	uniform(0,1),	

12. 𝛼:	weibull(1)	and	𝑏:	weibull(1),	

13. 𝛼:	weibull(he)	and	𝑏:	weibull(1).	

Random Number Generator 

In	our	research,	we	employed	a	total	of	22	distinct	random	number	generators	from	Python’s	
randomgen	 package.	 This	 package	 comprises	 both	 cryptographically	 secure	 generators	
designed	to	produce	unpredictable	and	resilient	random	numbers,	as	well	as	robust	PRNGs	



with	favorable	statistical	characteristics.	These	generators	yield	pseudorandom	sequences	
characterized	 by	 strong	 statistical	 properties.	 Their	 operations	 typically	 involve	 a	
combination	of	 bitwise	manipulations,	 arithmetic	 transformations	 and	 state	 updates.	 The	
specific	generators	employed	in	our	research	are	listed	below:	

1. aes,	

2. chacha,	

3. dsfmt,	

4. efiix64,	

5. hc128,	

6. jsf,	

7. lxm,	

8. mt19937,	

9. mt64,	

10. pcg32,	

11. pcg64,	

12. philox,	

13. rdrand,	

14. romu,	

15. sfc,	

16. sfmt,	

17. speck128,	

18. threefry,	

19. xoshiro256,	

20. xoshiro512,	

21. xoroshiro128,	

22. xorshift1024.	

Number of Neurons in the Hidden Layer 

In	this	context,	𝐿 ∈ {50,100,200,… ,900,1000,2000,… ,9000,10000}	represents	the	values	for	
the	number	of	neurons	in	the	hidden	layer	that	were	subjected	in	the	analysis.	

Results 
In	this	paper,	the	weights	𝛼	and	𝑏	for	classification	task	were	computed	for	each	of	the	28600	
different	setups	using	50	times	repeated	10-Fold	cross-validation.	This	technique	has	been	
implemented	in	order	to	obtain	statistically	meaningful	results.	Consequently,	this	method	
generated	a	 set	of	500	distinct	accuracy	measurements	 for	each	unique	configuration.	To	
provide	 a	 comprehensive	 characterization	of	 the	performance	distribution,	 key	 statistical	
metrics	including	the	mean	accuracy,	the	first	quartile,	the	second	quartile	(median)	and	the	
third	quartile	were	computed	for	each	set	of	500	accuracy	measurements	within	the	context	
of	each	configuration	under	consideration.	

Within	 the	 existing	 body	 of	 literature,	 the	 uniform	 distribution	 function	 (from	 (2))	 with	
parameters	𝑈/ = −1	 and	𝑈0 = 1	 or	𝑈/ = 0	 and	𝑈0 = 1	 has	 conventionally	 served	 as	 the	
predominant	probability	function	for	estimating	values	of	𝛼	and	𝑏.	Nonetheless,	our	research	
has	 revealed	 a	 departure	 from	 this	 convention,	 as	 the	 optimal	 accuracy	 results	 vary	
depending	 on	 the	 specific	 dataset	 under	 consideration	 (see	 Table	 9.1).	 Remarkably,	 the	
highest	accuracy	scores	were	achieved	using	the	Pareto(1)	density	function,	yielding	0.844	
for	the	Australian	dataset	and	0.869	for	the	Banana	dataset.	In	stark	contrast,	when	applied	
to	 the	 Musk	 dataset,	 this	 same	 set	 of	 distribution	 functions	 produced	 one	 of	 the	 lowest	
accuracy	 results,	 registering	 at	 a	 mere	 0.475.	 For	 the	 BreastCancer	 dataset,	 the	 most	
favorable	results	were	obtained	with	the	Weibull(he)	and	Weibull(1)	functions	achieving	a	
remarkable	 accuracy	 of	 0.979.	 Interestingly,	 these	 very	 functions	 were	 associated	 with	



suboptimal	performance	 in	 the	Banana	dataset,	 yielding	an	accuracy	 score	of	0.762.	On	a	
different	note,	 the	 Ionosphere	and	Musk	datasets	exhibited	 their	highest	accuracy	 results	
when	 employing	 Normal	 distribution	 functions	 yielding	 0.955	 and	 0.971,	 respectively.	
Specifically,	the	parameters	for	𝛼	were	set	to	(0,1)	for	the	Ionosphere	dataset,	while	the	He	
parameter	 configuration	 was	 employed	 for	 the	 Musk	 dataset.	 The	 difference	 between	
maximal	and	minimal	accuracy	computed	with	different	sets	of	distribution	functions	yields	
14.4,	10.7,	10.7,	13.5	and	49.9	for	Australian,	Banana,	BreastCancer,	Ionosphere	and	Musk	
dataset,	respectively.	This	underscores	that	the	choice	of	the	random	number	generator	has	
a	moderate	impact	on	the	model’s	performance.	

In	this	research,	we	systematically	assessed	a	collection	of	13	sets	of	distribution	functions	
to	determine	their	effectiveness	in	achieving	optimal	accuracy	across	five	distinct	datasets.	
This	rigorous	analysis	 involved	 the	 identification	of	 the	 top	100	accuracy	results	 for	each	
dataset,	 resulting	 in	 a	 total	 of	 500	 values	 for	 consideration.	 Remarkably,	 the	 distribution	
function	set	that	emerged	as	the	most	frequently	employed	was	Pareto(1),	which	featured	
prominently	 in	 157	 of	 the	meticulously	 examined	 results.	 This	 configuration	 consistently	
delivered	exceptional	performance,	particularly	in	the	Australian	and	Banana	datasets.	The	
second	 most	 prevalent	 combination,	 appearing	 143	 times,	 consisted	 of	 Weibull(1)	 and	
Weibull(1).	 This	 specific	 configuration	 demonstrated	 impressive	 accuracy	 outcomes,	
particularly	in	the	Australian	and	BreastCancer	datasets.	In	the	third	position,	the	Uniform	
distribution	 function	 with	 parameters	 (−1,1)	 and	 (0,1)	 emerged	 with	 a	 total	 of	 70	
occurrences	 among	 the	 top-performing	 results,	 showcasing	 its	 efficacy	 in	 delivering	
remarkable	accuracy,	particularly	in	the	Ionosphere	and	Musk	datasets.	

In	this	study,	we	comprehensively	investigate	22	distinct	random	number	generators	(listed	
in	section	3.3.3).	Specifically,	within	the	domain	of	ELM,	our	research	represents	a	pioneering	
endeavor.	 To	 the	 best	 of	 our	 knowledge,	 prior	 to	 this	 investigation,	 there	 has	 been	 a	
conspicuous	 absence	 of	 systematic	 assessments	 pertaining	 to	 the	 suitability	 of	 various	
random	number	generators	for	generating	values	of	𝛼	and	𝑏	within	the	context	of	ELM.	The	
primary	objective	of	our	investigation	is	twofold.	Firstly,	we	aim	to	achieve	the	highest	level	
of	 accuracy	 in	 our	 computations.	 Secondly,	 we	 endeavor	 to	 establish	 the	 stability	 of	 the	
selected	 random	 number	 generator.	 Stability,	 in	 this	 context,	 entails	 ensuring	 that	 the	
computed	accuracy	results	exhibit	minimal	variability	between	the	first	and	third	quartiles,	
as	indicated	by	the	interquartile	range.	

The	 attainment	 of	 peak	 accuracy	 results	 varies	 significantly	 across	 diverse	 datasets,	 as	
detailed	 in	 Table	 9.1.	 Notably,	 distinct	 random	 number	 generators	 excel	 in	 optimizing	
accuracy	 for	 specific	 datasets.	 For	 the	 Australian	 dataset,	 the	 xoshiro256	 generator	
demonstrated	its	prowess	by	achieving	the	highest	mean	(computed	from	50	times	repeated	
10-Fold	 cross-validation	 for	 various	 numbers	 of	 neurons)	 accuracy	 score	 of	 0.844.	
Meanwhile,	the	Musk	dataset	saw	the	xoshiro128	generator	emerge	as	the	champion,	yielding	
an	 impressive	 accuracy	 of	 0.971.	 In	 the	 context	 of	 the	 Banana	 dataset,	 it	 was	 the	 philox	
generator	that	excelled,	delivering	the	highest	accuracy	of	0.869.	Finally,	for	the	BreastCancer	
dataset,	 the	 pcg64	 and	 hc128	 generators	 claimed	 the	 top	 spot,	 recording	 an	 exceptional	
accuracy	score	of	0.979.	The	difference	between	maximal	and	minimal	accuracy	computed	
with	different	generators	yields	7,	2.4,	1.1,	1.4	and	0.5	for	Australian,	Banana,	BreastCancer,	
Ionosphere	and	Musk	dataset,	respectively.	



In	order	to	facilitate	a	comprehensive	comparison	of	the	various	random	number	generators,	
we	meticulously	analyzed	the	top	100	accuracy	values	(each	value	is	a	mean	generated	with	
50	repetitions	of	10-Fold	cross-validation)	for	each	of	the	five	datasets,	noting	the	frequency	
with	which	each	of	the	22	generators	appeared.	Remarkably,	the	pcg64	generator	emerged	
as	the	most	frequently	observed	choice,	securing	the	top	position	in	a	substantial	60	out	of	
the	possible	500	highest	accuracy	results.	Following	closely,	the	second	and	third	positions	
were	 claimed	by	hc128,	chacha	 and	efiix64	 generators,	 all	 of	which	delivered	noteworthy	
performance	by	achieving	high	accuracy	results	30,	26	and	26	times,	respectively.	Notably,	
these	generators	consistently	exhibited	strong	performance	across	all	five	datasets.	

To	 assess	 the	 stability	 of	 the	 random	 number	 generators,	 we	 employed	 a	 box	 chart	
visualization	 (refer	 to	 Figure	 9.1)	 using	 the	 Australian	 dataset,	 Pareto(1)	 function	 and	 a	
hidden	 layer	 comprising	 1000	 neurons.	 Among	 the	 generators	 examined,	 several	
demonstrated	notable	 stability	 characteristics.	 Specifically,	 the	most	 stable	 generators,	 as	
evidenced	 by	 minimal	 variability	 between	 quantile	 1	 and	 quantile	 3,	 include	 sfmt,	
xorshift1024	and	xoshiro256,	with	differences	of	merely	0.043,	0.047	and	0.049,	respectively.	
Conversely,	 a	 subset	 of	 generators	 exhibited	 comparatively	 lower	 stability.	 Notably,	
xoshiro512,	philox	and	sfc	yielded	high	differences	of	0.087,	0.087	and	0.085,	respectively;	
indicating	greater	instability	in	their	generated	results.	

All	 22	 random	 number	 generators	 underwent	 a	 rigorous	 evaluation	 encompassing	 NIST	
tests.	 It	 is	 important	 to	 note	 that	 passing	 the	 NIST	 tests	 does	 not	 guarantee	 absolute	
randomness,	but	it	does	instill	a	level	of	confidence	in	the	quality	of	the	generated	random	
numbers.	It	is	worth	highlighting	that	these	tests	are	structured	in	such	a	way	that	a	positive	
outcome	(a	test’s	𝑝-value	being	less	than	a	specified	threshold)	indicates	that,	based	on	the	
specific	 test,	 the	 generator	 did	 not	 produce	 genuinely	 random	 results.	 In	 cryptographic	
applications,	the	𝑝-value	threshold	is	typically	set	at	0.01;	however,	in	our	case,	we	chose	a	
𝑝-value	 threshold	 of	 0.05	 commonly	 applied	 in	 statistics.	 Subset	 of	 generators	 faced	
challenges	in	this	evaluation,	falling	short	on	a	various	number	of	tests.	Specifically,	four	tests	
eluded	 the	 theefry	 generator,	 while	 pcg64	 struggled	 with	 three.	 Meanwhile,	 chacha	 and	
xoshiro256	 encountered	 difficulties	 in	 two	 tests	 each,	whereas	 scf,	 speck128,	dsfmt,	mt64,	
xoshiro128,	jsf	and	xorshift1024	experienced	a	setback	on	one	test	each.	

Interestingly,	 two	 of	 the	 three	most	 stable	 generators	 encountered	 challenges	 in	 passing	
either	 one	 or	 two	 tests.	 Even	 the	 widely	 successful	 pcg64	 generator,	 which	 consistently	
yielded	top-tier	results	(60	out	of	500	times),	fell	short	on	three	of	the	tests.	Moreover,	the	
third	generator,	chacha,	which	achieved	high	results	on	26	occasions	out	of	500,	did	not	meet	
the	criteria	of	two	of	the	tests.	This	intriguing	observation	leads	to	a	noteworthy	conclusion:	in	
many	instances,	the	generators	that	deliver	the	highest	accuracy	and	demonstrate	remarkable	
stability	tend	to	be	the	very	generators	that	do	not	successfully	pass	the	prescribed	tests.	



	



Figure	9.1.	Accuracy	results	for	classification	on	Australian	dataset,	with	Pareto(1)	distribution	
function	 and	 1000	 neurons	 in	 the	 hidden	 layer,	 using	 different	 random	 number	 generators	
computed	applying	50	times	a	10-Fold	cross-validation.	The	boxchart	presents	the	quantile	1,	
quantile	2	and	quantile	3	of	the	500	computed	results	for	each	of	the	setups.	

Alpha	 Bias	 Australian	 Banana	 BreastCancer	 Ionosphere	 Musk	
chisquare(2)	 chisquare(2)	 0.709	 0.813	 0.920	 0.877	 0.473	
chisquare(glorot)	 chisquare(2)	 0.717	 0.805	 0.927	 0.941	 0.851	
chisquare(he)	 chisquare(2)	 0.716	 0.805	 0.932	 0.941	 0.709	
lognormal(0,1)	 lognormal(0,1)	 0.726	 0.813	 0.916	 0.887	 0.472	
lognormal(glorot)	 lognormal(0,1)	 0.700	 0.802	 0.874	 0.820	 0.474	
lognormal_he	 lognormal(0,1)	 0.712	 0.813	 0.883	 0.820	 0.474	
normal(0,1)	 normal(0,1)	 0.722	 0.804	 0.933	 0.955	 0.970	
normal(glorot)	 normal(0,1)	 0.718	 0.804	 0.929	 0.933	 0.970	
normal(he)	 normal(0,1)	 0.714	 0.815	 0.929	 0.947	 0.971	
pareto(1)	 pareto(1)	 0.844	 0.869	 0.965	 0.899	 0.475	
uniform(-1,1)	 uniform(0,1)	 0.719	 0.804	 0.932	 0.954	 0.970	
weibull(1)	 weibull(1)	 0.720	 0.763	 0.933	 0.867	 0.475	
weibull_he	 weibull(1)	 0.800	 0.762	 0.979	 0.884	 0.474	

	 Generator	 	 	 	 	 	
	 aes	 0.820	 0.846	 0.977	 0.950	 0.968	
	 chacha	 0.816	 0.848	 0.968	 0.941	 0.970	
	 dsfmt	 0.836	 0.855	 0.970	 0.946	 0.967	
	 efiix64	 0.796	 0.865	 0.973	 0.949	 0.968	
	 hc128	 0.843	 0.850	 0.979	 0.951	 0.968	
	 jsf	 0.826	 0.866	 0.969	 0.944	 0.967	
	 lxm	 0.838	 0.845	 0.974	 0.949	 0.969	
	 mt19937	 0.799	 0.852	 0.970	 0.953	 0.968	
	 mt64	 0.820	 0.862	 0.969	 0.951	 0.970	
	 pcg32	 0.815	 0.852	 0.972	 0.943	 0.967	
	 pcg64	 0.820	 0.858	 0.979	 0.946	 0.970	
	 philox	 0.795	 0.869	 0.969	 0.947	 0.969	
	 rdrand	 0.824	 0.848	 0.968	 0.946	 0.967	
	 romu	 0.830	 0.865	 0.975	 0.954	 0.966	
	 sfc	 0.794	 0.858	 0.973	 0.944	 0.968	
	 sfmt	 0.774	 0.851	 0.972	 0.947	 0.968	
	 speck128	 0.774	 0.864	 0.972	 0.946	 0.970	
	 threefry	 0.798	 0.851	 0.975	 0.944	 0.971	
	 xoroshiro128	 0.825	 0.852	 0.974	 0.955	 0.967	
	 xorshift1024	 0.775	 0.862	 0.968	 0.944	 0.970	
	 xoshiro256	 0.844	 0.855	 0.970	 0.947	 0.968	
	 xoshiro512	 0.791	 0.856	 0.971	 0.946	 0.970	

	



Table	9.1.	Classification	Reports	for	the	best	mean	accuracy	results	for	five	selected	datasets	
depending	 on	 the	 distribution	 function	 and	 random	 number	 generator	 computed	 (for	
different	numbers	of	neurons	L).	

Discussion 
Conventionally,	the	uniform	distribution	function	with	parameters	equal	to	(−1,1)	and	(0,1)	
has	been	employed	as	a	source	of	randomness	in	ELM,	but	this	research	revealed	intriguing	
variations	in	performance	across	different	datasets.	The	selection	of	the	randomness	source	
in	 ELM	 significantly	 affected	 the	 final	 accuracy	 results,	 challenging	 established	 practices.	
Notably,	specific	distribution	functions	consistently	emerged	as	top	performers	for	particular	
datasets,	underscoring	the	importance	of	considering	dataset-specific	characteristics	when	
selecting	randomness	sources.	The	Pareto(1)	distribution	function,	in	particular,	consistently	
delivered	 exceptional	 performance,	 notably	 in	 the	 Australian	 and	 Banana	 datasets.	 This	
diversity	 in	 optimal	 randomness	 sources	 emphasizes	 the	 need	 for	 a	 more	 sophisticated	
approach	to	randomness	within	the	context	of	ELM.	

The	stability	of	random	number	generators	in	ELM	was	explored,	marking	a	pioneering	effort	
in	 this	 field.	 Surprisingly,	 the	 generators	 that	 achieved	 the	 highest	 accuracy	 and	 also	 a	
remarkable	stability	often	did	not	meet	the	criteria	of	the	prescribed	NIST	tests.	Conversely,	
those	generators	that	passed	the	tests	did	not	consistently	exhibit	top-tier	performance.	

Conclusion 
In	conclusion,	 this	research	underlines	 the	critical	 role	of	 randomness	 in	 influencing	ELM	
performance.	The	selection	of	the	randomness	source	in	ELM	was	demonstrated	to	yield	a	
significant	 impact	on	accuracy	across	diverse	datasets,	challenging	conventional	practices.	
The	variation	 in	accuracy,	ranging	 from	10	to	50	percentage	points,	when	computed	with	
different	sets	of	distribution	 functions	underscores	 the	critical	 importance	of	 selecting	an	
appropriate	 distribution	 function	 for	 accuracy	 results.	 In	 contrast,	 the	 variation	 between	
maximal	and	minimal	accuracy,	which	falls	within	the	range	of	0.5	to	7	percentage	points	
when	using	different	generators,	suggests	that	the	choice	of	a	random	generator,	while	not	
insignificant,	 holds	 relatively	 less	 weight	 compared	 to	 the	 selection	 of	 the	 distribution	
function.	Additionally,	a	systematic	assessment	of	random	number	generators	in	ELM	was	
introduced,	revealing	that	generators	achieving	the	highest	accuracy	and	stability	often	did	
not	 meet	 the	 stringent	 criteria	 of	 statistical	 tests.	 This	 observation	 suggests	 that	 the	
traditional	 criteria	 for	 randomness	 may	 not	 consistently	 align	 with	 optimal	 ELM	
performance.	

The	 above	 findings	 underscore	 the	 necessity	 for	 a	more	 subtle	 approach	 to	 randomness	
within	ELM,	which	takes	into	account	dataset-specific	characteristics	and	explores	a	broader	
array	of	randomness	sources.	As	ELM	continues	to	gain	prominence	in	various	applications,	
comprehending	the	intricate	relationship	between	randomness	and	performance	forms	an	
essential	issue	for	achieving	optimal	outcomes	and	advancing	the	field.	
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3.4 Applications of ELM in the identification of mi-
croorganisms and in comparison to the Residual
Neural Networks

3.4.1 Identification of Soil Bacteria with machine learning and
image processing techniques applying single cells’ region
isolation

Publication:
K. Struniawski, A. Konopka, and R. Kozera, "Identification of Soil Bacteria with

Machine Learning and Image Processing Techniques applying Single Cells’ Region Iso-
lation", in Modelling and Simulation 2022. The European Simulation and Modelling
Conference 2022, 2022, p. 76–81.

Abstract : Soil bacteria have a significant impact on agriculture and horticulture.
These bacteria can be distinguished by the microbiologists based on their microscopic
images. In our project this approach is automated with the aid of machine learning
and image processing techniques. The implemented fully automated recognition system
identifies five bacteria genera: Enterobacter, Rhizobium, Pantoea, Bradyrhizobium and
Pseudomonas. The computations were performed on handcrafted image descriptors called
features on the whole image or automatically selected sub-images including single bacteria
instances. The accuracy results were compared for different feature selection and class
recognition methods. Applying our new approach improved accuracy of the analyzed
classifiers: from 5 to 31 percentage points (pp) for Support Vector Machine, from 2 to
52pp in case of Extreme Learning Machine and from 5 to 44pp using Extreme Learning
Machine - Radial Basis Function, depending on the feature selection method. The best
accuracy for the analyzed set of bacteria genera reaches 93.49% for Extreme Learning
Machine - Radial Basis Function for features calculated on the single bacteria instances
retrieved from a given image.
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ABSTRACT

Soil bacteria have a significant impact on agriculture
and horticulture. These bacteria can be distinguished by
the microbiologists based on their microscopic images.
In our project this approach is automated with the aid
of machine learning and image processing techniques.
The implemented fully automated recognition system
identifies five bacteria genera: Enterobacter, Rhizobium,
Pantoea, Bradyrhizobium and Pseudomonas. The com-
putations were performed on handcrafted image descrip-
tors called features on the whole image or automatically
selected sub-images including single bacteria instances.
The accuracy results were compared for different fea-
ture selection and class recognition methods. Applying
our new approach improved accuracy of the analyzed
classifiers: from 5 to 31 percentage points (pp) for Sup-
port Vector Machine, from 2 to 52pp in case of Extreme
Learning Machine and from 5 to 44pp using Extreme
Learning Machine - Radial Basis Function, depending
on the feature selection method. The best accuracy for
the analyzed set of bacteria genera reaches 93.49% for
Extreme Learning Machine - Radial Basis Function for
features calculated on the single bacteria instances re-
trieved from a given image.

INTRODUCTION

Due to their characteristics, bacteria have a natural
propensity to adapt themselves in most environments
on our planet. They inhabit water, air, living organ-
isms and the soil. Soil bacteria have an impact on plant
growth, by for example suppressing growth of fungi, fix-

ing significant levels of nitrogen or solubilizing phos-
phate (Syed-Ab-Rahman et al. 2018). They are also
crucial for the food industry and are applied in biotech-
nological fields (Enez 2019). In addition, they have a
significant impact on human health as e.g. they can be
used to obtain substances necessary for the production
of drugs (Abdul Samad et al. 2020), might cause hu-
man infection (Steffan et al. 2020) or show antibacterial
activity against human pathogenic bacteria (Prashanthi
et al. 2021). Soil bacteria are being identified by micro-
biologists with methods based on the analysis of DNA,
applying indicators that change color in contact with
specific bacteria species or by performing microscopic
image analysis. The last approach can be automated
by means of machine learning and image processing
techniques, which consequently saves time and human
resources. In our project we distinguish five selected
soil bacteria genera: Enterobacter, Rhizobium, Pantoea,
Bradyrhizobium and Pseudomonas. We decided to dif-
ferentiate them on the genera level because some bac-
teria species are indistinguishable by sight due to their
morphological similarities which ultimately requires us-
age of alternative methods for identification purposes.
Each microscopic image in our dataset contains only one
specific bacteria genera. This paper focuses on bacteria
that affect crops in agriculture and horticulture. Rhizo-
bium and Bradyrhizobium are nitrogen-fixing bacteria
that live in symbiosis with legumes. Such bacteria are
commonly applied forming an ideal solution for the im-
provement of soil fertility (Zahran 2000). Enterobacter
are reported as opportunistic plant pathogens (Davin-
Regli et al. 2019). Some Pantoea produce antimicrobials
which are applied in the control of fire blight of pear and
apple trees, while others have bioremediation potential
(Walterson and Stavrinides 2015). Pseudomonas have a
positive effect on plant growth and reduce plant diseases
(Waghunde and Sabalpara 2021).



The bacteria samples used in this project were prepared
by The National Institute of Horticultural Research in
Skierniewice. They were grown in specific conditions
and the images were prepared according to a strict pro-
cedure. More specifically, Pantoea, Enterobacter and
Pseudomonas were grown for 48 hours in 26 Celsius
degrees on Plate Count Agar, while Rhizobium and
Bradyrhizobium were grown for 96 hours in 26 Celsius
degrees on Yeast Mannitol Agar. The images of the sam-
ples are taken with Nikon 80i microscope on the same
magnification level. Sample images from the dataset are
available under the URL link: https://bit.ly/3qdDuHo.
The motivation for this work was the question whether
it is possible to select single instances of bacteria in a
fully automated way and then classify a given image -
from which we extracted the bacteria sub-images - to
a given class. In the literature, we have encountered
the approach of classification based on single instances
of bacteria (Laga et al. 2014), however, the sub-images
were manually selected from the image, while our ap-
proach is characterized by the full automation of this
process.

IMAGE PREPARATION

The dataset consists of 128 images which needed to be
prepared for the classification process. In a prior re-
search (Konopka et al. 2022) a set of examined features
is either calculated on the whole image or on the region
of interest (ROI). In contrast with the latter, in this
project a set of features is computed for each selected
bacteria on a given image.
First, a segmentation of the ROI is performed to create
a binary mask where black area represents the back-
ground and white area stands for the region occupied
by the bacteria. To construct such a mask we con-
verted a given image from RGB color space to grayscale.
More specifically, the conversion is performed by calcu-
lating a weighted sum of the R, G and B components:
0.2989R + 0.5870G + 0.1140B, then an Otsu method is
applied (Gonzalez and Woods 2008) yielding an exact
value for the threshold level. Finally, both open and
close morphological operations (Srisha and Khan 2013)
are performed in order to get rid of small objects and
fill the black holes inside white areas.
The next step is to select sub-images from an input
image (each of them containing only one bacteria in-
stance) based on individual object’s characteristics that
are specified by the ROI mask. Let O = {oi}ki=1 be set
of all k sub-images extracted from a given image. First,
all the objects which value of solidity is less or equal to
0.91 are filtered out and the remaining set is denoted
as F = {fi}ni=1, where n is the amount of sub-images
after filtration - details on solidity measure are given
in subsection: Sub-images geometric features. Follow-
ing the above filtration process one selects a maximal
number p of sub-images that are used to extract local

information (in our research p = 50). Values of p and
solidity threshold are experimentally selected based on
accuracy (ACC) of the classifiers applied in this work.
Let S = {si}ni=1 be set of filtered sub-images F sorted
according to their covered area (which is the amount of
white pixels in sub-image’s mask). The median value of
S (taking into consideration the area value) sm ∈ S is se-
lected at index m. The value of p, which stands here for
the number of objects surrounding sm, is a priori spec-
ified and is applied in forming set B which is defined

for even number of p as B = {bi}pi=1 = {si}m+(p/2)−1
i=m−(p/2)

and for odd p as B = {bi}pi=1 = {si}m+⌊p/2⌋
i=m−⌊p/2⌋. This

operation ensures us to disregard either small objects
which might be sample contamination or the groups of
bacteria classified as a one large object. For the set of
selected bacteria sub-images (and for their masks) im-
age padding equal to 5 is applied to each direction (see
Fig.1). Padding is used here to avoid omitting edges in
calculation of texture features.
Each sub-image oi ∈ O has its solidity osi and area value
oai . Assume we are provided with a set of k = 10 sub-
images and p = 5. An example image preparation pro-
cess is presented with the following steps.

1. First step is filtration of the O for solidity greater
than 0.91. Let Os = {0.94, 0.96, 0.93, 0.99, 0.95,
0.93, 0.92, 0.96, 0.99, 0.85} be the values of solidity
for each of the oi, respectively. The sub-image o10
is eliminated as it corresponds to the value of os10
lower than given threshold value. As a result F =

{fi}9i=1 = {oi}9i=1 defining n = F = 9.

2. Next sub-images in F are sorted based on their area
value. Let F a = {100, 320, 650, 300, 200, 900,
700, 800, 450} be area values of F . After sorting
sub-images the new permutation of the set is S =
{si}9i=1 = {f1, f5, f4, f2, f9, f3, f7, f8, f6}.

3. Then median value of the sorted set based on the
area value is selected which in our example equals
to sm = s5 = f9 = 450 and p bacteria sub-images
whose area values are surrounding the sm form B =
{bi}5i=1 = {si}7i=3 = {f4, f2, f9, f3, f7}.

4. For each bi ∈ B (and to their masks) 5 pixels of
padding are applied for each of the four possible
directions.

FEATURE CALCULATION

In order to accurately identify which bacteria genera ap-
pears in a given image a set of features forming an image
descriptor is needed. Usage of non-convolutional neural
networks requires such set to be handcrafted maximiz-
ing ACC of the classifier (Kotwal et al. 2022, Kruk et al.
2016, Rachmad et al. 2021). In previous section it is
described how to obtain sub-images BI and masks of



these sub-images MBI
for the given image I. Note that

all of the features mentioned in this section are calcu-
lated on combined sub-images CBI

which are results of
Hadamard product (Horn and Johnson 1985) of corre-
sponding matrices BI and MBI

.

Figure 1: Sub-image of the selected object (Enterobacter
bacteria instance) with applied padding (left) and its
corresponding mask (right).

Color Features

The color features are the most commonly used im-
age descriptors in machine learning (Sande et al. 2008).
There is a vast variety of works adopting this concept
in microorganisms identification based on microscopic
images (Rachmad et al. 2021). In our project statisti-
cal measures based on image histogram (Chapelle et al.
1999) are obtained. Pictures taken by the microscope
are stored as 8-bit RGB image in 2560× 1920px resolu-
tion, which means that each of 4915200 pixels is stored
as a vector of 3 values corresponding to color channels
R (red), G (green) and B (blue). Each of the values in
this vector is stored on 8 bits, which in decimal system
yields values l̄ ∈ {0, ..., 255}. Combined sub-images CBI

are stored analogously, but with various resolutions that
are strictly correlated with the size of the objects sep-
arated from the original image. Histogram of the pixel
intensity values of the monochromatic image is defined
as a measure that counts number of pixels for each dif-
ferent intensity value. Histogram of image I is a vector
H of length 256, where H[l̄] is defined as a number of
pixels on image I with value equal to l̄. Similarly, for the
color image one isolates every channel from the CBI

and
calculates the respective three histograms HR[l̄], HG[l̄]
and HB [l̄]. Following the latter one obtains statistical
measures based on each histogram such as: Mean, Stan-
dard deviation, Kurtosis, Skewness and Entropy creat-
ing in total 15 features based on color information. The
dataset is extended by color statistical measures - Mean
and Standard deviation calculated directly on the image
for a given image channel. Combining all color features
together yields 21 color traits calculated for every CBI

.

Texture Features

Texture features computed in this research are based on
calculation of GLCM (Grey Level Co-occurrence Ma-
trix) and GLRLM (Gray Level Run-length Matrix). The
concept of GLCM was introduced by Haralick (Haralick
et al. 1973) and the idea to apply run-length concept in
texture analysis was proposed by Galloway (Galloway
1975). Both approaches have initially been used to dis-
tinguish between different terrain types. Extraction of
texture features is applied in many different fields in-
cluding classification of satellite or aerial photographs,
crop identification (Iqbal et al. 2021), analysis of the fin-
gerprints (Bakti et al. 2021) or interpretation of medical
images (Novitasari et al. 2019).
For calculation of GLCM and GLRLM the image is
transformed from RGB color space to grayscale and
then it is quantized to l levels. The idea is to shift
a small window through the image without overlays
and note occurrences of pixels (for GLCM) or occur-
rences of run-length of pixels (for GLRLM). GLCM and
GLRLM are calculated for four orientations defined by
angle α equal to 0◦, 45◦, 90◦ or 135◦. Both methods
require specified size of the window m × n, value of α
and maximal distance d. As a result 4 GLCM and 4
GLRLM are obtained for different values of α. Then
on each matrix one computes specific statistical mea-
sures. More specifically, measures calculated for GLCM
are: Contrast, Correlation, Energy, Homogeneity, Au-
tocorrelation, Cluster Prominence, Inverse Difference,
Dissimilarity and Entropy. In case of GLRLM other
statistical measures are computed: Short Run Empha-
sis, Long Run Emphasis, Grey Level Non-uniformity,
Run Length Non-uniformity, Run Percentage, Low Grey
Level Run Emphasis, High Grey Level Run Emphasis,
Short Run Low Gray Level Emphasis, Short Run High
Gray Level Emphasis, Long Run Low Gray Level Em-
phasis and Long Run High Gray Level Emphasis (Novi-
tasari et al. 2019). In total one obtains 4 values for each
of the measures computed on GLCM or GLRLM. As a
final feature value a mean of the measures is calculated
for all matrices e.g. Energy = 0.25(EnergyGLCM0◦ +
EnergyGLCM45◦ +EnergyGLCM90◦ +EnergyGLCM135◦ ).
This paragraph is closed with an example of GLCM
computation. Assume that the variables are set to l = 4,
α = 135◦, d = 2 and size of window w is 4 × 4. The
GLCM always has a size of l× l. Suppose that the pixel
w1,1 is now in question. Its current value is equal to 3
(see Fig.2) so the values in the fourth row of the GLCM
are incremented. For a given d and α only the values
w2,2 = 0 and w3,3 = 2 are taken into account. Con-
sequently, the values are incremented in first and third
column (in fourth row). The same operation applies to
all other pixels in w.
A similar approach is adopted for GLRLM. This time
the size of the matrix is l × d and one does not iterate
over the window but registers occurrences of vectors for



given values of l and length d in the whole window w
for the selected angle α. For example if 2 occurrences
of the graylevel equal to 0 for the distance d = 3 are
observed in w one increments the value by two in first
row (which stands for graylevel equal to 0) and in third
column (which represents the distance) (Konopka et al.
2022).

Figure 2: Increment of the values in GLCM (right)
based on the window wl,l (left) pixel w1,1 for l = 4,
d = 2 and α = 135◦.

Sub-images Geometric Features

Bearing in mind that measures could be calculated for
an object separated from the image (representing a sin-
gle bacteria) we decided to introduce extra geometric
features measuring the solidity, convex area, eccentric-
ity and Feret diameter maximum value (Yap et al. 2012).
For a given separate object its area, corresponding to the
number of white pixels in the sub-image’s mask, can be
calculated. Convex image is an image (binary mask)
that represents smallest convex polygon (called convex
hull) that can contain object, where pixels within hull
are equal to 1 (see Fig.3). Convex area is amount of pix-
els within a hull of convex image. Solidity is a number
of non-zero pixels in CBI

divided by number of non-zero
pixels in convex image of CBI

.

Figure 3: Convex image computed for sub-image pre-
sented in Fig.1.

Eccentricity is the ratio of distance between the ellipse
foci and major axis length. Eccentricity equal to zero
means that object is a circle, whereas eccentricity equal
to one means that object is a line. Note here that foci of
the ellipse are two points whose sum of distances from
any point on the ellipse is always the same. Feret diam-
eters are commonly used as image features (Yap et al.
2012, Pons et al. 2002). We decided to apply maxi-
mum Feret diameter, which is defined as the maximum

distance between two boundary points on the antipodal
vertices of convex hull. In order to compare obtained re-
sults with classical approach, where measures are being
calculated for a whole image (not the separate objects)
a benchmark set of features is calculated. The four ad-
ditional traits can be only computed for CBI

, because of
that a benchmark feature set calculated for I does not
include features based on separate objects on the image.
Feature calculation process ends with normalization of
the trait values between −1 and 1 to avoid differences
in ranges of the selected features that may have impact
on classificators performance.

FEATURE SELECTION

Feature sets may contain traits that are weakly cor-
related with affiliation to the class. The other phe-
nomenon that may occur is high correlation between
features. Both situations mentioned above may deterio-
rate performance of the classifiers. To eliminate the lat-
ter such features should be removed from the set. In or-
der to obtain the meaningful results two sets of features
are used. The first one is called Normal and contains
128 samples with 41 calculated features. The second
one is called Separate and it consists of 5742 sub-images
described by 45 features. To both sets feature selec-
tion methods: Conditional Mutual Information Maxi-
mization (CMIM) (Liang et al. 2019), Fast Correlation
Based Filter (FCBF) (Kruk et al. 2016) and Feature Se-
lection based on Genetic Algorithms (Calzolari 2022) are
applied. Sets of traits that are created in this way are
named for e.g. Normal FCBF or Separate Genetic. The
numbers of features that are in these sets are enlisted
below (written in brackets after the set name): Nor-
mal(41), Normal CMIM (3), Normal FCBF (4), Nor-
mal Genetic(7), Separate(45), Separate CMIM (5), Sep-
arate FCBF (2) and Separate Genetic(13).

CLASSIFICATION

The accuracy of the classification process is measured
with the cross validation (CV) mechanism. In case of
calculation of features for each image CV is performed in
a standard way, however when performing this process
on sub-images the approach is different. Assume that a
set of n images I = {Ii}ni=1 is given. One selects now p
(or less) sub-images BI = {bi}pi=1 for every microscopic
image. Each sub-image represents one bacteria on the
image. The number of sub-images for the whole set of
images is not greater than np. Next a set of features for
each sub-image separated from the image is specified. In
CV one needs to randomly shuffle the set before selecting
training and testing groups. In our setting sub-images
should not be shuffled but one should merely shuffle
images to ensure that upon such permutation the sub-
images attached to a given image are allocated either to
the training or to the testing set. More specifically, as-



sume a set of n = 20 images I is given and Ω = {BIi}ni=1

represents a full set of sub-images extracted from each
Ii. Once 5-Fold cross validation is conducted then a
possible outcome from shuffling (for one of 5 iterations)
may render a testing set Ts = {BI1 , BI5 , BI10 , BI3} and
the training set Tr = Ω\Ts. Once the training and
testing sets are specified the classification methods are
trained on the set Tr. Next, a group of sub-images is
selected from Ts (for example BI1) and it is predicted
to which class each sub-image belongs. Then a majority
voting is performed (on the predictions of BI1) to decide
to which class a given image should be assigned (in our
case image I1 as its sub-images BI1 are analyzed). Simi-
lar operations are performed for other sets of sub-images
classifying all images from the testing set (I1, I5, I10, I3).
Classification methods used in this work include: Ran-
dom Forest (RF), Support Vector Machine (SVM)
(Kramer 2013), Extreme Learning Machine (ELM)
(Huang et al. 2006) and Extreme Learning Machine -
Radial Basis Function (ELM-RBF) (Dhini et al. 2021).

Extreme Learning Machine

ELM is dense feedforward neural network with one hid-
den layer that is capable to solve classification and re-
gression tasks. Activation function in neurons in the
hidden layer and their amount needs to be determined
empirically by iterative ransack search space compar-
ing accuracy of the model. Currently, there is no
known method to optimize number of neurons in hid-
den layer. The network learning is defined in two steps.
First, weights between input and hidden layer and bias
are randomly assigned based on continuous uniform
distribution (−1, 1). Second, weights between hidden
and output layer are computed performing the Moore-
Penrose pseudo-inverse operation (Rao and Mitra 1971).
The latter assures that the found solution is the best in
means of mean-square error. Network’s weights are cal-
culated performing mathematical operations only once.
Pseudo-inversion cannot be parallelized, however thanks
to singular value or QR decomposition it is very well
optimized. Learning speed of ELM can be thousands
times faster than other methods like Multilayer Percep-
tron (MLP) (Li et al. 2019). Let H be matrix defined as
the neurons output values from the hidden layer and T
be our target. In non-binary classification tasks output
layer is assumed to contain the same amount of neurons
as number of classes in our dataset. Target matrix T
may be understood as numerical mapping affiliation of
the selected image to the class. Let image I represent
class 0, where number of classes is 5. Then T is for-
matted as a vector [1, 0, 0, 0, 0] assigning 1 to the first
neuron that is responsible for affiliation of the classified
object to the first class. During network testing pro-
cess response values are compared on the output layer
of the network searching for maximum value. If it is
observed on the first neuron then image is assigned to

class 0. Weights between hidden and output layer β̂
are computed by: β̂ = H†T , however to optimize calcu-
lation of pseudo-inversion as we mentioned before QR
decomposition is more commonly used than orthogonal
projection method (Rao and Mitra 1971). QR decom-
position of matrix A is defined as A = QR, where R is
upper triangular and Q is orthogonal (QQT = 1). Then
H† = HT (HHT )−1 = RTQT (RTR)−1 = QTR−1.

Extreme Learning Machine - Radial Basis Func-
tion

ELM-RBF is a variant of ELM with added one addi-
tional layer that maps actual inputs to their distances
to centroids by means of Radial Basis Function. This
application of ELM is similar to Radial Basis Networks
and brings much more robustness to the prediction (Lee
et al. 1999). Let Xs×f be an input matrix represent-
ing s and f as number of samples and features, respec-
tively. Then k-means clustering algorithm is performed
based on our input matrix defining number of clusters k
empirically. As a result matrix Ck×f with coordinates
of k centroids is obtained. In the next step we calcu-
late distances from each sample s to all k centroids by
means of Euclidean distance obtaining matrix Ds×k. In
the final step matrix Rs×k is computed and that ul-
timately becomes an input to ELM. For every sample
si, where i = 1, . . . , s a maximum distance to the cen-

troid dmax and σi =
dmax
i

2k are defined. Then distances
between si and each centroid Cj are computed, where
j = 1, . . . , k filling columns of matrix K in a given i-th

row, K[i, j] = exp
{

−D[i,j]
2σ2

i

}
. In the last step, matrix K

serves as an input to regular ELM network. The number
of clusters k for k-means method, activation function on
neurons in hidden layer and their amount are specified.
If k < f we obtain dataset that is reduced in comparison
to X, whereas if k > f then we expand our dataset. We
iteratively ransack searching space of these 2 parameters
(fixing activation function to tanh) looking for the best
model performance in terms of accuracy.

RESULTS

On each of the formerly prepared sets of features the
classification using RF, SVM, ELM and ELM-RBF
methods is performed. Computed results presented in
Tables 1, 2, 3 and 4 are mean accuracy values of 50
runs of 10-Fold Cross Validation on a given classifica-
tion method. RF, ELM and ELM-RBF needed to be
tuned by selecting parameter values iteratively explor-
ing the searching space by running 50 times 10-Fold CV
and comparing mean accuracy. The generated results
clearly indicate that SVM, ELM and ELM-RBF classi-
fiers achieved the best performance for datasets contain-
ing sub-images separated from the original microscopic
image.



Feature Set ACC
Normal 0.7740
Separate 0.8233

Normal FCBF 0.5822
Separate FCBF 0.6957
Normal CMIM 0.3832
Separate CMIM 0.6932
Normal Genetic 0.7929
Separate Genetic 0.7663

Table 1: Support Vector Machine classifier results on
the different feature sets.

Feature Set ACC Trees Number
Normal 0.9266 420
Separate 0.8943 200

Normal FCBF 0.8100 280
Separate FCBF 0.6892 70
Normal CMIM 0.5994 170
Separate CMIM 0.8229 10
Normal Genetic 0.9334 220
Separate Genetic 0.9034 320

Table 2: Random Forest classifier results as the high-
est obtained mean ACC during tuning the classifier by
changing a number of trees (from 10 to 500) on the dif-
ferent feature sets.

Feature Set ACC Number of neurons
Normal 0.9058 2500
Separate 0.9291 1600

Normal FCBF 0.2835 1700
Separate FCBF 0.6268 400
Normal CMIM 0.2828 100
Separate CMIM 0.8023 1900
Normal Genetic 0.7260 1000
Separate Genetic 0.9204 1400

Table 3: Extreme Learning Machine classifier results
as the highest obtained mean ACC during tuning the
classifier by changing number of neurons (from 100 to
5000) on the different feature sets.

Feature Set ACC Number of neurons k
Normal 0.8862 4900 95
Separate 0.9349 1000 56

Normal FCBF 0.6100 3000 94
Separate FCBF 0.6849 500 48
Normal CMIM 0.3787 4200 93
Separate CMIM 0.8167 1400 40
Normal Genetic 0.8579 4300 96
Separate Genetic 0.9246 1300 45

Table 4: Extreme Learning Machine - Radial Basis
Function classifier results as the highest obtained mean
ACC during tuning the classifier by changing number of
neurons (from 100 to 5000) and clusters - k (from 1 to
100) on the different feature sets.

In case of SVM the best ACC equals 82.33% for a Sep-
arate dataset (see Tab.1). ACC is 5pp (percentage
points) higher than for the Normal dataset. Analyz-
ing SVM performance on sets that are obtained apply-
ing feature selection methods a substantial increase in
ACC is noted on Separate CMIM set in comparison to
Normal CMIM. In this case ACC almost doubles lifting
from 38.32% to 69.32% rate. However, a 2.6pp decrease
of ACC is noted using Separate Genetic comparing to
Normal Genetic dataset.
The best result for RF classifier amounting to 93.34%
is obtained for 220 trees and Normal Genetic set (see
Tab. 2). In case of RF datasets with sub-images per-
form better only for CMIM, whereas for other feature
selection methods yield worse results.
For ELM and ELM-RBF much better ACC results are
generated on Separate datasets than on Normal ones.
The highest overall ACC amounts to 93.49% which is
also the highest result observed in this paper. It is
reached for ELM-RBF with 1000 neurons, 56 centroids
and Separate dataset (see Tab.4). The latter outper-
forms ELM-RBF ACC for Normal dataset by 5pp. Dif-
ferences in ACC can be significant recalling ELM on
Separate CMIM with 52pp increase of accuracy over
Normal CMIM (see Tab.3). In case of ELM and ELM-
RBF an increase of ACC using Separate over Normal
sets is transparent. Noticeably, the best ACC for ELM
and ELM-RBF is obtained for sets without feature se-
lection method applied.

CONCLUSION

Our aim was to create a system that automatically ex-
tracts sub-images from the image and then classifies
each image to a bacteria genera by means of machine
learning classifiers. The obtained results are satisfac-
tory - for 3 out of 4 analyzed methods we obtained an
increase in the accuracy. Experiments render the best
ACC reaching 93.49% for ELM-RBF applied to full set
of features (with no feature selection method) on Seper-
ate dataset with 1000 neurons and 56 centroids. In con-
trast, the best overall result for dataset with no sub-
images amounts to 93.34% correct classifications using
RF with 220 trees on set with Genetic feature selection
method applied. In addition RF is the only method
among tested, which perform worse on Seperate sets of
features than on Normal sets. Applying SVM, ELM and
ELM-RBF we observed significant increase of ACC that
was mostly noticeable applying feature selection meth-
ods such as CMIM and FCBF. Based on our experiments
we see that approach presented in this research could be
applicable in practical tasks of the soil bacteria identi-
fication especially using ELM and ELM-RBF methods
that can be engaging due to their fast learning rate and
excellent results. In this situation, as we experimentally
showed, the segmentation of the single bacteria from the
image and proposed method of classification may im-



prove overall ACC rate of the model from 5 up to 31pp
for SVM, 2 up to 52pp in case of ELM and similarly
from 5 up to 44pp upon using ELM-RBF.

FUTURE RESEARCH

Classification based on sub-images containing single
bacteria instances has a great potential for further re-
search. This approach can be applied for classification
system with multiple bacteria genera on one image. In
upcoming works we intend to enlarge dataset with new
images (taken from the samples or artificially created
using Data Augmentation Techniques) of the analyzed
bacteria genera and introduce new bacteria genera im-
ages to verify how increasing number of images or ana-
lyzed genera may impact overall results. One should test
other classification methods and compare their perfor-
mance in bacteria identification on whole images and on
their sub-images. The new approach may include image
preprocessing, alternative image segmentation methods
coupled with selecting bacteria on images. Lastly, the
new approaches to Extreme Learning Machines like us-
age of Ricker wavelet as a kernel function in Kernel Ex-
treme Learning Machine or Evolutionary algorithms for
ELM learning as well as Convolutional Neural Networks
may also be incorporated in future research.
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3.4.2 Automated identification of soil Fungi and Chromista through
Convolutional Neural Networks
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identification of soil Fungi and Chromista through Convolutional Neural Networks", En-
gineering Applications of Artificial Intelligence, Vol. 127B, p. 1–12, 2024, doi:
10.1016/j.engappai.2023.107333 .

Abstract : The identification of soil microorganisms plays a crucial role in agriculture
and horticulture, as it enables the monitoring of beneficial species and early detection of
pathogens. In this study, we propose a system that utilizes machine vision and machine
learning techniques, specifically Convolutional Neural Networks, to automate the identi-
fication of different fungi and Chromista based on microscopic images and morphological
traits. Our system aims to provide a cost-effective and efficient method for pathogen
detection, improving the overall health and productivity of agricultural systems. We
conducted experiments using a dataset of soil microorganisms and the performance of
the classifier was evaluated using precision, recall and F1-score measures. Despite chal-
lenges such as class imbalance and imperfect subimage retrieval, the classifier achieved
promising results, with an overall precision of 82% indicating the high accuracy of cor-
rectly predicted positive instances across all classes. Furthermore, the incorporation of
a majority voting scheme significantly improved the classifier’s performance, addressing
the issue of underrepresented classes. The enhanced results demonstrated an average
precision and F1-score of 97%. Our work highlights the potential of CNNs in soil mi-
croorganism identification and paves the way for future research to expand the dataset
and to incorporate a wider range of microorganism genera.
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A B S T R A C T

The identification of soil microorganisms plays a crucial role in agriculture and horticulture, as it enables
the monitoring of beneficial species and early detection of pathogens. In this study, we propose a system
that utilizes machine vision and machine learning techniques, specifically Convolutional Neural Networks, to
automate the identification of different fungi and Chromista based on microscopic images and morphological
traits. Our system aims to provide a cost-effective and efficient method for pathogen detection, improving
the overall health and productivity of agricultural systems. We conducted experiments using a dataset of
soil microorganisms and the performance of the classifier was evaluated using precision, recall and F1-
score measures. Despite challenges such as class imbalance and imperfect subimage retrieval, the classifier
achieved promising results, with an overall precision of 82% indicating the high accuracy of correctly predicted
positive instances across all classes. Furthermore, the incorporation of a majority voting scheme significantly
improved the classifier’s performance, addressing the issue of underrepresented classes. The enhanced results
demonstrated an average precision and F1-score of 97%. Our work highlights the potential of CNNs in soil
microorganism identification and paves the way for future research to expand the dataset and to incorporate
a wider range of microorganism genera.

1. Introduction

The use of soil fungi as a natural fertilizer is a growing area of
interest due to their potential in increasing crop yield and in replacing
chemical fertilizers, which are still widely used in agriculture and
horticulture (Han et al., 2021; Fan et al., 2023). Certain soil fungi
and Chromista have a mutualistic relationship with plants, where they
exchange nutrients with their host plant. These beneficial fungi, known
as mycorrhizal fungi, play a crucial role in promoting the health and
growth of many plant species (Smith and Read, 2010). Mycorrhizal
fungi can enhance nutrient uptake, improve plant growth and increase
resistance to environmental stressors e.g. drought and extreme tem-
peratures. However, some soil fungi can be pathogenic and cause
significant crop losses (Ma et al., 2013). Therefore, it is crucial to
accurately identify soil microorganisms to monitor beneficial species
and to detect pathogens early.
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Microbial identification typically involves a combination of mor-
phological, phenotypic and molecular methods. Morphological identi-
fication is the most cost-effective approach and involves microscopic
observation of the microorganism, where a microbiology specialist
identifies the organism based on characteristic fragments (Watanabe,
2010). However, identification based on morphological traits alone is
limited to the genus level due to the subtle differences between species.
Therefore, microbiologists typically use a combination of different
methods for accurate identification.

In this study, we propose the use of machine vision and ma-
chine learning techniques, specifically Convolutional Neural Networks
(CNN), to identify different fungi and Chromista based on microscopic
images and their morphological traits. This system aims to automate
the identification process, making it faster and more efficient. While
the current system is limited to genus-level identification, it can be en-
hanced in future by incorporating phenotypic and molecular methods.
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Fig. 1. Microscopic images of cultivated samples obtained from the dataset sourced from Symbio-Bank - the microorganism collection at The National Institute of Horticultural
Research in Skierniewice, Poland.

Such integration would enable identification at the species level, albeit
at a higher cost.

The main objective of our system is to provide in future highly
accurate results that can be utilized by farmers to quickly detect
potential pathogens and to supply solutions that can be implemented
immediately upon the soil’s sample delivery to local laboratories. With
its low-cost laboratory equipment and full automation process such
system becomes highly desirable for the agricultural industry world-
wide. System’s ability to quickly detect potential threats can minimize
the risk of crop losses and can improve the overall productivity of
agricultural setups. This aspect is particularly significant taking into
consideration recommendations of the United States Environmental
Protection Agency that emphasize the importance of implementing
methods to enhance crop resistance and to employ intelligent systems
addressing the impacts of climate change on agriculture and food
supply (U.S. Environmental Protection Agency, 2023). The detection of
Mycorrhizal microorganisms enables precise tracking of natural fertil-
izer application, monitoring their quantity and effects on the soil. This
paper describes our initial work in constructing such a system using
CNNs and we believe that the system described above represents the
ultimate goal for the future.

Identification of soil fungi and Chromista using conventional image
processing methods (Gonzalez and Woods, 2018) poses significant
challenges due to their intricate and diverse structures, which exhibit
non-homogeneity unlike soil bacteria (Watanabe, 2010). These struc-
tures encompass various components such as hyphae, phialides, micro
and macroconidia, conidia cells, zoospores and more. To address the

latter our research explores a dataset sourced from Symbio-Bank, which
houses a collection of microorganisms at The National Institute of
Horticultural Research in Skierniewice, Poland. Within this collection,
we specifically select, cultivate and capture microscopic images of
microorganisms belonging to the genera Fusarium, Trichoderma, Ver-
ticillium and Chromista of the Phytophthora genus. It is important to
note that each image in the dataset was assumed to contain only one
type of microorganism, obtained through a rectification process that
isolates the monoculture from the sample. The dataset comprises 134
images of microorganisms cultivated in Potato Dextrose agar (Merck
1.10130.0500) at a temperature of 26 degrees Celsius. Incubation peri-
ods varied, with Fusarium, Verticillium and Phytophthoramicroorganisms
requiring 7–10 days, while the Trichoderma strain took approximately
4–5 days to produce conidial spores.

The biomass was collected from the colonies using sterile swabs
and spread over the microscope slide. A small amount of distilled
water was added and the material was covered with a coverslip. The
images were taken using a Nikon 80i microscope and no manual post-
processing was performed. Therefore, the images may contain artifacts
like light reflections or air bubbles under the coverslip, which could
resemble the microorganism’s structures. The dataset comprised 57
Fusarium, 26 Trichoderma, 31 Verticillium and 20 Phytophthora images,
which were obtained with different magnification levels for each of
the microorganism genera. Fig. 1 presents sample images from the
dataset. A portion of the whole dataset is provided as supplementary
material (Struniawski, 2023).
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The work starts with the conducting a literature review to identify
the current state-of-the-art solutions in the area in question and to
determine the direction addressed in our experiments.

Wahid et al. (2018) presented a transfer learning approach where
the Inception CNN was retrained using a dataset consisting of five
different bacteria species microscopic images known to be harmful
to human health. Increasing the total number of samples, multiple
bacteria samples were extracted from each image through a manual
cropping. However, a major limitation of the system was its reliance
on human involvement in the manual input image processing, which
rendered the system as a hybrid and not fully automated, thus making
the task more laborious.

Zhang et al. (2017) utilized CNNs to cervical cell classification. The
proposed approach involves segmenting single cell instances from the
original image, which can be challenging due to the location of the
nucleus within the cell not always being in the center position. In the
case of images containing only cells and background, the task involves
pre-segmentation by retrieving subimages based on the observable
nucleus within the cell boundaries. These subimage patches are then
exploited to train the CNN for cervical cell classification without the
need for accurate cell segmentation, as the CNN with a large dataset is
recognized as a better generalizer even with inaccurate segmentation.
This approach can potentially yield better robustness of the classifier.
The limitation of the system is its strict dependency on a coarse nucleus
center being provided. To overcome this limitation, the researchers
employed transfer learning by the pre-trained CNN on the ImageNet.

Upon examining the research conducted by Ong et al. (2020), it was
observed that they employed transfer learning with the ResNet50 CNN
model to detect Fusarium fungi in laboratory-cultivated samples. The
images were captured using a microscope, utilizing three distinct mi-
croscopy configurations: Brightfield, Darkfield and Fluorescent, where
each configuration provided unique image characteristics. The authors
trained three separate CNN models, where each model is specialized
in classifying one of the three image modes. To classify the different
modes, the authors employed the respective ResNet50 model and a
logistic regression classifier was utilized to obtain the final prediction.
This study represents a rare example of using CNNs for soil fungi iden-
tification, focusing on binary classification for detecting the presence of
Fusarium in the images. In contrast, our research aims to differentiate
various fungi and Chromista genera from one another. Noteworthy, the
study by Ong et al. employed a manual segmentation method, while
our objective is to develop a fully automated system.

2. Methods

The paper provides a comprehensive description of the subimage
retrieval process and the application of CNN for the classification task.
The subimage retrieval process is elaborated upon, highlighting the
methodology employed to extract relevant fragments from the original
images. Then, the paper delves into the CNN approach used for classify-
ing the retrieved subimages, discussing the architecture and techniques
employed to achieve accurate classification results.

2.1. Subimages retrieval

The microscopic images used in our research contain scale labels
in the left-down corner, which are added automatically by the micro-
scope’s software. These labels come in three different colors – black,
red, or white – selected based on image metrics. However, the presence
of these scale labels may introduce distortions during the subimage
retrieval process, ultimately impacting performance of the predictor.
To mitigate this issue, we masked the label’s area using manual thresh-
olding techniques (Gonzalez and Woods, 2018). The threshold values
were determined empirically and the mask’s area was defined as the
set of pixels meeting the following conditions: 𝑟 < 30 and 𝑔 <
30 and 𝑏 < 30 (black label), or 𝑟 > 150 and 𝑔 < 125 and 𝑏 <

125 (red label), or 𝑟 > 240 and 𝑔 > 240 and 𝑏 > 240 (white label),
where 𝑟, 𝑔 and 𝑏 denote the red, green and blue components of the RGB
pixel 𝐼 = [𝑟, 𝑔, 𝑏], respectively. The resulting binary mask identifies the
label area with a value of 1, while the rest of the image is assigned
a value of 0. Finally, the label’s area is filled with the mean color of
the image and merged with the input image to create a new, label-free
image for analysis.

In our study, we present an image preprocessing pipeline for en-
hancing the quality of microscopic images to facilitate subsequent
analysis. First, we converted the RGB image to grayscale using the
COLOR_BGR2GRAY mode provided by the popular cv2 package in
Python. To improve the quality of the image, we applied the widely-
used Gaussian blur technique (Gonzalez and Woods, 2018), which
effectively smooths out small-scale variations in the image while pre-
serving larger-scale features. A Gaussian kernel with a window size
of 5 × 5 was used in our approach, which has been shown to be an
effective choice for reducing image noise while preserving important
features (Párraga et al., 1998).

Microscopic images often suffer from low contrast, which can make
it difficult to discern the relevant features and structures in the image.
To address this, a variety of contrast enhancement techniques have
been proposed in the literature, which modify the spatial characteristics
of the image to improve its visibility and facilitate image analysis (Cakir
et al., 2018). In our work, we employ the Contrast-limited Adaptive
Histogram Equalization (CLAHE) method, which has been shown to
be effective in enhancing the visibility of structures in low-contrast
images. This method has been successfully applied in a variety of
applications, such as improving the accuracy of mammographic image
classification (Alshamrani et al., 2023) and detecting pneumonia using
CNNs (Tjoa et al., 2022). By applying CLAHE to our microscopic
images, we aim to improve the performance of our machine learning-
based subimage retrieval method by increasing the distinguishability
between different fungi structures. On the grayscale image obtained in
the previous step the CLAHE method is applied using a clip limit of 0.1
and a tile grid size of 8 × 8. The clip limit is a threshold value that limits
the maximum pixel intensity value in the histogram, while the tile grid
size refers to the size of the tile used for local histogram equalization
that affects the level of local contrast enhancement.

Segmentation of microscope images is a challenging task due to
uneven illumination, lightning variations and noise (Pham et al., 2000).
Global thresholding techniques like the Otsu method (Otsu, 1979) are
commonly used for segmentation, but they may produce unreliable re-
sults when the image is complex and its histogram cannot be segmented
by a single threshold value. Our literature review reveals that local
adaptive thresholding techniques, such as the one proposed by Wen-
Nung Lie and other researchers (Lie, 1995), have been found to be
superior to global thresholding techniques for segmenting microscopic
images (Khan et al., 2015; Dave and Upla, 2017). Therefore, we applied
the Adaptive Image Thresholding algorithm, implemented in Python’s
cv2 adaptiveThreshold function, with a 9-pixel block size that deter-
mines the size of the neighborhood area and a constant of 𝐶 = 213. The
threshold value is a Gaussian-weighted sum of the neighborhood values
minus the constant C. The adaptive threshold method creates a matrix
of thresholds equal to the size of the input image that are based on the
local neighborhood of the image pixels. The details of implementation
can be found in the original paper (Lie, 1995).

It is important to highlight the significant challenges associated with
soil microorganism images, including low contrast, out-of-focus objects,
sample contamination and image impurities such as light reflection
from the coverslip. It should be noted once the sample is observed
under a microscope, the microorganisms exist in a three-dimensional
space and the focus of the camera is limited to a specific level. As a
result, objects located at different depths may appear out of focus. To
tackle these challenges and further enhance the quality of the images,
we incorporate morphological operations and filling algorithms into
our pipeline. This approach aligns with other studies in the field, which
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involve converting microscopic images to grayscale, preprocessing,
segmenting and employing morphological operations to eliminate small
objects or fill gaps within objects (Mohamad et al., 2014). By applying
these techniques, we aim to improve image quality and ensure accurate
analysis of the microorganisms in our research.

In our system, we begin by dilating the images using an 11 × 11
kernel, followed by applying a flood fill algorithm and subsequently
performing open and close operations with a 5 × 5 kernel. We then
perform a second flood fill and obtain the final image, from which sub-
images can be retrieved in subsequent steps. The algorithm used in our
study is based on the implementation described in Soille (1999).

In the subsequent stage, the image is labeled by identifying all ob-
jects, also referred to as connected components, using the label function
from the skimage module. Two pixels are considered connected if they
are neighbors and have the same value. It is important to note that
we are still operating on the binary image mask, where the pixels
can be neighbors in a 1- or 2-connected sense and the value denotes
the maximum number of orthogonal hops to consider a pixel as a
neighbor (Fiorio and Gustedt, 1996). Consequently, the labeled image
is obtained with 𝑘 objects identified, where the image comprises of
pixels with values of either 0, representing the background, or 1 up to 𝑘,
identified as the objects. Next, utilizing the regionprops function from
Python’s scikit-image module, we are able to compute the parameters
of each object. Here, we used the solidity, bounding box and area
measures. Solidity is the ratio of the region’s area to the area of its
convex hull, which is the smallest convex polygon that can contain
the region (Ilonen et al., 2018). The bounding box is the smallest box
that contains the entire object, defined by its pixel coordinates on the
image and the area is defined as the number of pixels in the region.
It is noteworthy that solidity, along with other region properties, is
recognized as an accurate descriptor of objects in an image (Vinnett
et al., 2022; Acuña et al., 2016; Bailey et al., 2005). The output of the
labeling and region properties calculation is a list of all objects in the
image with assigned measures.

In the next stage, our objective was to accurately select objects
that are fragments of microorganisms, which posed a difficult challenge
due to the heterogeneity of soil fungi and Chromista organisms, which
cannot be identified based on a single cell but instead rely on specific
morphological features such as conidiophores, sporodochia, pycnidia,
sclerotia, mycelia, etc. Wijayawardene et al. (2020). Retrieving single
bacterial cells in microscopic images is straightforward since they are
represented by uniformly sized circular cells. Consequently, recent
works focus on filtering out objects with solidity lower than a prede-
termined threshold and retrieving 𝑛 objects closest to the median area
of the objects (Struniawski et al., 2022). However, this approach did
not yield satisfactory results in our dataset. After conducting several
experiments, we propose a pipeline that specifies a padding parameter
𝑝 (in our case, 𝑝 = 3) to address the issue of losing crucial information
on object edges during processing images phase. To accomplish this
goal, we remove all objects that would exceed the image’s size after
padding and those with solidity lower than 0.8. We also leave out
images with standard deviation of pixel luminosity less than 5 to
eliminate low contrast objects, which could be mistaken for background
or out-of-focus fragments.

The next challenge is encountered when the number of retrieved ob-
jects is significantly less than the maximum target number of instances
(200 in our case), usually due to uneven lighting conditions or the
entire image being out of focus. In such instances, we avoid filtration
based on solidity and instead selecting 100 objects with the highest
solidity value. Furthermore, we sort objects based on the covered area
and select a maximum of 200 objects with the largest area. Once the
filtering process is complete, we retrieve single images by cutting the
area around the object’s bounding box with additional padding. Next
we resize the sub-image’s mask to match it’s subimage size by eroding
it with a kernel of size (2𝑝 + 1) × (2𝑝 + 1) to mitigate the effect of
the enlarged boundaries that may contain background information.

This erosion operation helps to remove the background information
consistently throughout the boundary of the object. Finally, we filter
the object’s final image by taking the Hadamard product (Szeliski,
2011) of the sub-image with its corresponding mask, followed by
placing such image in the center of 224 × 224 image with all pixel
values set to 0 (black image). Employing the Hadamard product of the
object with its corresponding mask alleviates the impact of overlapping
objects that may arise following the retrieval process from the original
image. This strategic approach guarantees that each subimage exclu-
sively encompasses a single object, a direct outcome of the labeling
procedure applied to the input image. The result is a black background
image with the color object in the center. It is worth noting that in
literature, better classification performance is achieved by using color
object images with a black background, which eliminates irrelevant
background information and reduces unnecessary distortions (Konopka
et al., 2022; Struniawski et al., 2022; Gao et al., 2017). The data flow
of the algorithm is presented in Fig. 2.

The generalization abilities of the system forms a significant chal-
lenge. Although the aforementioned algorithm demonstrates accurate
subimage retrieval for certain genera, its performance may be subop-
timal for others. Our studies have revealed that setting the threshold
value of solidity filtration to 0.9, instead of 0.8, led to unsatisfactory
outcomes of sub-images generation for most images of Phytophthora
genera. Consequently, the filtration conditions must be as weak as pos-
sible to increase the robustness of sub-image computations. However,
this approach may result in sub-images that are not actually fragments
of microorganisms, but represent in fact noise or background. To
address this issue, we have incorporated a majority voting rule after
classification, which is further discussed in details (see Section 2.4.2).

After analyzing the generated dataset, we can observe that the
system achieves accurate retrieval of subimages for all the examined
genera. The filtration process parameters, including image processing
kernel sizes and shapes, threshold values, padding and the maximum
number of retrieved objects, can be adjusted using a new dataset of
soil microorganisms. The stepwise retrieval process is illustrated in
Fig. 3, while Fig. 4 showcases exemplary retrieved sub-images for each
genus. Additional subimages can be found in the supplementary mate-
rials (Struniawski, 2023). The presented system signifies a significant
progress towards fully automated analysis of soil microorganisms. It
is important to note that the sizes of objects in the images vary due
to differences in magnification levels employed during image acquisi-
tion. The dataset utilized for training Machine Learning methods for
single instance retrieval comprises a total of 10,175 images, including
4278 images of Fusarium, 1285 images of Phytophtora, 2352 images of
Trichoderma and 2260 images of Verticillium.

2.2. ResNet50 neural network

In our research, we have utilized Residual Network 50 (ResNet50)
as a Machine Learning classification model. ResNet50 is a type of
CNN that has demonstrated outstanding performance across various
domains. Unlike traditional machine learning methods, which rely
on manually crafting features in advance (called also as handcrafted
features) and feeding them into a chosen classifier such as Support
Vector Machines, Random Forests, or Multilayer Perceptron (Hanbal
et al., 2020).

In classical ML approaches, the manual determination of features
requires domain experts to carefully consider the task’s characteristics
and evaluate the selected features. This process often leads to subopti-
mal accuracy, if chosen features are believed to adequately represent
the observed phenomenon. It typically involves multiple iterations of
feature determination, followed by the application of feature selection
methods to form a final set of features. These selection methods aim to
choose or filter features that exhibit strong correlation with the target
variable and weak correlation with each other. In contrast, features
can be automatically calculated from the data using Convolutional
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Fig. 2. The data flow diagram illustrating the proposed algorithm for sub-images retrieval.

Neural Networks. CNNs employ convolutional layers with learnable
filters to convolve input data, capturing relevant patterns and spatial
relationships automatically (Yamashita et al., 2018). For image data,
2D convolutional layers are commonly used, resulting in 2D feature
maps. CNNs also incorporate pooling layers, which downsample feature
maps and promote translation invariance. This characteristic reduces
the network’s sensitivity to the precise spatial location of features.

CNNs consist of multiple building blocks, including convolution
layers, pooling layers and, in the final block, feature maps are flattened
into vectors. This process converts each observation in the dataset into
a vector of values that can be recognized as features. Typically, a
fully connected (dense) feedforward network with a backpropagation
algorithm is employed to train the weights within the dense network,
as well as the filter coefficients in the convolutional layers. The training
process minimizes a given loss function, enabling the network to learn
discriminative representations from the data. The depth of a CNN
plays a crucial role in its performance on various tasks and significant
advancements have been achieved by employing very deep models (Si-
monyan and Zisserman, 2015; He et al., 2015). However, increasing
the depth of the network by stacking more blocks and expanding the
number of layers introduces challenges such as dealing with vanishing
or exploding gradient and degradation problems. The vanishing and
exploding gradient issues can be addressed through normalized training
initialization techniques (LeCun et al., 1998). On the other hand,
the degradation problem arises when adding extra layers to a deep
architecture leads to higher training error.

To overcome these challenges ResNets have been introduced (He
et al., 2016). They utilize residual connections, also referred to as skip
or shortcut connections that allow the network to bypass one or more
convolutional layers and directly add the original input to the output
of these layers. By incorporating residual connections, ResNets mitigate
the degradation problem and enable more effective training.

In this work, we utilize ResNet50, a variant of the ResNet architec-
ture, which has shown remarkable performance in similar tasks (Ong
et al., 2020). The ResNet50 implementation employed in this study is
provided by the TensorFlow module. ResNet50 is composed of a total
of 50 layers (this is the root of 50 in its name), with 48 convolutional

layers, one max pool layer and one average pool layer. The architecture
consists of five residual blocks, each containing nested convolutional
layers, which can be viewed as a combination of convolution, batch
normalization and activation operations. While it is not feasible to
depict the entire ResNet architecture within the constraints of this
paper, we have included it as Supplementary Material (Struniawski,
2023). Fig. 5 showcases a sample of the second residual block with
the third convolutional block, where all the aforementioned operations
with residual shortcut connection, are visible.

2.3. Transfer learning

Transfer learning is a popular approach in Machine Learning where
a model developed for one task is utilized for another, transferring the
knowledge gained from the first task to the second one. The idea of
transfer learning dates back to 1976 when it was first applied to the
perceptron algorithm (Bozinovski and Fulgosi, 1976). CNNs have be-
come increasingly complex, leading to resource-intensive training and
transfer learning has become a widely used technique to address this
issue. Huge CNNs are typically trained on high-performance computing
systems such as clusters, supercomputers, or cloud-based platforms that
are optimized for deep learning workloads, with multiple GPUs that
parallelize computations and speed up the training process (Huerta
et al., 2020). For instance, some of the largest CNN models, including
VGG-16, ResNet and Inception, were trained on the ImageNet Large
Scale Visual Recognition Challenge dataset, which comprises 1.2 mil-
lion high-resolution images and took several days to weeks to train.
Training a large CNN model from scratch is usually infeasible due to the
long training time and high cost. Therefore, we utilized the ResNet50,
which had been previously trained on the Imagenet dataset (Deng et al.,
2009).

In spite of the fundamental disparity between the ImageNet dataset
and microscopic or X-ray images, transfer learning has demonstrated
remarkable efficacy in diverse applications, including the classification
of COVID-19 from chest X-ray images (Hossain et al., 2022) and the
classification of Malaria Cell-Images (Arrabelly and Juliet, 2019). The
utilization of the extensive knowledge amassed from the ImageNet
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Fig. 3. The sample sub images retrieved from the original dataset from a given genera of soil microorganism.
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Fig. 4. Retrieval process of subimages from Fusarium microscopic image.

dataset, spanning a wide range of object categories, has proven the
remarkable breakthroughs in these respective domains. By harnessing
the acquired knowledge from ImageNet, researchers are able to achieve
significant advancements in ML area.

In the context of transfer learning, several techniques can be em-
ployed. One approach is to initialize the network with pre-trained
weights, such as ResNet50 weights established during trained on the
ImageNet dataset. Network is then exposed to new images and training
is performed in batches. The objective is to fine-tune the network’s
weights slightly, allowing it to adapt to a new task, such as soil mi-
croorganism classification. Another strategy involves freezing specific

blocks within the network during training, preventing their weights
from being updated through backpropagation.

Determining which blocks to freeze is a crucial decision. As infor-
mation propagates through the network, the convolutional layers learn
to detect higher-level features that become increasingly specific to the
given task (Yamashita et al., 2018). Therefore, it is advisable to freeze
the initial layers responsible for low-level features that are not task-
specific. In our experiments, we chose to freeze all blocks except for the
fifth residual block, which includes all convolutional layers named in
the ResNet50 topology starting from conv5_block1_1_conv. This allows us
to fine-tune the high-level feature maps, tailoring them to our specific
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Fig. 5. Fragment of the ResNet50 network topology.

task. By selectively freezing the appropriate blocks and enabling fine-
tuning of high-level features, our system can effectively leverage the
knowledge gained from pre-training on ImageNet while adapting to the
soil microorganism classification task.

2.4. Model training and evaluation process

To validate the statistical significance of our application, we provide
a concise overview of the training and evaluation process using transfer
learning with ResNet50.

2.4.1. Training
The dataset consisting of 134 microscopic images is partitioned into

distinct training, validation and testing sets, with a ratio of 0.6:0.1:0.3
respectively. The training set is employed to feed the network with
data during the training process, while the current training loss is
evaluated on the validation dataset. The testing set is reserved for
assessing the performance of the trained model. Upon partitioning the

dataset, subimages are generated, resulting 7121 images in the training
set, 1020 in the testing set and 2034 in the validation set. In total, the
dataset comprises 10,175 subimages.

For the training process, a configuration is established utilizing
the ResNet50 network. The trainable fifth residual block is employed,
followed by average pooling and flattening operations. On top of this,
a classifier is constructed, consisting of a dense layer with 512 neurons
and a dropout rate of 0.3. During training, the dropout mechanism
randomly drops 30% of the connections between neurons, thereby
preventing overfitting of the classifier. Furthermore, the same elements
are added once more, leading to an output dense layer with 4 neurons,
corresponding to the number of target classes associated with the soil
microorganism genera. In other words topology of the classifier can be
described as 512-DropOut-512-DropOut-4. A softmax activation func-
tion is applied to the output layer to obtain probability distributions
over the classes to select affiliation the given class by the highest
probability value for a given output neuron. Please refer to Fig. 6 for a
visual representation of the classification architecture.

During the training of the network, the categorical cross-entropy
loss function is employed, which is a common choice for multi-class
classification tasks (LeCun et al., 2015). The utilized optimizer is Adam,
with a learning rate set to 0.001 (Kingma and Ba, 2014). The training
process is conducted with a batch size of 64 images over 1000 epochs.
It is worth mentioning that the model was also evaluated for 5000
epochs, but it yielded inferior results. It should be noted that the
input dataset was too large to be loaded directly into both the RAM
and GPU memory. In this context, the Dataset functionality within
the TensorFlow module played a pivotal role, closely followed by the
preprocessing step of normalizing the loaded sub-images (ranging from
[0; 255] to [0; 1]) for each color channel. The Dataset functionality
facilitates the random retrieval of data from memory, allowing for the
feeding of batches during the fitting process of the CNN. The whole
process is performed on PC computer with Ryzen 9 3900X CPU, 64 GB
DDR4 3600MHz RAM and Nvidia RTX 3090 24 GB VRAM GPU using
CUDA and cuDNN.

2.4.2. Evaluation
In this study, the trained model from the previous step was sub-

jected to evaluation on the testing set. The classification of individual
subimages reflects the effectiveness of the subimage retrieval and CNN
training processes. The practical objective is to classify the entire image
into the appropriate class, providing an answer to the question of which
microorganism is present in the sample. To achieve this, the results
obtained from assigning subimages to classes are combined using a
majority voting scheme. To illustrate the latter, let us consider the
case of the first test image 𝐼1𝑡 with 150 subimages retrieved. Next,
images are fed as input to the pre-trained network in batches, resulting
in predictions for each subimage. For instance, the results indicate
that 100 subimages are assigned to class 𝐶0, 20 subimages to 𝐶1, 10
subimages to 𝐶2 and 20 subimages to 𝐶3 respectively. By employing
the majority voting strategy, the final classification of image 𝐼1𝑡 is
determined based on the class with the highest number of ‘‘votes’’ from
the subimages. In this example, 𝐼1𝑡 is classified as 𝐶0 since it received
100 ‘‘votes’’ for class 𝐶0.

2.5. Preliminary experiments

In the results section, we showcase the outcomes of the most suc-
cessful setup noted during our experimentation process. Prior to this,
we conducted a series of experiments aimed at refining the optimal
model configuration. Our initial objective was to determine the most
effective method of sub-image retrieval. The comprehensive process,
elucidated in Section 2.1 and illustrated in the data flow diagram in
Fig. 2, is an outcome of preliminary trials where we assessed various
dataset retrieval approaches. In the course of this experimentation, we
generated 18 distinct datasets, focusing on factors such as solidity and
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Fig. 6. The ResNet50 classifier, where model_input states as input layer, model as
ResNet50 feature extractor and then two classification layers with 512 neurons each
and 0.3 dropout rate.

standard deviation filtration thresholds, the number of retrieved sub-
images, selection criteria for the designated number of sub-images (in-
cluding methods like choosing images closest to the median object size
or selecting top objects with the highest covered area), and the evalu-
ation of whether a second flood-fill process yielded improved results.
Given the impracticality of presenting the detailed results for various
sets, including thorough explanations of their nuanced distinctions, we
chose to focus on the best sub-image retrieval method.

Subsequently, we proceeded to construct the model and were con-
fronted with the task of fine-tuning hyperparameters for CNN compila-
tion. This encompassed considerations such as the choice of loss func-
tion, optimizer along with learning rate, topology of the top layer (clas-
sification layers atop convolutional layers), dropout layer rates, batch
size, and the selection of the block from which weights would be made
trainable for Transfer Learning. Our experimentation encompassed the
following configurations:

• v1: trainable from 𝑐𝑜𝑛𝑣5_𝑏𝑙𝑜𝑐𝑘1_1_𝑐𝑜𝑛𝑣, top topology: Dense(512,
relu) 𝑥 Dropout(0.3) 𝑥 Dense(512, relu) 𝑥 Dropout(0.3), Cate-
gorical Crossentropy loss function, Adam(learning rate 0.001)
optimizer, batch size of 32.

• v2: v1 trainable from 𝑐𝑜𝑛𝑣4_𝑏𝑙𝑜𝑐𝑘1_1_𝑐𝑜𝑛𝑣.
• v3: v1 trainable from 𝑐𝑜𝑛𝑣3_𝑏𝑙𝑜𝑐𝑘1_1_𝑐𝑜𝑛𝑣.
• v4: v3 with batch size of 64.
• v5: v3 with batch size of 256.
• v6: v3 with batch size of 128 and topology of the top layer: 256
𝑥 0.3 𝑥 256 𝑥 0.3.

Table 1
The classifier performance results on different variants of models.

Model version Precision Recall AUC TOP 1 ACC

v1 0.710 0.698 0.875 0.706
v2 0.706 0.705 0.834 0.705
v3 0.684 0.684 0.801 0.684
v4 0.672 0.658 0.845 0.665
v5 0.674 0.659 0.841 0.668
v6 0.688 0.672 0.855 0.682
v7 0.694 0.652 0.858 0.672
v8 0.667 0.658 0.844 0.662
v9 0.458 0.458 0.645 0.458
v10 0.692 0.672 0.857 0.680
v11 0.699 0.696 0.853 0.698
v12 0.686 0.680 0.844 0.683
v13 0.693 0.685 0.834 0.691
v14 0.459 0.314 0.673 0.365
v15 0.694 0.688 0.846 0.692
v16 0.000 0.000 0.649 0.421
v17 0.704 0.700 0.861 0.702
v18 0.692 0.685 0.849 0.690

• v7: v3 with batch size of 128 and topology of the top layer: 256
𝑥 0.3 𝑥 512 𝑥 0.3.

• v8: v3 with batch size of 128 and topology of the top layer: 1024
𝑥 0.3 𝑥 1024 𝑥 0.3.

• v9: v1 trainable from 𝑐𝑜𝑛𝑣1_𝑏𝑙𝑜𝑐𝑘1_1_𝑐𝑜𝑛𝑣.
• v10: v3 with topology of the top layer: 512 𝑥 0.2 𝑥 512 𝑥 0.2.
• v11: v3 with topology of the top layer: 512 𝑥 0.4 𝑥 512 𝑥 0.4.
• v12: v1 with topology of the top layer: 512 𝑥 0.4 𝑥 512 𝑥 0.4.
• v13: v1 with topology of the top layer: 512 𝑥 0.2 𝑥 512 𝑥 0.2.
• v14: v1 with batch size of 256.
• v15: v1 with batch size of 128.
• v16: v1 with Adam(learning rate 0.1).
• v17: v1 with Adam(learning rate 1𝑒 − 5).
• v18: v1 with elu activation function.

The outcomes are provided in Table 1. Among the variants, the most
favorable results in terms of Area Under the Curve (AUC) were obtained
for v1 and it is this variant that was chosen for the model detailed in
Section 2.4.1.

3. Results

Upon conducting experiments, the performance of the classifier
was evaluated using various measures on the testing set, including
precision, recall and F1-score for different classes, as well as overall
performance. The results are summarized in Table 2. The testing set
consisted of a total of 5448 subimages; however, it is important to note
that the classes were unbalanced. Specifically, class 1 was represented
by 644 images, while class 0 contained 2360 images. As a conse-
quence, the classifier exhibited lower performance in distinguishing
class 1, with a precision of 62% compared to 86% for class 0, which is
overrepresented in the dataset.

To mitigate the negative impact of class imbalance, we initially
attempted to address the issue by undersampling the images. This
involved randomly selecting 644 subimages from each class, resulting
in a balanced dataset of exactly 644 images per class that yielded
poor performance by the classifier, prompting us to retain the original
dataset.

The overall precision (that indicates the accuracy of correctly pre-
dicted positive instances across all classes) achieved by the classifier
was 82%, which is considered promising given the challenges inherent
in the experiment. It includes imperfect subimage retrieval, which
may include objects not representing actual microorganism fragments.
Additionally, the input microscopic images were captured at differ-
ent magnification levels and contained impurities such as reflections
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Fig. 7. Confusion matrices of the classifier performance results on the whole testing set and upon incorporating majority voting rule on the subimages to merge results obtaining
the final classification to the given class.

Table 2
The classifier performance results on applied directly the testing test.

Precision Recall F1-score Support

0 0.86 0.91 0.88 2360
1 0.62 0.78 0.69 644
2 0.89 0.83 0.86 1259
3 0.81 0.68 0.74 1185

Micro avg 0.82 0.82 0.82 5448
Macro avg 0.80 0.80 0.79 5448
Weighted avg 0.83 0.82 0.82 5448
Samples avg 0.82 0.82 0.82 5448

Table 3
The classifier performance results upon incorporating majority voting rule on the
subimages to merge results obtaining the final classification to the given class.

Precision Recall F1-score Support

0 0.97 1.00 0.98 29
1 0.91 1.00 0.95 10
2 1.00 0.93 0.96 14
3 1.00 0.92 0.96 12

Micro avg 0.97 0.97 0.97 65
Macro avg 0.97 0.96 0.96 65
Weighted avg 0.97 0.97 0.97 65
Samples avg 0.97 0.97 0.97 65

from the coverslip. Despite these impediments, the obtained result is
promising.

Further insight into the classifier’s performance can be gained from
the confusion matrix, as shown in Fig. 7. The matrix reveals the clas-
sification outcomes for each class, reaffirming the subpar performance
observed for class 1.

The incorporation of the majority voting scheme, as detailed in the
previous section, has yielded significant improvements in the perfor-
mance of the classifier. The results on the testing set are depicted in
Table 3. Notably, the primary issue observed in the previous model,
namely the poor performance of class 1 due to its underrepresen-
tation, has been effectively addressed. The precision for class 1 has
now reached 91%, while the average precision and F1-score have
significantly improved to 97%, indicating superior performance. These
advancements are also evident in the confusion matrix shown in Fig. 7.

The utilization of the majority voting scheme on the retrieved
subimages has greatly enhanced the classifier’s ability to accurately
differentiate input images. This improvement stems from the enhanced
generalizability of the classifier, where minor misclassifications in in-
dividual subimages do not significantly impact the overall image clas-
sification. The classifier exhibits robustness in handling faulty classi-
fications, which aligns with the true objective of our task: accurately
identifying the genera of microorganisms present in the image. Given
that monocultures are observable in the images, the classification of
subimages becomes less relevant, with the focus shifting to assigning
the overall image to a specific genera. It should be noted that applying
the same scheme directly to polycultures of microorganisms in the
sample may require additional methods, such as utilizing graphs with
probabilities assigned to the edges.

One aspect of concern in the results is the limited size of the testing
set. The preparation of samples for our experiment is a non-trivial and
laborious task, involving a purification process, cultivation of samples
under specific conditions for several days and image preparation. Con-
sequently, we acknowledge the need to expand the dataset in future
work and to incorporate a wider range of microorganism genera. The
evaluation results involves assessing the accuracy and loss function
values throughout the training process, ensuring that overfitting does
not occur. To alleviate the risk of overfitting, we have incorporated
dropout in the dense layers of our CNN. As illustrated in Fig. 8, there
is no evidence of overfitting. Both the accuracy on the training set
and the validation set steadily increase over the course of the epochs,
particularly beyond 500 epochs. Additionally, no significant decrease
in training accuracy is observed as the training progresses, indicating
that our model successfully avoids overfitting.

A significant fact is that computations were also conducted with-
out employing the Transfer Learning. However, the results obtained
without Transfer Learning exhibited similarities to those achieved with
the latter, even though there was a notably extended computation
time. This can be attributed to the requirement of training all blocks
of ResNet50 for each epoch, as well as starting with random weights
rather than utilizing weights pre-trained on ImageNet. The generated
outcomes underscore the superiority of the Transfer Learning.
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Fig. 8. Accuracy and loss function during training of the examined model on training and validation sets.

4. Conclusions

In conclusion, this study proposes the use of machine vision and
machine learning techniques, specifically CNN for the automated iden-
tification of different fungi and Chromista based on their microscopic
images and morphological traits. The system aims to address the lim-
itations of traditional identification methods, such as morphological
analysis, which are often restricted to genus-level identification, by
automation the process, making it faster and more efficient.

The developed system was evaluated using a dataset of soil microor-
ganisms obtained from the Symbio-Bank at The National Institute of
Horticultural Research.

The dataset (Struniawski, 2023) comprised images of four different
genera: Fusarium, Trichoderma, Verticillium and Phytophthora. Despite
challenges related to imperfect subimage retrieval, variations in mag-
nification levels and impurities in the images, the classifier achieved a
promising overall precision of 82%.

Furthermore, majority voting scheme was incorporated, leading to
significant improvements in classifier performance. The precision for
the underrepresented class 1, increased to 91% from 62%, while the
overall average precision and F1-score improved to 97%. These en-
hancements demonstrate the system’s ability to accurately differentiate
between microorganism genera, aligning with the primary objective of
identifying the overall image’s genera.

The evaluation of the model’s accuracy and loss function values
throughout the training process revealed no evidence of overfitting. The
accuracy on the training and validation sets steadily increased over the
epochs, with no significant decrease in training accuracy observed. This
indicates that the dropout mechanism implemented in the dense layers
of the CNN effectively prevented overfitting.

For future extension of this work, it is important to expand the
dataset, to incorporate additional microorganism genera and to ex-
plore the integration of phenotypic and molecular methods to achieve
species-level identification. The system has the potential to revolution-
ize this area in the agricultural industry by providing cost-effective and
efficient pathogen detection, thereby minimizing the risk of crop losses
and improving overall agricultural productivity.

In summary, the combination of machine vision, machine learning
techniques and CNNs presented in this study represents a significant
step towards developing an automated system for accurate identifica-
tion of soil microorganisms. With further advancements and integration
of complementary methods, the system can serve as a valuable and
feasible tool for farmers, laboratories and researchers in the agricultural
domain.
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3.4.3 Extreme Learning Machine for identifying soil-dwelling mi-
croorganisms cultivated on agar media

Publication: K. Struniawski, R. Kozera, P. Trzciński, A. Marasek-Ciołakowska and
L. Sas-Paszt. "Extreme learning machine for identifying soil-dwelling microorganisms
cultivated on agar media". Scientific Reports 14, no. 31034, 2024. doi:
10.1038/s41598-024-82174-4.

Abstract : The aim of this research is to create an automated system for identifying
soil microorganisms at the genera level based on raw microscopic images of monocultural
colonies grown in laboratory environment. The examined genera are: Fusarium, Tricho-
derma, Verticillium, Purpureolicillium and Phytophthora. The proposed pipeline deals
with unprocessed microscopic images, avoiding additional sample marking or coloration.
The methodology includes several stages: image preprocessing, segmenting images to
isolate microorganisms from the background, calculating features related to image color
and texture for classification. Using an extensive dataset of 2866 images from the Na-
tional Institute of Horticultural Research in Skierniewice the Extreme Learning Machine
model was trained and validated. The model showcases high accuracy and computational
efficiency compared to other Machine Learning state-of-the art methods e.g. CatBoost,
Random Forest or Convolutional Neural Networks. Statistical techniques, including Mul-
tivariate Analysis of Variance were employed to confirm significant differences among the
datasets, enhancing the model’s robustness. Nevertheless, Shapley Additive Explanations
values provided transparency into the model’s decision-making process. This approach
has the potential to improve early detection and management of soil pathogens, promoting
sustainable agriculture and demonstrating machine learning’s potential in environmental
monitoring, microbial ecology or industrial microbiology.
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and validated. The model showcases high accuracy and computational efficiency compared to other 
Machine Learning state-of-the art methods e.g. CatBoost, Random Forest or Convolutional Neural 
Networks. Statistical techniques, including Multivariate Analysis of Variance were employed to confirm 
significant differences among the datasets, enhancing the model’s robustness. Nevertheless, Shapley 
Additive Explanations values provided transparency into the model’s decision-making process. This 
approach has the potential to improve early detection and management of soil pathogens, promoting 
sustainable agriculture and demonstrating machine learning’s potential in environmental monitoring, 
microbial ecology or industrial microbiology.

Sustained growth of yields is needed to fulfill the rise of consumption associated with increasing human 
population. For this purpose, scientists turn their attention towards the analysis of soil microorganisms that 
affect plant crop. The influence of pathogenic and other deleterious microorganisms could be very severe 
and may lead to enormous losses1. In contrast, some species of soil microorganisms can effectively control 
plant pathogens and stimulate plant growth increasing amount and quality of crop2. Understandably, the 
identification of microorganisms is critical in this area of research. Conventional methods are based on isolating 
the microorganism samples from soil, observing them under a microscope and lastly identifying examined 
organisms on the basis of their macro and micromorphology combined with phenotypic and molecular biological 
methods3. The goal is to alleviate the latter by automatizing the task of soil microorganisms recognition based 
only on morphological traits. Noticeably such identification setting is only possible for some soil microorganism 
species and only on genera level due to the small differences in appearance of microorganisms within a genera4. 
For this reason recognition conducted by microbiologists is a process that involves many different methods 
combined together that are time and cost consuming5.

Extensive studies have explored the application of Machine Learning (ML) for detecting pathogenic fungi 
based on leaf images, achieving remarkable accuracy levels6. Convolutional Neural Network (CNN) Models such 
as AlexNet, GoogleNet, InceptionV3 and ResNets reach AUC scores close to 99% in detecting fungal pathogens 
through the images of leaves7,8. These studies underlie the potential of ML to accurately identify plant diseases 
and to classify the specific genera of microorganisms responsible for these state. Unfortunately, such approaches 
identify threats only after symptoms have been manifested. The resulting delay can lead to significant losses, 
especially with diseases like Verticillium wilt9. It is particularly insidious as it spreads rapidly and can persist in 
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the soil for extended periods, making it difficult to eradicate once it becomes established10. Thus, early detection 
is crucial in managing such diseases before they cause widespread damage and agricultural losses.

There are various time-consuming and costly methods for identifying microorganisms in soil samples, 
including phenotypic and molecular techniques11. An alternative approach is to identify the genera of 
microorganisms with the aid of microscopic imaging. Noteworthy, while identifying soil fungi remains a niche 
study area, some insights might be gained from studies focusing on infections that are hazardous to human health. 
Zielinski et al. explored a similar challenge, demonstrating that the use of microscopic images can accelerate the 
identification process12. Their research shows that combining CNNs with bag-of-words techniques can greatly 
reduce both the time and cost of fungal species identification by removing the necessity for extended biochemical 
tests. However, the limitation of Zielinski’s work is its reliance to the relatively small dataset of 180 images. 
Additionally, they all are captured under consistent lighting conditions and using a single type of microscope, 
with expert involvement potentially introducing biases. In contrast, the method presented in this paper not 
only addresses the need for rapid and cost-effective identification of soil microorganisms but also establishes 
a robust testing framework. The proposed model is validated across multiple datasets, each prepared under 
various conditions. This represents also the test scenario under which dataset is generated fully automatically, 
with the microscope capturing images sequentially and non-overlappingly to cover the sample area.

Recent research has increasingly indicated the transformative potential of ML, particularly deep learning, 
in microbiology. In particular, studies by Treebupachatsakul13 and Khasim14 showcase the application of deep 
learning for recognizing and classifying microorganisms, with Khasim specifically emphasizing the efficacy of 
CNNs. Qu15 and Jiang16 provide comprehensive overviews of ML applications in microbiology, underscoring 
its utility in classification tasks and its potential to enhance the organization and application of microbiological 
knowledge. The surge in research utilizing CNN methods is notable due to their straightforward processing 
pipeline, which eliminates the need for labor-intensive feature crafting and often bypasses feature selection 
entirely. Despite this, traditional machine learning methods that involve feature engineering, such as Support 
Vector Machines (SVM), Random Forests (RF) and k-Nearest Neighbors (KNN), remain prevalent in microbial 
studies. For instance, Kotwal17 discusses their use in bacterial classification, demonstrating their continued 
relevance.

Rani18, in a comprehensive review covering 100 studies on machine learning applications in microbial 
recognition from 1995 to 2021, notes that only 12.1% of these papers focus on fungi. This statistic highlights the 
novel contribution of the current paper in addressing the identification of fungal microorganisms. An example 
of such focused research is the work by Liu et al.19, which employs ML techniques to detect and count fungal 
microorganisms in microscopic images. Similarly, Tahir et al.20 utilized SVM for detecting fungal spores. Their 
approach involved extracting image patches, preprocessing them with Gaussian filters and using handcrafted 
features to achieve a notable accuracy of 88%. These studies collectively emphasize the significant and growing 
role of ML in advancing the field of microbiology, particularly in the area of fungal identification.

The main research question explored in this study is whether a robust ML model can be developed for the 
accurate identification of specific soil microorganism genera across various datasets, including those generated 
through automated image capture. This capability is crucial for advancing systems that provide rapid and 
precise identification, thereby enabling timely interventions in agriculture to mitigate the devastating impacts of 
microorganism pathogens on crops or laboratory colonies.

The datasets used in this research is obtained from Symbio-Bank21 - the collection of microorganisms collected 
by The National Institute of Horticultural Research in Skierniewice. A system developed here is designed to 
classify microscopic images of the following soil microorganisms - fungi of genera Fusarium, Trichoderma, 
Verticillium, Purpureolicillium and Chromista of genera Phytophthora. Only a single type of microorganisms is 
assumed to be present on the image upon applying rectification process to obtain monocultural isolate from the 
input pictures of the examined material.

Microscopic images of soil-dwelling microorganisms are very complex and difficult to handle by standard 
image processing methods22. Microorganisms exhibit a wide range of shapes and textures, including non-rigid 
and irregular forms, which complicates segmentation and analysis23,24. The respective organisms’ structures are 
not homogeneous as in the case of bacteria25. Indeed, they are featured by various irregular structures like hyphae, 
phialides, micro and macroconidia, conidia cells, zoospores and many more. Watanabe26 conducted a brief 
study providing microbiologists a resource for rapid comparison of microorganism morphologies. Taxonomic 
differences among types of soil microorganisms include different shapes and morphology of microorganism/
spore cells, different thickness of microorganism/spore cell walls, differences in color, microorganism/spore cell 
structure. Consequently, the goal of constructing a classifier using machine vision methods constitutes a non-
trivial task.

The research leverages five distinct datasets specifically curated for this study. The initial dataset, comprising 
128 images, was meticulously prepared by an expert microbiologist and served as a basis for fine-tuning the image 
processing pipeline. This foundational set was expanded into a second dataset with 303 images. Subsequently, 
three additional datasets were created using automated image acquisition techniques, collectively contributing 
to a total of 2,866 images.

During the literature review, it was observed that this research employs the largest database in publications 
dedicated to soil microorganism identification. Typically, manual image acquisition is a labor-intensive process, 
leading most studies to work with datasets containing fewer than 500 images. Furthermore, these images are 
often captured under a single setup and methodology, which may introduce challenges in generalizing the 
technology to new environments. To address these limitations, the model was initially optimized using the first 
dataset, then trained and validated across four additional datasets.

To ensure the findings are both robust and interpretable, the study integrates Explainable AI (XAI) 
techniques. This approach not only evaluates the model’s performance but also elucidates the rationale behind 
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the classification of individual instances and overall test sets, as elaborated in the Results section, which also 
includes standard performance metrics. A key aspect of the study is also the comparison between traditional 
handcrafted feature approaches and CNNs. On the other hand, study aims to advance the research towards 
practical application stages, where prediction time is critical, especially during large-scale tests. For this purpose, 
the study employs the Extreme Learning Machine (ELM), a type of Single Layer Feedforward Neural Network 
(SLFNN), known for its rapid training and exceptionally fast prediction times. ELMs are particularly suited for 
practical applications where quick predictions are essential27.

The presented system can distinguish only the tested types of soil microorganisms based on spores obtained 
from cultures of microorganisms on agar media and visualized on microscopic images. Within the genera of 
soil microorganisms, there is variability at the level of species and strains4,28. At this stage of the development 
of the presented system, the authors focused on the genera of microorganisms. The authors realize this method 
will fail flawlessly due to phenotypic variability within species and genera. This paper accurately recognizes the 
selected soil-dwelling using the ML model that, in this stage, can be directly used in the contamination early-
detection of laboratory cultures by the analyzed genera of microorganisms. Detection of microorganisms in soil 
directly on the soil photo is currently not possible, and up to now, any system capable of performing such a task 
has not been proposed; this is the scope for future development merging methods proposed in this paper of 
phenotypic recognition with molecular as the ultimate system. For isolates belonging to Fusarium, Verticillium, 
Phythophthora, Trichoderma and Purpureocillium, which do not grow on agar media, it will not be possible to 
use the presented method. The demonstrated approach is the first stage of work aimed at differentiating among 
themselves, which is critical for horticultural practice in the five types of soil microorganisms.

Results
In this section, the results from various evaluations are comprehensively presented, focusing on the detailed 
analysis of the features generated across different datasets. The primary classifier employed in this research is the 
ELM. To provide a comprehensive evaluation, comparisons with different ML algorithms are also presented in 
terms of classification metrics and time of execution.

Feature analysis
This subsection explores the distinctions and commonalities in the features across the various datasets. Each 
dataset comprises a set of 74 features, as detailed in the Methods section. To initiate this analysis, boxplots are 
utilized to visually represent the value distributions of specific features across the different datasets (see Fig. 
1). This method highlights the statistical differences among datasets by selecting representative features from 
each category for visualization. The boxplots effectively illustrate how the statistical properties of features vary 
between datasets, underscoring the diversity in the characteristics of images from different strains, microscopes 
and lightning conditions.

Multivariate Analysis of Variance (MANOVA)29 was employed to assess the differences between datasets 
across a reduced feature space (10 dimensions) derived from Principal Component Analysis (PCA)30. The 
MANOVA revealed significant findings across both the intercept and dataset comparisons. In terms of the 
intercept, the analysis indicated that the combined effect of all PCA components was significantly different 
from zero (Wilks’ lambda = 0.3304, F(10, 2818) = 571.1673, p< 0.0001). This suggests a robust multivariate 
separation in the reduced feature space. Furthermore, comparing datasets showed highly significant differences 
(Wilks’ lambda = 0.0119, F(40, 10687) = 592.4963, p< 0.0001), indicating distinct multivariate distributions 
among the datasets. Pillai’s Trace (2.5217) shows a significant portion of variance in the dependent variables 
is explained by the grouping variable (Dataset label). Hotelling-Lawley Trace (9.6309) suggests substantial 
multivariate differences between the datasets. Roy’s Greatest Root (5.1398) implies a strong difference in the first 
canonical dimension underscoring the statistically meaningful differences of feature values across the datasets. 
Visual confirmation through t-Distributed Stochastic Neighbor Embedding (t-SNE)31 analysis in Fig. 2 further 
supported these findings, illustrating clear separation between datasets in the reduced-dimensional space 
highlight the different nature of the datasets employed in this research yielding the complex task for ML model.

Performance of the model
The performance of the ELM is evaluated both on individual datasets and on combined datasets (marked as 
All) to assess its robustness and adaptability. The ELM performance is tested on individual datasets, varying the 
number of neurons in the hidden layer from 100 to 2000. The activation function used is Mish, an unconventional 
choice for ELM but one that recent studies suggest it can be successfully applied to ELM, borrowing from its use 
in deep learning techniques32.

The implementation utilized is TfELM33, which accelerates computations by leveraging the TensorFlow library 
to run on a GPU. This setup enables efficient processing and enhances the ELM’s computational performance. 
The evaluation follows a protocol of 50 iterations of 10-Fold Cross-Validation to ensure reliable and stable results 
for a given dataset.

The ultimate performance metrics, representing the best outcomes for the specified number of neurons, are 
summarized in Table 1. The ROC/AUC scores reflect the one-vs-rest approach used for multi-class classification.

The results indicate exceptional performance, as evidenced by high F1 scores, precision, recall and near-
perfect ROC AUC values across all datasets, affirming the model’s robustness and accuracy in classifying various 
genera of soil microorganisms by the accurate feature generation from various datasets.

Comparison to the other models
The performance of ELM was benchmarked against several well-established classifiers to evaluate its efficiency 
and accuracy. The chosen classifiers for this comparison included Multi-Layer Perceptron (MLP), Gradient 
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Boosting, XGBoost, LightGBM, CatBoost and Random Forest34, all implemented using the scikit-learn library. 
ELM demonstrated promising results, particularly comparable to CatBoost, highlighting its capability for precise 
predictions. Table 2 represents the comparison tests across different datasets and methods.

For reference, experiments were also conducted using Convolutional Neural Networks (CNNs) - ResNet50 
and ResNet152V2, fine-tuned on pre-trained ImageNet models. Input images from each dataset were resized to 
224 × 224 × 3 and split into training, validation, and testing sets in a 70:20:10 ratio. The models were adapted 
with a custom top layer consisting of two fully connected layers with 512 neurons, separated by a Dropout layer 
with a rate of 0.3 to nullify 30% of the weights, enhancing robustness and mitigating overfitting. The Adam 
optimizer with a learning rate of 0.004 and the Sparse Categorical Crossentropy loss function were used. Each 
model was trained for a maximum of 1000 epochs, with Early Stopping implemented to halt training if the 
validation loss did not decrease further. The results are summarized in Table 3.

Time execution
The computational efficiency of various classifiers was assessed to evaluate their suitability for the system. The 
evaluation involved measuring both the average fit time (training duration) and the average prediction time 

Figure 1.  Boxplots of a given feature across different datasets.
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during a single fold of 10-Fold cross-validation. For this purpose, the largest dataset was used, a combination of 
Dataset1-5, comprising 2,866 images. The results, summarized in Table 4, clearly illustrate the exceptional 
performance of the ELM in terms of both fit and prediction times. Compared to other classifiers, ELM stands 
out, particularly when contrasted with CatBoost that is proved to provide comparable accuracy performance 
with ELM. The ELM demonstrated a significant advantage, being six times faster in the fit phase and twice as fast 
in the prediction phase, underscoring its potential for practical industrial applications. Given its accuracy and 
speed, ELM offers substantial benefits over other classifiers. Noteworthy, CNN time of the prediction has been 
measured as 0.11 s, twelve times longer than ELM.

Explainable artificial intelligence
This subsection explores the transparency and interpretability of the model’s outputs by employing XAI 
techniques. To elucidate the impact of the handcrafted features, Shapley Additive Explanations (SHAP) are 
utilized. SHAP values provide insights into the contribution of each feature to the model’s predictions for any 
machine learning method35. Figure 3 presents a summary plot for Dataset1, where the ELM with 1000 neurons 
in the hidden layer and the Mish activation function is analyzed. This plot allows us to discern whether specific 
features have a positive or negative influence on the model’s predictions, thereby enhancing the interpretability 
of the classification decisions.

The beeswarm plot provides a clear visualization of the most influential features in the overall classification 
process using the test set. As observed, a variety of feature types contribute significantly, indicating that these 
features serve as robust descriptors of image characteristics. Additionally, individual prediction explanations 
can be examined using the waterfall plot, which illustrates how specific traits positively or negatively influence 
the model’s prediction for a given sample (see Fig. 4). This dual approach-examining both the overall feature 
importance and the detailed contribution for individual samples-enhances the understanding of the model’s 
decision-making process. Notably, the analysis of both beeswarm and waterfall SHAP plots reveals that the 
selected feature sets, including statistical measures over the I1I2I3 and XYZ color spaces, as well as GLCM and 
GLRLM features, each contribute significantly to the final decisions made by the classifier.

Another approach involved using SHAP to evaluate the overall influence of features on the target variable. 
The Dataset1 was cleaned, normalized, and split into training and testing subsets (80/20). An ELM model 
with 1,000 neurons and a mish activation function was trained. SHAP explainability was applied to the testing 
data to calculate SHAP values and assess feature importance. The absolute SHAP values were summed across 
all samples, allowing the ranking of features based on their contribution to the model’s predictions. The most 
influential features were identified and are presented in Table 5.

Dataset Neurons F1 Precision Recall AUC (OvR)

All 2000 0.969 0.969 0.969 0.997

Dataset1 2000 0.874 0.874 0.874 0.965

Dataset2 1000 0.887 0.887 0.887 0.975

Dataset3 1000 0.989 0.989 0.989 1.000

Dataset4 1000 0.998 0.998 0.998 1.000

Dataset5 300 0.984 0.984 0.984 0.996

Table 1.  Metrics calculated from 50 runs of 10% cross-validation on a given datasets using Extreme Learning 
Machine with mish activation function.

 

Figure 2.  t-SNE visualization of datasets.
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Discussion
The central objective of this study was to develop a robust ML pipeline capable of accurately classifying soil 
microorganisms based on their microscopic images. This task, particularly focusing on specific genera of fungi 
and Chromista, presents significant challenges due to the inherent complexity and variability of these organisms’ 

Dataset Model F1 Recall Accuracy AUC

All

CatBoost 0.982 0.988 0.983 1.000

MLPClassifier 0.980 0.990 0.990 0.999

LightGBM 0.980 0.987 0.987 1.000

XGBoost 0.976 0.981 0.985 0.999

RandomForest 0.974 0.981 0.980 0.999

GradientBoosting 0.971 0.976 0.976 0.998

ELM 0.969 0.969 0.969 0.997

AdaBoost 0.623 0.631 0.631 0.862

Dataset1

ELM 0.874 0.874 0.874 0.965

MLPClassifier 0.856 0.861 0.860 0.951

GradientBoosting 0.853 0.863 0.861 0.966

XGBoost 0.853 0.856 0.854 0.968

LightGBM 0.847 0.851 0.851 0.965

CatBoost 0.841 0.850 0.843 0.968

RandomForest 0.840 0.844 0.847 0.964

AdaBoost 0.280 0.281 0.282 0.577

Dataset2

ELM 0.887 0.887 0.887 0.975

MLPClassifier 0.852 0.857 0.859 0.966

CatBoost 0.840 0.846 0.844 0.970

LightGBM 0.839 0.847 0.843 0.968

XGBoost 0.829 0.833 0.837 0.967

GradientBoosting 0.818 0.824 0.828 0.959

RandomForest 0.791 0.794 0.796 0.957

AdaBoost 0.446 0.447 0.447 0.743

Dataset3

RandomForest 0.999 1.005 1.000 1.000

CatBoost 0.998 1.000 1.006 1.000

ELM 0.998 0.998 0.998 1.000

LightGBM 0.997 0.998 0.998 1.000

MLPClassifier 0.997 1.007 1.001 1.000

XGBoost 0.995 1.001 1.003 1.000

GradientBoosting 0.995 1.000 0.996 1.000

AdaBoost 0.972 0.981 0.976 0.987

Dataset4

CatBoost 0.990 0.992 0.993 1.000

ELM 0.989 0.989 0.989 1.000

LightGBM 0.989 0.998 0.997 1.000

XGBoost 0.987 0.994 0.996 1.000

GradientBoosting 0.986 0.996 0.987 1.000

MLPClassifier 0.985 0.994 0.987 1.000

RandomForest 0.984 0.985 0.992 0.999

AdaBoost 0.908 0.911 0.911 0.976

Dataset5

ELM 0.984 0.984 0.984 0.996

CatBoost 0.962 0.963 0.964 0.996

LightGBM 0.955 0.965 0.959 0.997

XGBoost 0.955 0.964 0.957 0.994

RandomForest 0.952 0.958 0.956 0.996

GradientBoosting 0.948 0.957 0.957 0.994

MLPClassifier 0.946 0.949 0.950 0.996

AdaBoost 0.817 0.819 0.826 0.963

Table 2.  Metrics calculated from 50 runs of 10% cross-validation on a given datasets using various ML 
models, sorted by descending F1 score per dataset, bold rows are the best results obtained for each dataset.
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structures. The results from the extensive experiments underscore the proposed approach effectiveness 
highlighting substantial advancements in automated microorganism identification.

Across all datasets, ELM consistently achieved high accuracy, precision, recall and ROC/AUC values, 
demonstrating its robustness and adaptability to varying imaging conditions and microorganism strains. This 
consistency is notable whether the model was tested on individual datasets or a combined dataset, underscoring 
its potential for practical application in diverse environments. When benchmarked against other well-established 
machine learning models, including MLP, Gradient Boosting, XGBoost, LightGBM, CatBoost and RF, ELM 
outperformed these methods in terms of both speed and accuracy. Its superior balance of computational 
efficiency and predictive power makes it particularly suitable for large-scale data processing tasks.

Model Fit time [s] Score time [s]

AdaBoost 1.197 0.022

LightGBM 3.564 0.018

ELM 3.610 0.009

XGBoost 4.439 0.018

RandomForest 5.212 0.027

MLPClassifier 5.968 0.008

CatBoost 18.283 0.017

GradientBoosting 30.021 0.007

Table 4.  Time of the fit and prediction for a selected ML methods and dataset that incorporates together all 
images used in research.

 

Dataset Metric ResNet50 ResNet152V2

All

Accuracy 0.7438 0.9000

Precision 0.6546 0.9167

Recall 0.5381 0.9000

F1 0.5461 0.8920

AUC 0.9265 1.0000

Dataset1

Accuracy 0.6154 1.0000

Precision 0.5000 1.0000

Recall 0.5333 1.0000

F1 0.5079 1.0000

AUC 0.8028 1.0000

Dataset2

Accuracy 0.6774 0.9691

Precision 0.4051 0.9678

Recall 0.4485 0.9678

F1 0.4064 0.9678

AUC 0.8915 0.9992

Dataset3

Accuracy 0.9278 0.8462

Precision 0.9240 0.8750

Recall 0.9336 0.8667

F1 0.9277 0.8389

AUC 0.9733 0.9833

Dataset4

Accuracy 0.9219 0.8710

Precision 0.9154 0.9167

Recall 0.9156 0.8263

F1 0.9143 0.8336

AUC 0.9844 0.9854

Dataset5

Accuracy 0.8000 0.9437

Precision 0.8889 0.9410

Recall 0.8000 0.8742

F1 0.7619 0.8911

AUC 1.0000 0.9922

Table 3.  Metrics calculated for ResNet50 and ResNet152V2 on various datasets. Bold values represent the best 
result for each metric within the same dataset.
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The comparison of classical feature-based models and CNNs highlights the performance of ELM in terms of 
execution time and predictive accuracy. While the analyzed CNN models generally achieved higher F1 scores 
and AUC values across most datasets, their prediction time (0.11s) was significantly slower compared to ELM 
(0.009s). This makes ELM particularly advantageous in scenarios where quick predictions are critical. Despite 
its lower performance metrics in some cases, ELM demonstrated competitive results, achieving an F1 score of 
up to 0.984 in specific datasets, showcasing its balance between computational efficiency and predictive power.

The comprehensive analysis of the datasets using MANOVA revealed significant multivariate differences 
among them. This finding indicates that each dataset captures unique aspects of the microorganism images, 
emphasizing the importance of using a diverse set of data to train and validate the model. The variability among 
datasets is crucial for ensuring that the model is generalizable and robust across different imaging conditions 
and microorganism characteristics.

Another contribution of this study is the use of SHAP values to understand the impact of individual features 
on the model’s predictions. This analysis provides crucial insights into how the model interprets different 
morphological traits and makes classification decisions. The ability to interpret these decisions is vital, especially 
in scientific and industrial applications where understanding the model’s reasoning can enhance trust and 
acceptance of its outputs. The most influential features, as identified by SHAP, span across all categories of the 
generated features described in the Feature Calculation section. This highlights the effectiveness of the approach, 
with texture features, in particular, emerging as the most descriptive for the ELM model.

Figure 3.  Shapley Additive Explanations summary plot for Dataset1 and ELM with 1000 neurons in hidden 
layer and mish activation function.
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The proposed approach also incorporated datasets obtained through automated image acquisition. This 
automation not only expanded the dataset size significantly but also introduced greater variability in imaging 
conditions. The model’s successful performance on these automated datasets demonstrates its potential for 
deployment in real-world diagnostic systems, where automated and rapid identification processes are essential. 
Noteworthy, in particular ELM performed better for datasets automatically acquired than the manual one taken 
by the expert.

Comparing research with existing literature, it becomes clear that this study sets a new benchmark in the 
field of soil microorganism identification. The use of a substantially larger and more varied dataset, coupled with 
automated image acquisition and a robust machine learning model, juxtapose this work from earlier efforts that 
often relied on smaller, manually curated datasets and more uniform imaging conditions. Future research could 
focus on scaling this approach for broader use, including integration into automated imaging systems for early 
detection of pathogenic microorganisms.

Additionally, while this study focused on specific genera of fungi and Chromista, the methodology could 
be expanded to include a broader range of soil microorganisms, such as bacteria, by addressing their unique 

Feature Importance

Entropy (H) I3 11.13

GLCM Energy B 7.90

GLCM Entropy R 7.72

GLRLM SRLGE 7.04

Skewness (H) I1 6.60

GLCM Correlation R 6.13

GLCM Energy R 5.98

GLRLM SRE 5.83

GLRLM LRE 5.69

Kurthosis X 5.58

Std I2 5.53

GLCM Dissimilarity R 4.99

GLCM Entropy G 4.61

GLCM Homogeneity G 4.58

GLCM Inverse Difference G 4.50

GLCM Homogeneity R 4.49

Std I1 4.32

Kurthosis Z 4.30

GLRLM RLN 4.26

GLCM Cluster Prominence G 4.17

Table 5.  Top 20 features ranked by importance based on SHAP values calculated for ELM with 1000 neurons, 
mish activation function on Dataset1.

 

Figure 4.  Shapley Additive Explanations waterfall plot for one of the samples from test set of Dataset1 and 
ELM with 1000 neurons in hidden layer and mish activation function.
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morphological characteristics. A key challenge in such an expansion would involve crafting features tailored to the 
new genera. Adding new genera to the analyzed dataset would require evaluating the existing features to ensure 
they effectively capture the relevant morphological differences. While the current feature set emphasizes color 
and texture, new datasets that include genera with distinct structural traits could benefit from the integration of 
additional geometric or shape descriptors, such as circularity, elongation, or convexity. Moreover, incorporating 
multi-scale texture features could improve the detection of more complex structures, complementing the existing 
color and texture-based metrics. If new genera are imaged using alternative methods, such as fluorescence 
microscopy, the system could be adapted by recalibrating color space features or incorporating intensity-specific 
metrics tailored to these imaging conditions.

Combining the machine vision-based approach with traditional microbiological methods could yield a hybrid 
system that leverages the strengths of both. For instance, rapid initial screening using proposed model could be 
followed by targeted molecular or phenotypic tests for confirmatory diagnosis, thus enhancing both speed and 
accuracy. Another potential application is the quick detection of cross-contamination during the cultivation 
process. This is particularly critical when working with soil-dwelling microorganisms, where multiple genera 
coexist and interact, potentially affecting experimental outcomes and product quality. Contamination detection 
is especially challenging with certain genera, such as Trichoderma, Fusarium, Verticillium, and Purpureocillium. 
A hybrid system combining rapid machine vision analysis with confirmatory microbiological methods could 
be invaluable for detecting and mitigating such contamination, ensuring the integrity of experimental cultures.

To ensure the model’s adaptability to new and diverse environmental conditions, future studies should 
explore its performance on datasets obtained from different geographic regions, soil types and agricultural 
practices. This would further test the model’s robustness and ensure its applicability in a wide range of real-
world scenarios.

In conclusion, this study successfully addresses the complex task of classifying soil microorganisms based 
on microscopic images. By developing and validating a robust ML model and integrating diverse datasets 
including those obtained through automated image acquisition, the advancement in the field is significant. 
The insights gained from feature analysis and the application of XAI techniques underscore the model’s utility 
and transparency. This work not only advances automated microorganism identification but also lays the 
groundwork for future innovations in microbial diagnostics and soil health monitoring. The proposed approach 
holds great promise for transforming agricultural practices through early detection and management of soil-
borne pathogens, contributing significantly to sustainable crop production and food security.

Methods
In this study, a comprehensive pipeline is proposed, integrating image preprocessing, segmentation, feature 
generation and classification using extracted features. Each element of this pipeline is meticulously elaborated 
upon in this section. Additionally, the five distinct datasets employed in this research are thoroughly explained, 
along with the detailed processes of image preprocessing, segmentation, feature extraction and the specifics of 
the ELM method.

Datasets
Microorganisms are grown in Potato Dextrose agar, specifically Merck 1.10130.0500 at 26 degrees Celsius. In 
the case of Fusarium, Verticillium and Phytophthora the microorganisms are incubated for 7–10 days, while for 
Trichoderma strain it takes about 4-5 days until conidial spores are produced. In total five different datasets were 
formed that can be obtained from the corresponding author upon the reasonable request.

Dataset1
The initial experiments utilized a dataset comprising 128 images of microorganisms from the genera Verticillium, 
Trichoderma, Phytophthora and Fusarium, referred to as Dataset1 throughout this manuscript with exemplary 
images presented in Fig. 5. This foundational dataset is based on the work of Kruk et al.36, which demonstrated 
the potential for classifying soil-dwelling microorganisms using ML techniques.

The primary objective with Dataset1 was to develop a robust image preprocessing and segmentation 
pipeline that could accurately differentiate the microorganism regions from the background as this is recognized 
as a crucial step for ultimate model’s performance. Despite being well-suited for preliminary investigations into 
image segmentation and feature extraction, Dataset1 was relatively small, which limited its ability to ensure 
the robustness of the solution across diverse scenarios.

To overcome these limitations and to provide a comprehensive evaluation of the methodology’s performance, 
the additional, substantially larger datasets are provided. These new datasets were crucial in validating the 
generalizability and effectiveness of the proposed image preprocessing, masking and classification methods at 
scale.

Dataset1 was carefully curated by professional microbiologists who were responsible for both sample 
preparation and image acquisition through microscopy. The primary goal was to generate high-quality images 
that clearly showcased the morphological characteristics essential for accurate microorganism identification. 
To achieve this, each image was meticulously focused to ensure that the unique features of each genus were 
prominently visible. The process began with the cultivation of the microorganisms, followed by the careful 
transfer biological material onto microscope slides. To facilitate optimal imaging, a drop of distilled water was 
added to dilute the biological material and a cover slip was placed on top (see Fig. 8). These prepared slides were 
then subjected to microscopic examination, allowing the microbiologists to capture detailed images at different 
magnification levels that would serve as the basis for the ML analysis.

Given that the model in question solely relies on image data for input without the incorporation of 
additional multimodal features, the quality and clarity of these images were paramount. However, this approach 
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introduces a degree of bias, as image acquisition process rely heavily on the expertise of the microbiologists. This 
necessitates the involvement of experts throughout the pipeline to ensure that the images accurately represent 
the microorganisms’ traits for effective model training and evaluation.

Dataset2
Dataset2 builds upon the foundation of Dataset1 by expanding its scope and content. This expanded 
dataset includes additional images of the original genera (Trichoderma and Fusarium) and introduces images 
of a new genus, Purpureocillium (see Fig. 6). Prepared using the same procedures as Dataset1, Dataset2 
effectively consolidates and enhances the original set, resulting in a comprehensive collection of 304 images.

Dataset3 and Dataset4
Upon evaluating Dataset1 the accuracy of the generated segmentation masks is assessed for the suitability 
of the calculated features and the overall performance of the applied ML methods. This comprehensive analysis 
highlighted the need for a larger, more automated dataset to minimize bias and enhance scalability. Thus, 
the third dataset, referred to in this paper as Dataset3 was prepared, aiming to automate the entire image 
acquisition process and build a significantly larger dataset without the direct involvement of experts.

The critical point in creating Dataset3 was the elimination of expert bias inherent in manually capturing 
images, which, while valuable for understanding morphological traits, does not reflect real-world scenarios 
where a fully automated system is the target. The approach involved using an automated microscope equipped 
with a movable mechanical stage controlled by built-in servo motors and software drivers. This setup allowed the 
microscope to systematically capture images across a predefined area without overlap.

During initial trials, the challenges with out-of-focus images due to the varying depths (Z-axis) of 
microorganisms at high magnification levels and slight imperfections on the slide surfaces were encountered. 
Although, the autofocus feature helped address this issue, it occasionally failed to achieve perfect focus, leading 
to some variability in image quality. Despite these challenges, the automated system substantially reduced the 
reliance on expert involvement and increased the efficiency of image acquisition. To ensure comparability, the 
samples for Dataset3 were cultivated similarly to those in Dataset1. Two methods of material transfer onto 
microscope slides were examined. The first method, consistent with Dataset1, involved placing the biological 
material on a slide, adding a drop of water and covering it with a slip. This approach created Dataset3. The 
second method involved smearing the material directly onto the slide without a cover slip, which formed a new 
dataset, referred to as Dataset4 (see Fig. 9b).

Figure 5.  Explanatory images from Dataset1.
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Both Dataset3 and Dataset4 were collected without requiring biological expertise for each image. 
Instead, a trained man handled the sample preparation and setup of the microscope, which included positioning 
the sample on the mechanical stage, using software to target areas of interest and initiating the automated imaging 
process with autofocus. This approach simulates a real-world scenario where minimal expert intervention is 
needed. Sample images from both datasets are presented in Fig. 7. Looking forward, there is potential for further 
automation, such as using robots for material transfer and advanced software for precise targeting, which would 
enhance the efficiency and reliability of the image acquisition process. These advancements are crucial for the 
ongoing development and scalability of the system.

Dataset5
The fifth dataset, referred to as Dataset5, was generated following a procedure similar to that of Dataset4 
(Fig. 8). For Dataset4, images were captured in a non-overlapping, systematic manner to cover the entire 
sample area, as illustrated in Fig. 9b. Each image was taken using the microscope’s autofocus feature, which 
aimed to optimize focus for each shot. However, while autofocus provided a reasonable solution, it occasionally 
failed to achieve perfect focus across all images.

To address the limitations of autofocus, Dataset5 incorporated a depth imaging technique. This method 
involved capturing a series of images at varying focal distances (the distance between the sample and the 
camera lens) for each section of the sample. These multiple images, each focused at a different depth, were then 
automatically stacked to produce a single composite image. This stacking process significantly enhances the 
overall image quality by ensuring that all areas of the sample are in focus, thus mitigating the problem of focal 
inconsistencies observed with single-focus images.

Although this depth imaging approach enhances image clarity significantly, it requires a slower data 
acquisition process due to the need to capture and stack multiple images at different focal depths for each 
area of the sample. For Dataset5, the additional challenges were encountered when attempting to use the 
depth imaging technique in conjunction with the traditional method of adding a drop of water between the 
microscope slide and the coverslip that was applied for Dataset3. This method, commonly used to stabilize 
the sample for conventional imaging, proved unsuitable for depth imaging. The water layer caused instability, 
leading to slight movements of fungal elements within the sample. Consequently, these movements resulted in 
blurred or misaligned images when stacking the focal series, thereby undermining the intended clarity of the 
depth imaging process.

Figure 6.  Explanatory images from Dataset2 (here represented only new that are not present in 
Dataset1).
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Overview of the datasets
Initially, Dataset1 was prepared for preliminary research, focusing on data segmentation and feature 
calculation. This dataset included 128 images from four genera: Verticillium, Trichoderma, Phytophthora and 
Fusarium.

To test and to enhance the robustness of the solution, this dataset was expanded by creating Dataset2. 
This expanded dataset added more images for Trichoderma and Fusarium and incorporated a new genus, 
Purpureocillium, increasing the total to 303 images.

Subsequently, with the implementation of an automated image acquisition system, three additional datasets 
were developed: Dataset3, Dataset4 and Dataset5. These datasets were captured using an automated 
microscope, allowing to gather a significantly larger and more diverse collection of images. Unfortunately, 
Phytophthora could not be included in the automated datasets due to deterioration of all samples held prior to 
the establishment of the automated imaging system.

Figure 7.  Explanatory images from Dataset3 (a–c) and Dataset4 (d–f).
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Collectively, these efforts resulted in the creation of the largest database of soil microorganism images 
captured through microscopy for the ML purposes, setting a new standard in the literature. Datasets with all 
details are provided in Table 6.

The findings presented in this research are crucial due to the successful replication of the entire machine 
vision algorithm and ML methods across a range of datasets. These datasets vary significantly in size and were 
acquired using both automated and manual methods, as well as through two distinct types of microscopes. 
Such replication demonstrates that the system retains its performance consistently across different conditions, 
indicating a strong resistance to overfitting. For statistical proofs of this differences please refer to section Feature 
analysis.

This robustness is evident from the ability to maintain high accuracy and reliability in image analysis and 
classification, regardless of how the data was collected. The diverse operational settings in which the datasets were 
obtained, including automated and non-automated means, further validate the adaptability of the system. This 
versatility ensures that the system may be successfully deployed in a variety of real-world circumstances where 
consistency and reliability are critical. By proving effective across a broad spectrum of datasets and acquisition 
techniques, the system showcases its potential for scalability and generalization in the field of microbial image 
analysis.

Image preprocessing
All input images are automatically preprocessed in order to improve the segmentation phase which in turn has 
an essential impact on final classification accuracy. Indeed, the primary challenge associated with microscopic 
images lies in managing noise interference and low contrast impact. Another significant consideration is the 
presence of scale labels positioned at the bottom-left corner of each image for Dataset1 and Dataset2 
only. It is important to note that the colors of these labels may vary which potentially brings distortion to the 
generated results. The latter occurs due to the automatic color selection of the labels by a microscopic software. 
Image masks that differentiate image to label image foreground and background are prepared by thresholding, 
whose values are empirically chosen. Consequently, the labels are concealed by replacing their area with the 
average color value of the complete image. The following stage involves converting the given image IRGB  in 
RGB color space to grayscale forming image Igray , which can be subjected to further processing. To mitigate 
image noise, this study applies Gaussian and Wiener filters22. Finally, to improve the clarity of image features 
and to aid in distinguishing microorganisms from the background, the Contrast Limited Adaptive Histogram 
Equalization (CLAHE) algorithm37 is employed.

Figure 8.  Data acquisition process for Dataset1 and Dataset2.
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Image segmentation
Majority of the microscopic images in the datasets exhibit an imbalanced ratio between the area of the 
background and the area of the region of interest (ROI) that contains the soil microorganisms. Most of the area 
on microscopic pictures is covered by background information irrelevant to the classification task e.g. test-tube, 
medium for the cultivation of bacteria or minor impurities. Therefore, background has to be separated from the 
ROI. To address this issue, a binary image mask is created, assigning a value of 1 to each pixel that belongs to the 
ROI and a value of 0 to each pixel that belongs to the background. One of the most commonly used methods 
to perform image segmentation is an Otsu method38 that calculates one threshold value globally for the whole 
image upon minimizing weighted sum of variances within ROI and background pixel values and maximizing 
weighted sum of variances between them.

According to39, the Otsu method is known to produce weak results when the area of the ROI is imbalanced in 
comparison to the background area. Due to the above limitation a method called Adaptive Image Thresholding22 
is used.

The mask obtained using adaptive image threshold needs further image processing using morphological 
operations. Open operation is used to remove small objects in image and close operation is applied to join 
together objects that are close to each other. Both operations are applied to remove segmentation imperfections 
caused by the noise occurrence within original image (the so-called salt and pepper noise removal—see22).

Despite incorporating morphological operations, the thresholding results remain unsatisfactory. Classification 
accuracy of the ELM classifier applied on features computed for the generated mask renders 82.7% for 

Dataset Total Instances Verticillium Trichoderma Phytophthora Fusarium Purpureocillium

Dataset1 128 25 26 20 57 0

Dataset2 303 25 89 20 109 60

Dataset3 960 240 386 0 334 0

Dataset4 1279 260 240 0 240 539

Dataset5 196 49 49 0 49 49

Table 6.  Summary of the datasets with specified number of images per class.

 

Figure 9.  Automatized data acquisition process for given datasets creation.
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Dataset1. Unsatisfactory results are caused by the fact that input images are very complex as having different 
structures and textures. The segmentation accuracy is enhanced up to 87.4%, thus improving the performance of 
the classifier upon applying k-means algorithm40. Mask M is multiplied using Hadamard product41 with IRGB

t  
forming combined image Ic. On that image k-means method with k = 3 is run. As a result the original image 
is separated into three classes: i.e. a background and ROI area subsequently divided to two disjoint subclasses. 
Pixels that are classified to the brightest centroid represent a new, smaller area of ROI. The pixels with the highest 
contrast are assumed to have the most relevant information to distinguish microorganisms. In contrast, ROI 
pixels assigned to the centroid with lower values are classified in fact to the background as it may contain data 
disrupting the final results. In this manner a new mask M is generated. Finally, on a given mask, open and close 
morphological operations are applied. All crucial image segmentation stjpg contributing to the above algorithm 
are illustrated in Fig. 10 and the results from various datasets in Fig. 11.

Features calculation
Image features are computed as descriptors to measure statistical attributes of an image. The primary objective 
is to devise features that can effectively discriminate the different genera of microorganisms, enabling the 
formation of a robust classifier. Thus, color and texture-based handcrafted features are calculated in this study 
that are explained in the forthcoming subsections.

Color features
Color features are computed on combined images Ic generated by Hadamard product of original image IRGB

t  
with its mask M introduced in the previous section. Conversion of an image from RGB color values to a different 
color space prior to feature calculation can enhance classification accuracy42. Indeed, experiments show such 
increase once conversion from RGB to I1I2I3 color space is applied. First set of color features contains 8 
statistical features, each calculated separately for three image color channels of color space I1I2I343 to which 
Ic was previously converted. Every image pixel of coordinates x and y in RGB image is a vector containing 3 
values for the respective RGB color space i.e. IRGB [x, y] = [R[x, y], G[x, y], B[x, y]]. Conversion from RGB 
to I1I2I3 is made upon applying the following operation:

	
II1I2I3 [x, y] = IRGB [x, y]

[
1/3 1/3 1/3
1/2 0 −1/2

−1/4 1/2 −1/4

]
.

Histograms for images IRGB
t  and Ic (denoted by H and h, respectively, generated upon conversion to I1I2I3 

color space) are calculated for every color space channel. Image histogram is a vector h, where h[i] is a number 
of occurrences of image pixels with the corresponding intensity value ranging within 0 ≤ i ≤ 255. Having both 

Figure 10.  Segmentation process: (a)—an input image, (b)—fragment of an image mask upon applying 
Adaptive Image Thresholding and morphological operations on a, (c)—Hadamard product of a with b, (d)—an 
image created using k-means method on d, (e)—an image as a result of choosing pixels that are assigned to the 
brightest centroid of d and finally (f)—an image upon applying morphological operations to the previous step 
image.
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Figure 11.  Images and corresponding masks generated for various microorganism genera and datasets.
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histograms the following features are calculated: mean and standard deviation of H; mean, standard deviation, 
kurtosis, skewness, entropy and energy of h36.

The second set of color features is based on image Ic converted into XYZ color space. In contrast to the previous 
case, the calculated measures rely directly on image pixels, not histogram distribution. The latter permits to 
extract additional information on pixel spatial relationships which in turn is unavailable from image histogram44. 
The XYZ color space is selected after comparison of classification accuracy for the different color spaces. For 
every X, Y and Z color channel four statistical measures are calculated separately i.e. mean, standard deviation, 
kurtosis and skewness36 yielding in total 12 features.

Texture features
Image texture defines spatial relations of chrominance or luminance of the image pixels.

Grey-level co-occurrence matrix (GLCM)
GLCM introduced by Haralick45 is a method to extract spatial relations of pixels for a given angle direction α 
and maximal distance d. To apply the GLCM algorithm, the first step involves quantizing the image into q levels, 
resulting in the creation of an image Iq . Next, four co-occurrence matrices Mα

q×q  are defined, each computed 
for a different angle α (i.e., 0, 45, 90 degrees and 135 degrees). Here all coefficients of Mα

q×q  are initialized to 
zero. Examination of pixels relations is performed over their local neighborhood using window W of size m × n 
pixels. In sequel, W is iteratively moved throughout the image I assuming that coordinates of Iq  are positioned 
in the top left corner. (see Fig. 12). At the first iteration of algorithm matrix W contains pixels of Iq[y, x] with 
indices satisfying 0 < y ≤ m and 0 < x ≤ n. Next W is moved horizontally so that it does not overlap with 
the previous window - e.g. indices of Iq[y, x] for the second window range over 0 < y ≤ m and n < x ≤ 2n
. If such left-to-right shift of W is not anymore possible such window is shifted vertically to underneath-left 
boundary position (e.g. after the first horizontal shifting movement the indices run over m < y ≤ 2m and 
0 < x ≤ n as illustrated in Fig. 12 (see window III). GLCM algorithm terminates once none of the above stjpg 
is further possible (i.e. W is too close to the right bottom corner of the I).

Every obtained W is the subject of further calculations. Co-occurrences of pixel values qi = 0, . . . , q − 1 
are noted for a direction α = 0◦, 45◦, 90◦, 135◦ and maximal distance d. Let w11, . . . , wmn be coefficients of a 
given matrix W. Iterating through all of the coefficients one analyzes spatial correlations in their neighborhood. 
Currently analyzed pixel (coefficient of W in certain iteration) is named pixel of interest p. Definition of 
directions for maximal distance d = 2 and p = w42 is presented in Fig. 12. Assume p is w42 = 0, α = 0◦ and 
d = 2. Rows in M0◦

 store the value of p and columns values of co-occurrence pixels being in relation to p. 
Since w42 = 0, the only coefficients in the first row of M0◦

 can be incremented. Then, based on Fig. 7, w43 and 
w44 should be now analyzed. Coefficient w43 = 0 implies that value in M0◦

 in the first column (M0◦ [1, 1]) is 
incremented. Analogously, for w43 = 3 M0◦ [1, 4] is increased. Both stjpg are presented in Fig. 13. In the same 
manner calculations for every W are performed analyzing all of the wij  for a direction α. Algorithm’s result 
is four matrices: M0◦

, M45◦
, M90◦

 and M135◦
 whose coefficients are then converted to the probabilities by 

dividing each of its values by mn.

RGB HSV HSL HSI XYZ LUV LAB Y’UV Y’IQ YCbCr YDdDr I1I2I3 C1C2C3
87.4 84.2 83.0 81.0 77.2 81.2 81.6 74.6 78.6 82.8 80.9 81.0 81.3

Table 7.  Mean accuracy calculated from 50 runs of 10% cross-validation and ELM with mish activation 
function and 1000 neurons on Dataset1 using different color spaces images representation in GLCM 
features calculation.

 

Figure 12.  (a) Sliding window W over an image Iq , with disjoint regions I, II, III and IV used for calculation 
of pixel co–occurrences in their respective proximity. (b) Analyzed pixels in the neighborhood of pixel of 
interest p = w42 for distance d = 2 and directions α = 0◦, 45◦, 90◦, 135◦.
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In the next step, the following statistical measures called GLCM features based on coefficients in matrices 
Mα can be computed: Contrast, Correlation, Energy, Homogeneity, Autocorrelation, Cluster Prominence, Inverse 
Difference and Dissimilarity46. Noticeably each of these features is calculable separately for each Mα, where 
α = 0◦, 45◦, 90◦, 135◦. Having computed Energy0◦

, Energy45◦
, Energy90◦

 and Energy135◦
 their mean 

Energy = 0.25(Energy0◦ + Energy45◦ + Energy90◦ + Energy135◦ ) is next derived. Originally GLCM 
based features are calculated on the grayscale image i.e. Igray

t . A further improvement is obtained here once 
GLCM features are computed separately for each of the RGB image IRGB

t  channel yielding in total 24 features. 
In contrast to the work by Duan et al.43, which proposes an extension that utilizes images in a different color 
space than RGB for GLCM feature computation, the experiments incorporating different color spaces for GLCM 
feature computation for microscopic images of microorganisms do not result in an improvement of classification 
accuracy. Indeed, the best results presented in Table 7 are reached for standard RGB color space, whereas other 
color channels might decrease classification accuracy from 87.4% to 74.6% using Y’IQ color space and 50 times 
repeated 10-Fold cross-validation technique and ELM with mish activation function and 1000 neurons on 
Dataset1.

Gray level run length matrix (GLRLM)
In general GLCM is not the only method of texture features extraction. Commonly GLRLM47 is used together 
with GLCM. GLRLM creates features that describe spatial relationships between pixels having values of a given 
length of co-occurrence sequences and follows the concept of a run-length encoding48 outlined below. Non-
overlapping sliding of window W similarly to GLCM is performed on the image quantized to the q levels. GLRLM 
is defined as four matrices Mα each of size q × r, where r is a maximal run-length of co-occurrence pixels. Rows 
of that matrix are described as gray level values qi = 0, . . . , q − 1 and columns as run-lengths rj = 1, . . . , r.

For every obtained W run-length of co-occurrence pixel values q for direction α and maximal run-length r 
is computed. Assume w11, . . . , wmn form the coefficients of particular W. The directions are similarly defined 
as in GLCM method (see Fig. 12). In GLRLM the whole window W for each of the gray levels qi is analyzed. 
To illustrate the latter for a given W with α = 45◦ a maximal run-length r = 3 and take qi = 0 were set. Then 
number of run-length sequences of length rj = 1, . . . r is noted. Based on such choice, the values in M45◦

 are 
incremented e.g. there are 2 sequences of length 2 (means that some row in 2nd column should be enlarged) for 
gray level equal 0 (first row), so coefficient of M45◦ [1, 2] is increased by 2 (see Fig. 14).

Similarly, all other entries of matrix Mα are incremented for every window W based on input image and for 
every gray level qi. Consequently all coefficients of Mα are divided by qr. As a result matrix Mα contains now 
probabilities of co-occurrence gray levels qi for run-length rj  and maximum run-length r for a given angle α. 
Based on computed probabilities the following statistical measures for GLRLM (see Zhou et al.49) are calculated: 
Short Run Emphasis (SRE), Long Run Emphasis, Grey Level Non-uniformity, Run Length Non-uniformity, Run 

Figure 14.  Filling Mα (right) for maximum run-length r = 3, α = 45◦ and pixel value qi = 0 based on a 
given W (left).

 

Figure 13.  Filling Mα based on pixel of interest p = w42 for distance d = 2 and direction α = 0◦.
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Percentage, Low Grey Level Run Emphasis, High Grey Level Run Emphasis, Short Run Low Gray Level Emphasis, 
Short Run High Gray Level Emphasis, Long Run Low Gray Level Emphasis and Long Run High Gray Level 
Emphasis. Similarly to GLCM, each of those features is calculated for four different directions α and the final 
value of them is defined as e.g. SRE = 0.25(SRE0◦ + SRE45◦ + SRE90◦ + SRE135◦ ). Experiments to 
improve classification accuracy based on GLRLM features are conducted not to convert image to grayscale, 
but to calculate GLRLM on each of the color channels separately. Unfortunately, the same approach in case of 
GLRLM did not improve the results. A comparison is performed between the use of GLRLM feature generation 
based on images IRGB

t  and Ic. Surprisingly, better results are achieved using image IRGB
t , whereas conducting 

the same experiment on GLCM do not lead to further improvement in the results.

Feature generation summary
In total for each dataset the same set of features organized into three color spaces: RGB, I1I2I3, and XYZ (as 
explained in details in section before). The following abbreviations apply:

•	 RGB: Red (R), Green (G), Blue (B)
•	 I1I2I3: Intensity channels I1, I2, I3
•	 XYZ: X, Y, Z color space

Each color channel has the following statistical features:

•	 I1, I2, I3: Mean, Std, Mean (H), Std (H), Kurtosis (H), Skewness (H), Entropy (H), Energy (H)
•	 X, Y, Z: Mean, Std, Kurtosis, Skewness
•	 GLCM (Gray-Level Co-occurrence Matrix) features:

•	 Contrast, Correlation, Energy, Entropy, Homogeneity, Autocorrelation, Cluster Prominence, Inverse Dif-
ference, Dissimilarity (for R, G, B channels)

•	 GLRLM (Gray-Level Run Length Matrix) features: SRE, LRE, GLN, RLN, RP, LGRE, HGRE, SRLGE, SRHGE, 
LRLGE, LRHGENotably the mathematical equations behind these metrics (e.g., Mean, Kurtosis, Skewness, 
GLCM, GLRLM) can be obtained from corresponding well-known machine vision literature22,45.

Extreme learning machine
The ELM network is a fully connected feed-forward neural network (see Huang et. al.50) designed to solve 
classification problems. This network consists of one hidden-layer with McCulloch-Pitts neurons51. The precise 
optimal number of hidden-layer neurons is each time evaluated empirically as there is no up-front theoretical 
method determining such value to maximize the classification accuracy. ELM is characterized by a simple 
topology structure. In network learning, the utilization of the Moore-Penrose pseudoinverse operation50 
generally involves the application of singular value decomposition (SVD). The latter permits to shorten a time-
consuming iterative process of adjusting values of network’s weights.

Assume that after image segmentation, feature calculation and feature selection dataset consists of N images. 
It can be described as η = {(xi, ti)}N

i=1, where xi is i-th vector of d features and ti is i-th label of class to which 
selected image belongs. Then input layer of ELM has d neurons, defining also input matrix X introduced in (1). 
The number of output layer neurons coincides with the number of image classes M determining the classification 
task. Thus the output layer is numerically represented by a vector y = {yi}M

i=1, where yi ∈ R. Note that here the 
maximal value in vector y at index ymax is understood as assigning an input image to the ymax class. In order to 
test the ELM network, the i-th class label ti needs to be appropriately formatted and compared to y. A possible 
approach is to format ti as {tij}m

j=0 that has all values set to zero except one element at p-th index that is set 
to one. Then ti can be written as ti = [0, . . . , 1, . . . , 0] where p-th element indicates that i-th image affiliates 
to p-th class of images (tip = 1). Only the greatest value of yi at index ymax

i  is chosen. Correct classification is 
observed if and only if ti[ymax

i ] = 1 for i-th picture. This concept of formatting is called One-Hot Encoding or 
1 − of − K  scheme52.

Let now L be a number of units in single hidden layer network that is chosen empirically. Since ELM is a fully 
connected network, weights between input layer and hidden one are represented by a matrix W from (1), where 
wij  denotes the weight between i-th neuron in input layer and j-th neuron of hidden layer. The corresponding 
bias values are assumed to be represented by a vector b = {bi}N

i=1. In ELM network both W and b are filled 
with values that are randomly chosen from the interval [−1, 1] using a uniform distribution. Then the outputs 
of hidden units are calculated as expressed in matrix H (see (1)), where f is any continuous function f : R → R.

	

X =




x11 . . . x1N

...
. . .

...
xd1 . . . xdN


 , W =




w11 . . . w1L

...
. . .

...
wd1 . . . wdL


 , H =




f
(∑d

i=1 xi1wi1 + b1

)
. . . f

(∑d

i=1 xi1wiL + b1

)

...
. . .

...
f

(∑d

i=1 xiN wi1 + bN

)
. . . f

(∑d

i=1 xiN wiL + bN

)


 .� (1)

Weights β between hidden and output layers are still unknown. In order to obtain them, the equitation 
Y = Hβ has to be evaluated. Indeed since H with probability equal to 1 is irreversible and ∥Hβ − Y ∥ = 0 
(see Huang et al.53), the system Y = Hβ cannot be directly solved. Instead, one finds the optimal parameter 
β̂ = argmin

β
∥Hβ − T ∥2 = H†T , where H† is the Moore-Penrose generalized inverse of H (see Rao and 

Mitra54) and T = ti
N
i=1 describing image appurtenance to the given class formed using concept of one hot 
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encoding mentioned in the above paragraph. Moore-Penrose pseudoinverse of a real matrix H must satisfy 
following conditions:

1. HH†H = H,          2. H†HH† = H†,          3. (HH†H)T = HH†,          4. (H†H)T = H†H.
Pseudoinverse is known to be unique and pseudoinverse of a non-singular quadratic matrix is identical to 

the ordinary inverse. For matrices that are singular pseudoinverse solves Y = Hβ in terms of least-squares 
problem. Calculating H† gives solution β̂ so that Hβ̂ is as close as possible to Y in terms of Euclidean distance.

Note here that H generically corresponds to either overdetermined or underdetermined system. Additionally, 
there can be many methods to calculate H†, one of them recalled here is orthogonal projection method 
(see Rao and Mitra54). If L > d (number of hidden units is greater than number of input units) then system 
Y = Hβ is underdetermined and H† = HT (HHT )−1, otherwise system Y = Hβ is overdetermined and 
H† = (HT H)−1HT . In practical applications of ELM L ≫ d eventuates. In classification tasks L usually totals 
a few thousands. Then, operation of inverse HHT  could be time-consuming especially taking into account the 
fact that operation of matrix pseudoinverse cannot be parallelized. To improve learning speed of network QR 
matrix decomposition is used (see Strang55). QR decomposition of matrix A is defined as A = QR, where R is 
upper triangular and Q is orthogonal (QQT = I). Using QR decomposition, the matrix H† can be computed 
according to:

	 H† = HT (HHT )−1 = RT QT (RT QT QR)−1 = RT QT (RT R)−1 = QT R−1.

The ELM network gives a solution that minimizes mean square error between predicted Ŷ  and actual Y. Thanks 
to assigning random values to weights and bias between input and hidden layer, the trained network is very 
resistant to overtraining. The computed solution is not a local minimum of optimization criterion like in MLP 
with backpropagation algorithm based on gradient descent50,56. The network training process is much faster 
than other Machine Learning methods like MLP, RF and SVM. The main drawback of this process relies on 
finding L and f that maximize classification accuracy.

Data availability
The data that support the findings of this study are available from the corresponding author, K.S., upon reason-
able request.
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Chapter 4

Conclusions

Following its publication, the TfELM software was made publicly available on PyPI,
which has significantly expanded its accessibility. Researchers and practitioners can now
easily download the tool both from GitHub and PyPI, increasing the reach of the frame-
work. Usage statistics indicate that the TfELM tool is actively utilized by end users,
even though ELM remains a niche area within the broader field of machine learning.
The project has received substantial attention, with data showing significant downloads
and engagement. As shown in Figure 4.1, the tool was downloaded consistently, and
the project garnered 984 views on GitHub in April 2025 alone, highlighting a growing
community of users and contributors interested in the tool’s capabilities.

Figure 4.1: Daily download quantity of TfELM package in PyPI from
https://pypistats.org/.

4.1 Activation function selection for ELM

A key contribution of this research was the study on activation function selection for
Extreme Learning Machines (ELMs), which extended the initial hypothesis that model
performance is highly dataset-dependent. The findings demonstrated that certain acti-
vation functions, such as Mish, offer substantial performance gains across a variety of
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datasets. Specifically, the Mish activation function performed well on 9 out of 10 tested
datasets, underscoring its robustness in various machine learning contexts. This is par-
ticularly noteworthy because the application of Mish in the context of ELM represents a
novel contribution to the field, offering new insights into activation function selection.

The research also uncovered significant variability in ELM classifier performance based
on the choice of activation function. In some cases, performance differences reached as
much as 80 percentage points, emphasizing the importance of selecting the most appropri-
ate activation function for each specific task. This finding highlights that the activation
function choice is not merely a technical detail but a key factor that can drastically affect
the efficacy of an ELM model. Consequently, this emphasizes the necessity of evaluating
different activation functions on a task-specific basis in order to maximize the performance
of ELM-based classifiers.

4.2 Metaheuristic Algorithms for weight fine-tuning

The PhD related study also explored the role of metaheuristic algorithms (MAs) for fine-
tuning the weights connecting the input and hidden layers in ELMs. This research re-
vealed that there is no single MA that consistently outperforms others across all datasets.
This finding challenges common assumptions that some MAs are universally superior,
reinforcing the idea that the effectiveness of a particular algorithm depends on the char-
acteristics of the dataset at hand. Additionally, there was no clear correlation between
the computational time required by an MA and the resulting accuracy of the model.
The latter indicates that optimizing an ELM model is not a simple trade-off between
computational efficiency and accuracy, but rather a complex evaluation of the specific
algorithm’s performance on a given task. Thus, practitioners should avoid relying on
general assumptions and instead should conduct thorough evaluations of MAs in the
context of their specific applications.

4.3 Random weight and bias generation stability in
ELM

One of the more novel aspects of this research was to investigate the stability of random
weight and bias generation in ELM. Traditional Random Number Generators (RNGs)
that yielded the highest accuracy and stability in ELM performance often did not pass
the stringent standards set by The U.S. National Institute of Standards and Technology
(NIST) tests for RNGs. Conversely, RNGs that met the NIST standards did not consis-
tently produce the best performance in terms of accuracy or stability. Such paradoxical
relationship between statistical rigor and practical outcomes reveals a key insight: while
on one hand adhering to high statistical standards is critical for some applications, on
the other hand it may not always translate to optimal performance in machine learning
models like ELM. This particular finding suggests that, in the context of ELM, the choice
of RNG should prioritize empirical performance over theoretical statistical perfection, a
principle that may extend to other areas of machine learning.
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4.4 Comparative analysis of ELM versus CNN for soil
fungi identification

Comparison of the performance of ELM and Convolutional Neural Networks (CNNs) in
the task of soil fungi identification highlighted the remarkable strengths of ELM, partic-
ularly in terms of training and prediction speed. The results demonstrated that ELM
outperformed CNN in both training time and prediction speed, with ELM being six times
faster during training and twice as fast during prediction. This is particularly important
in real-world applications where speed and efficiency are crucial, such as in large-scale
microbiological studies or clinical diagnostics.

While CatBoost, a gradient boosting algorithm, achieved comparable accuracy to
ELM, the latter’s speed advantage makes it a more practical choice in scenarios where
time constraints are critical. Additionally, CNNs, though often preferred in image-based
tasks, took significantly longer to make predictions (0.11 seconds per prediction), which
is twelve times longer than ELM’s prediction time. The speed advantage of ELM makes
it a compelling option for tasks where fast, real-time predictions are required.

Moreover, the comparative analysis revealed that ELM consistently outperformed
CNN in terms of not only prediction speed but also accuracy, precision, recall, and
ROC/AUC scores across all datasets. This was particularly notable when using auto-
matically retrieved microscopic images, where ELM maintained superior performance.
The robustness of ELM was further demonstrated by its ability to handle varying imag-
ing conditions and microorganism strains, highlighting its adaptability to diverse datasets
and real-world challenges. This finding positions ELM as a highly versatile model that
can be applied across a range of domains, particularly in cases where both speed and
accuracy are essential.

The results also illustrated that the performance benefits of ELM were not confined
merely to individual datasets but were generalizable across combined datasets. This
reinforces the practical applicability of ELM in large-scale tasks, such as environmental
monitoring, clinical diagnostics, and industrial applications where multiple data sources
are often combined for analysis.
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Chapter 5

Future work and extensions

Future work on the TfELM framework should ensure the emphasize ensuring ongoing
compatibility with the latest releases of TensorFlow to fully leverage the advancements
and optimizations that each new version provides. As the machine learning eco-system
evolves rapidly, continuous integration of novel approaches from recent publications in
the ELM domain seems to be crucial. This will not only enhance the performance and
capabilities of the TfELM framework but also will solidify its position as a versatile tool
for both researchers and practitioners. Active engagement with the latest developments
in deep learning and ELM methodologies will allow for the framework’s continuous im-
provement and refinement, ensuring it remains relevant and effective tool in addressing
emerging challenges within the ML field.

In the realm of hardware, a significant shift in Apple’s chip architecture occurred
after the introduction of the M2 chip, which, at the time of the original experiments,
represented the cutting edge of performance for Apple Silicon devices. However, with
the release of the M4 chip, which offers enhanced processing power and efficiency, future
experiments will likely focus on evaluating the performance of the TfELM framework
on M-Series processors with larger RAM capacities. Such shift will permit further for
the analysis of their performance on larger datasets, where traditional hardware might
struggle to handle the increased data load efficiently. The greater memory bandwidth
and processing capabilities of the latest M-Series chips are expected to provide significant
improvements in model training times and the overall handling of complex ML tasks.

One notable hardware feature that warrants further investigation is the scalability of
Apple’s Mac Studio, particularly the M2 Ultra chip, which supports up to an impres-
sive 192GB of unified memory. Here the available amount of memory far exceeds that
of conventional budget-friendly GPUs, which typically support up to 24GB of VRAM.
This unique advantage positions Apple Silicon devices, especially those equipped with
the M2 Ultra and its successors, as highly promising candidates for running large-scale
models, including modern Large Language Models (LLMs). Many of these models require
immense memory resources that often exceed the memory limits of traditional GPU se-
tups, making the Mac Studio’s unified memory architecture a valuable asset for handling
such demanding workloads. Therefore, future work will involve leveraging this hardware
to perform comparative analyses between traditional GPU-based setups and Apple’s M-
Series processors to assess their performance on computationally high-demand tasks, such
as training LLMs or processing large datasets.

Furthermore, ongoing research efforts should be addressed toward optimizing ELM
architectures, with the aim of enhancing both training efficiency and predictive perfor-

158



mance. One promising direction involves exploring the use of multilayer ELM architec-
tures, which have shown potential for improving the representational power of the model.
These architectures will be possibly combined with kernel mapping techniques derived
from Mercer’s theorem to create more sophisticated decision boundaries, potentially en-
hancing model performance. In addition, approximations of these kernel-based methods
using the Nyström method will be investigated to evaluate their feasibility and computa-
tional efficiency in large-scale applications. This comparison enables to identify the most
suitable kernel mapping approaches for various ELM architectures, guiding future devel-
opments in optimization techniques and enhancing the framework’s applicability across
different domains.

In the context of microorganism identification, future research extensions might focus
on seeking for the expansion of the existing dataset to include a broader range of mi-
croorganism genera, with the goal of creating a more diverse and representative training
set. Such expansion will facilitate more accurate and generalized identification models
capable of recognizing a wider array of microbial species. Moreover, most likely efforts
will be made to integrate phenotypic and molecular methods into the identification pro-
cess, enabling species-level identification with higher precision. By incorporating DNA
sequencing data, biochemical testing results, and morphological characteristics into the
model training pipeline, the resulting system will not only improve the accuracy of micro-
bial classification but also offer a more comprehensive tool for researchers in microbiology.
The improvements above seem to be proposed for practical applications in clinical mi-
crobiology, environmental monitoring, and food safety, where on accurate species-level
identification is critical.

Finally, future research may explore the potential for real-time microorganism identi-
fication systems that can operate in dynamic environments, such as clinical laboratories
or field research settings. By integrating the TfELM framework with next-generation
sequencing technologies and real-time data acquisition tools, this research aims to create
an adaptive, high-performance model capable of rapid and accurate microorganism iden-
tification in challenging conditions. The mentioned advancements could have significant
implications for both basic microbiological research and applied clinical diagnostics.
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