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Abstract: Intelligent, dependable, and explainable computational methods for brain 

disease datasets remain underdeveloped and insufficiently validated, 

despite significant progress in machine learning (ML). Addressing this gap is 

crucial, as neurodegenerative diseases (NDs), such as Parkinson’s disease 

(PD), continue to affect an increasing number of individuals. Given the 

challenges in managing and accurately detecting NDs, this thesis explores 

three approaches for data collection and analysis. Specifically, it examines 

diffusion tensor imaging (DTI), eye tracking, and online cognitive testing, 

along with selected ML algorithms designed to model PD patterns within 

these datasets. In the first approach, ML identified brain abnormalities 

through DTI analysis, detecting issues such as handwriting distortion after 

deep brain stimulation treatment with 82% accuracy. In the second 

approach, ML analyzed rapid eye movements (saccades) to identify patterns 

that differentiate PD patients. By combining eye-tracking data with ML 

algorithms, models predicted symptom development using Unified 

Parkinson’s Disease Rating Scale (UPDRS) scores with 57-79% accuracy. In 

the third approach, data from web-based cognitive and behavioral tests was 

used to identify motor and cognitive signs of PD. Using this dataset, ML 

distinguished healthy controls (HC) from PD patients with 93% accuracy and 

mild PD from advanced PD with 80% accuracy (based on their UPDRS score). 

Although limited by sample size, each method provided computational 

insights into disease progression and helped determine PD severity based on 

digital data and machine learning models. Thus, the findings of this thesis 

contribute to the field of computer science by designing, developing, and 

describing digital platforms and explainable ML workflows, which are 

applicable to complex and limited datasets. 
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Tytuł: Metody uczenia maszynowego dla zbiorów danych o chorobie Parkinsona 

Autor: Artur Chudzik 

Streszczenie: Inteligentne, niezawodne i wyjaśnialne metody obliczeniowe dla zbiorów 

danych dotyczących chorób mózgu pozostają niedostatecznie rozwinięte i 

niewystarczająco zweryfikowane, pomimo znaczącego postępu w dziedzinie 

uczenia maszynowego (ML). Zaadresowanie tego problemu jest kluczowe, 

ponieważ choroby neurodegeneracyjne (NDs), takie jak choroba Parkinsona 

(PD), dotykają systematycznie rosnącą liczbę osób. Biorąc pod uwagę 

wyzwania związane z zarządzaniem i precyzyjnym wykrywaniem NDs, niniejsza 

praca bada trzy podejścia do zbierania i analizy danych. W szczególności, 

praca opisuje obrazowanie tensora dyfuzji (DTI), śledzenie ruchu gałek ocznych 

oraz testy kognitywne online, wraz z wybranymi algorytmami ML 

zaprojektowanymi do modelowania wzorców PD w tych danych. W pierwszym 

podejściu, model ML zidentyfikował nieprawidłowości w mózgu poprzez 

analizę DTI, wykrywając problemy takie jak zniekształcenie pisma po leczeniu 

za pomocą głębokiej stymulacji mózgu z dokładnością 82%. W drugim 

podejściu, ML analizował szybkie ruchy gałek ocznych (sakady), aby 

zidentyfikować wzorce różnicujące pacjentów z PD. W tym podejściu, dzięki 

połączeniu danych ze śledzenia ruchu gałek ocznych z algorytmami ML, 

modele przewidywały rozwój objawów za pomocą wyników skali Unified 

Parkinson’s Disease Rating Scale (UPDRS) z dokładnością 57-79%. W trzecim 

podejściu wykorzystano dane z internetowych testów kognitywno-

behawioralnych do identyfikacji objawów motorycznych i kognitywnych PD. 

Wykorzystując ten zbiór danych, ML rozróżnił zdrowe osoby (HC) od pacjentów 

z PD z dokładnością 93% oraz łagodną postać PD od zaawansowanej PD z 

dokładnością 80% (na podstawie wyników UPDRS). Pomimo ograniczeń 

wynikających z wielkości próby, każda z metod dostarczyła wglądów w 

progresję choroby oraz pomogła określić stopień zaawansowania PD na 

podstawie danych cyfrowych i modeli uczenia maszynowego. Dzięki temu, 

wyniki tej pracy wnoszą wkład w dziedzinę informatyki poprzez 

zaprojektowanie, stworzenie i opisanie platform cyfrowych wraz z 

wyjaśnialnymi przepływami pracy ML, mających zastosowanie do złożonych i 

ograniczonych zbiorów danych. 

 



4 
 

Table of Contents 
Articles Constituting the Thesis ................................................................................................... 6 

Additional Contributions.......................................................................................................... 7 

I. Introduction .............................................................................................................................. 8 

Research Gap .......................................................................................................................... 9 

Hypothesis .............................................................................................................................. 9 

Structure of the Thesis ........................................................................................................... 10 

II. Parkinson’s Disease Datasets ............................................................................................... 10 

Disrupted Signal in Neural Networks ..................................................................................... 11 

Overlapping Sets of Symptoms in Clinical Data ..................................................................... 13 

Impact of Symptomatic Treatment on Diagnostic Data ......................................................... 13 

Classification of Disease Progression.................................................................................... 15 

Scales of the Disease ......................................................................................................... 15 

Digital Phenotyping ............................................................................................................ 18 

III. Models for Classification of Parkinson’s Disease ................................................................. 24 

Proposed Workflow ............................................................................................................... 24 

Statistical Analysis ............................................................................................................. 25 

Machine Learning .................................................................................................................. 26 

Computational Approach ................................................................................................... 27 

Optimization and Verification............................................................................................. 28 

Logistic Regression ............................................................................................................ 28 

Random Forest................................................................................................................... 29 

Granular Computing .......................................................................................................... 29 

Computational Theory of Mind ........................................................................................... 29 

IV. Contributions ....................................................................................................................... 32 

DTI and Machine Learning...................................................................................................... 32 

Eye-Tracking and Machine Learning....................................................................................... 33 

Digital Cognitive Tests and Machine Learning ........................................................................ 34 



5 
 

Research in Virtual Reality ..................................................................................................... 36 

Summary of Contributions..................................................................................................... 37 

V. Discussion............................................................................................................................. 38 

VI. Conclusions ......................................................................................................................... 39 

Acknowledgements ................................................................................................................... 39 

Glossary .................................................................................................................................... 40 

References ................................................................................................................................ 44 

Abstracts ................................................................................................................................... 50 

DTI Helps to Predict Parkinson’s Patient’s Symptoms Using Data Mining Techniques ........... 51 

Machine Learning and Eye Movements Give Insights into Neurodegenerative Disease 

Mechanisms .......................................................................................................................... 52 

Comparison of Different Data Mining Methods to Determine Disease Progression in Dissimilar 

Groups of Parkinson’s Patients.............................................................................................. 53 

Eye-Tracking and Machine Learning Significance in Parkinson’s Disease Symptoms Prediction

 .............................................................................................................................................. 55 

Machine Learning and Digital Biomarkers Can Detect Early Stages of Neurodegenerative 

Diseases ................................................................................................................................ 56 

Investigating the Impact of Parkinson’s Disease on Brain Computations: An Online Study 

of Healthy Controls and PD Patients ...................................................................................... 58 

Classification of Parkinson’s Disease Using Machine Learning with MoCA Response Dynamics

 .............................................................................................................................................. 59 

Recognizing Patterns of Parkinson’s Disease using Online Trail Making Test and Response 

Dynamics – Preliminary Study................................................................................................ 60 

Additional Contributions ........................................................................................................... 61 

Amantadine treatment in Parkinson’s disease patients as a modulatory factor of SARS -Cov-2 

infection ................................................................................................................................ 62 

Structural neuroplasticity induced by training in the form of a first-person shooter video game

 .............................................................................................................................................. 63 

How to Cure Alzheimer’s Disease .......................................................................................... 64 

Full Texts of Articles Constituting the Thesis ............................................................................. 65 

 



6 
 

Articles Constituting the Thesis 

- [A1] - A. Chudzik, A. Szymański, J. P. Nowacki, and A. W. Przybyszewski, “DTI Helps to 

Predict Parkinson’s Patient’s Symptoms Using Data Mining Techniques,” in Intelligent 

Information and Database Systems, F. L. and H. T.-P. and T. B. Nguyen Ngoc Thanh and 

Gaol, Ed., Cham: Springer International Publishing, pp. 615–623, 2019. doi: 10.1007/978-

3-030-14802-7_53. 

- [A2] - A. W. Przybyszewski, A. Śledzianowski, A. Chudzik, S. Szlufik, and D. Koziorowski, 

“Machine Learning and Eye Movements Give Insights into Neurodegenerative Disease 

Mechanisms,” Sensors, vol. 23, no. 4, p. 2145, Feb. 2023, doi: 10.3390/s23042145. 

- [A3] - A. W. Przybyszewski, A. Chudzik, S. Szlufik, P. Habela, and D. M. Koziorowski, 

“Comparison of Different Data Mining Methods to Determine Disease Progression in 

Dissimilar Groups of Parkinson’s Patients,” Fundamenta Informaticae, vol. 176, no. 2, pp. 

167–181, Dec. 2020, doi: 10.3233/FI-2020-1969. 

- [A4] - A. Chudzik, A. Szymański, J. P. Nowacki, and A. W. Przybyszewski, “Eye-Tracking 

and Machine Learning Significance in Parkinson’s Disease Symptoms Prediction,” in 

Intelligent Information and Database Systems, K. and S. A. and T. B. and C. S. Nguyen 

Ngoc Thanh and Jearanaitanakij, Ed., Cham: Springer International Publishing, pp. 537–

547, 2020. doi: 10.1007/978-3-030-42058-1_45. 

- [A5] - A. Chudzik, A. Śledzianowski, and A. W. Przybyszewski, “Machine Learning and 

Digital Biomarkers Can Detect Early Stages of Neurodegenerative Diseases,” Sensors, 

vol. 24, no. 5, p. 1572, Feb. 2024, doi: 10.3390/s24051572. 

- [A6] - A. Chudzik, A. Drabik, and A. W. Przybyszewski, “Investigating the Impact 

of Parkinson’s Disease on Brain Computations: An Online Study of Healthy Controls 

and PD Patients,” in Intelligent Information and Database Systems: 15th Asian 

Conference, ACIIDS 2023, Phuket, Thailand, July 24–26, 2023, Proceedings, Part II, Berlin, 

Heidelberg: Springer-Verlag, pp. 235–246, 2023. doi: 10.1007/978-981-99-5837-5_20. 

- [A7] - A. Chudzik and A. W. Przybyszewski, “Classification of Parkinson’s Disease Using 

Machine Learning with MoCA Response Dynamics,” Applied Sciences, vol. 14, no. 7, p. 

2979, Apr. 2024, doi: 10.3390/app14072979.  

- [A8] - A. Chudzik, J. P. Nowacki, and A. W. Przybyszewski, “Recognizing Patterns of 

Parkinson’s Disease using Online Trail Making Test and Response Dynamics – Preliminary 

Study,” ICPR 2024. PREPRINT. 



7 
 

Additional Contributions 

- [C1] - S. Szlufik, A. Chudzik, A. Przybyszewski, and D. Koziorowski, “Amantadine 

treatment in Parkinson’s disease patients as a modulatory factor of SARS -Cov-2 

infection,” Parkinsonism Relat Disord, vol. 113, Aug. 2023, doi: 

10.1016/j.parkreldis.2023.105606. 

- [C2] - N. Kowalczyk, M. Myśliwiec, M. Skorko, P. Dobrowolski, A. Chudzik, and A. 

Brzezicka, “Structural neuroplasticity induced by training in the form of a first-person 

shooter video game,” in 9th Annual Conference Aspects of Neuroscience Abstract Book, 

1st ed., Paź Marta and Karpińska Magdalena, Eds., Warsaw: Warsaw University, pp. 149–

149, 2019, ISBN: 978-83-954288-1-4. 

- [C3] - A. W. Przybyszewski and A. Chudzik, “How to Cure Alzheimer’s Disease,” Journal 

of Alzheimer’s Disease, vol. 99, no. 4, pp. 1221–1223, May 2024, doi: 10.3233/JAD-

240231. PMID: 38788078. 

  



8 
 

I. Introduction 

Neurodegenerative diseases (NDs) are devastating conditions affecting millions of people around 

the world (Prince et al. 2015). This makes them the leading cause of cognitive and physical 

disability globally (Step et al. 2024). The prevalence of these diseases increases with age. Thus, 

with the global trend toward increased life expectancy, the burden of age-related NDs is expected 

to rise accordingly (Step et al. 2024).  

The most common ND is Alzheimer’s disease (AD), often described as a disease that impairs 

memory and cognitive functioning. The second most common ND is Parkinson’s disease  (PD), 

primarily associated with movement impairments. 

Despite intensive efforts and considerable advances in recent decades, biomarkers research in 

Parkinson’s disease has yielded only limited success (Yilmaz et al. 2019). As described in this 

thesis, the major reason for the difficulty in biomarker detection is the heterogeneity of PD, 

observable in every aspect of the disease, from pathology to clinical phenotype and disease 

progression, but also underdevelopment of appropriate digital screening tools (Yilmaz et al. 

2019). This situation negatively affects the possibility of early detection of the disease. 

Because of this complexity, machine learning (ML) is increasingly being applied to Parkinson's 

disease diagnosis and prognosis, showing potential improvements over traditional methods (Mei 

et al. 2021). ML techniques, including classical models and deep learning, can analyze various 

data types such as brain imaging, voice recordings, facial expressions, eye movements, and 

clinical assessments to detect and differentiate PD. These approaches show promise in 

enhancing diagnostic accuracy and enabling earlier detection of this disease. 

Selected ML methods demonstrate significant potential for adaptation in clinical decision-

making, offering a more systematic and informed approach to PD diagnosis. However, challenges 

remain in translating ML models into clinical practice, including disease-specific, task-specific, 

and technology-specific issues (Garcia Santa Cruz et al. 2023).  

Thus, ongoing research focuses on refining ML techniques and addressing current limitations to 

improve their effectiveness in PD diagnosis and management. This increased effectiveness is 

necessary because neurodegenerative diseases are not fully understood and tools to address 

this problem are lacking.  

NDs are complex, as they are characterized by the progressive loss of neurons in specific regions 

of the brain (Agnello and Ciaccio 2022). Neurodegeneration often starts in localized areas of the 
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brain and progressively spreads through interconnected regions, worsening as the disease 

advances (Iturria-Medina and Evans 2015). This interconnection means that dysfunction in one 

area can lead to disruptions in others. However, individual variations in compensatory 

mechanisms make early detection of neurodegenerative diseases challenging.  

Disturbingly, neurodegeneration can start approximately 25-30 years before any evident 

symptoms appear (Liss et al. 2021). This is because compensatory processes, including changes 

in brain activation within function-specific networks, help maintain normal performance despite 

neuronal loss (Sheng et al. 2021). This compensation works until the damage exceeds a critical 

threshold, after which symptoms, such as tremor in PD, become apparent. Unfortunately, by this 

stage, many of the affected brain structures are already severely damaged. 

No cure currently exists for both most common neurodegenerative diseases, namely AD and PD 

(Sequeira et al. 2024). Existing drugs can either slow the progression of the disease or artificially 

compensate for neuronal loss. 

Research Gap 

Because NDs are extremally challenging in management, there is a gap in validation of methods 

that will be sensitive enough to detect and define objectively different stages of the disease (Lima 

et al. 2022; Janssen Daalen et al. 2024). Intelligent, dependable, and explainable methods for 

disease management remain underdeveloped and insufficiently verified. 

Addressing this gap is crucial, as the application of machine learning methods to Parkinson’s 

disease datasets can enable the development of sensitive measures for screening individuals 

vulnerable to PD. Effectively, this screening can lead to the introduction of disease–modifying 

therapies, which can slow down the disease progression. 

Hypothesis 

One of possible directions for diagnostic methods is an approach called digital biomarkers 

(Janssen Daalen et al. 2024). This approach uses data collected from interactions with 

technology like web, mobile and wearable devices to understand human behavior or cognitive 

function. These data points can be aggregated and analyzed, especially using machine learning, 

to provide deeper insights into the cognitive state of a patient. This integration of data and ML is 

important because models can detect subtle patterns in variables that help to define the hidden 

rules of the disease. 
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Hypothetically, digital biomarkers with machine learning are tools that can be applied to detect 

PD symptoms. However, knowledge about feasibility and validity of individual digital biomarkers 

remains extremely limited (Fröhlich et al. 2022; Janssen Daalen et al. 2024). Therefore, this thesis 

evaluates selected machine learning methods applied to Parkinson’s disease datasets and 

presents a summary of findings. 

Structure of the Thesis 

A digital diagnostic approach requires understanding data through both machine learning and 

neuroscience terminology, which is challenging due to the specific terms and methodologies 

from these rather diverse fields.  

To address this, the structure of the thesis is organized as follows. The “I. Introduction” provides 

the rationale and motivation for the study. “II. Parkinson’s Disease Datasets” offers an overview 

of the data used to build Parkinson’s disease datasets. Specific methods for processing these 

datasets are described in “III. Models for Classification of Parkinson’s Disease.” The “IV. 

Contributions” section discusses digital biomarkers and machine learning techniques developed 

and used in the studies, along with the presentation of experimental findings and analyses. These 

are then discussed in the “V. Discussion” and concluded in the “VI. Conclusions” section. 

Because of the variety of terms, there is also a “Glossary” of terms available at the end of this 

thesis. This structure hopefully should provide a reader with an overview of classical diagnosis of 

neurodegenerative diseases and modern digital methods for their detection. 

Given the variety of sources and the need to clearly distinguish between the articles constituting 

the thesis and other references, a specific citation format has been adopted. Thus, “Articles 

Constituting the Thesis” are cited using square brackets with labels [A1-A8], and “Additional 

Contributions” are labeled [C1-C3]. Other references follow the basic parentheses (author-year) 

citation format and are listed in the “References” section. 

II. Parkinson’s Disease Datasets 

A proper understanding of the dataset is crucial for training effective machine learning models. 

This section provides a brief technical background on the disease, highlighting its complexity due 

to overlapping symptoms with other conditions, and discusses current treatment approaches. 

Parkinson’s disease does not have a strict biological definition and diagnostic criteria (Farrow et 

al. 2022). This means that there is no single, specific biomarker (e.g., detectable in the blood or 
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cerebral-spinal fluid) which amount of can be connected to the precise and objective score of PD 

severity. Thus, it is important to notice that to tell if someone has the beginning of PD or not, can 

be based only on clinical, hence subjective, observation. As a result, clinical diagnostic accuracy 

remains suboptimal, even when the disease is clinically fully manifested (Tolosa et al. 2021). 

Disrupted Signal in Neural Networks 

Parkinson’s disease is primarily characterized by the loss of dopamine-producing neurons in the 

brain, particularly in the region called substantia nigra (SN), a critical structure in the midbrain 

that is part of the basal ganglia, which plays a fundamental role in movement control. The 

substantia nigra produces dopamine (DA), a neurotransmitter essential for smooth, coordinated 

muscle activity. Dopamine deficiency disrupts the basal ganglia’s ability to control and 

coordinate movement, which is a crucial issue in PD (Latif et al. 2021). 

 

Figure 1. Schematic representation of neural pathways. The primary disruption in Parkinson’s disease is the 

degeneration of dopamine-producing neurons in the substantia nigra pars compacta (SNc). This reduction in dopamine 

decreases activity in the GO pathway while increasing activity in the noGO pathway. The overactive noGO pathway (D2) 

leads to excessive inhibition of the globus pallidus externus (GPe) and heightened activity of the subthalamic nucleus 

(STN). The overactive STN then sends more excitatory signals to the globus pallidus internus (GPi) and the subst antia 

nigra pars reticulata (SNr), which enhances their inhibitory effect on the thalamus. This excessive inhibition of the 

thalamus reduces excitatory feedback to the motor cortex, resulting in motor symptoms such as bradykinesia and 

rigidity, characteristic in Parkinson’s disease. 
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In PD, the degeneration of dopamine-producing neurons in the substantia nigra leads to a 

breakdown in dopamine signaling, particularly affecting D1 and D2 receptors (Figure 1). Different 

neurons have different dopamine receptors, allowing signals to travel through specific pathways, 

labelled D1-D5 (Latif et al. 2021). Among these, D1 and D2 receptors are particularly important in 

the pathways that regulate movement. D1 receptors are primarily involved in the “GO” (direct) 

pathway, while D2 receptors participate in the “noGO” (indirect) pathway. 

When dopamine levels drop, the “GO” pathway is less active, and the “noGO” pathway becomes 

more active (Przybyszewski et al. 2021). This shift results in increased activity in the globus 

pallidus externus (GPe), which in turn increases its inhibitory effect on the subthalamic nucleus 

(STN). The STN, which normally excites the globus pallidus internus (GPi), is now less active, 

leading to reduced excitation of the GPi. Moreover, the GPi becomes less inhibited overall due to 

the reduced activity of the “GO” pathway. As a result, the GPi applies more inhibition to the 

thalamus, which weakens the signals sent back to the frontal motor cortex (FC), including areas 

like the primary motor cortex (M1) and the supplementary motor area (SMA). This weaker signal 

slows down movements. 

Initially, degeneration occurs in the substantia nigra and later affects other brain structures 

involved in movement control and adaptability. This progression leads to the characteristic 

symptoms of PD, such as tremors, rigidity, bradykinesia, and postural instability. The exact cause 

of neuronal loss in PD is not fully understood and can vary among individuals, making it difficult 

to identify a single biomarker for the disease. 

Neurodegenerative changes of dopaminergic pathways are not always present in the same exact 

region of the brain of each patient (Chougar et al. 2022). For example, neurodegeneration may 

begin near the SN in some cases, while in others, it may start directly within the central region of 

the SN. This regional variability is particularly evident across different forms of Parkinsonism, 

including both typical PD and its atypical variants (Chougar et al. 2022).  

Disrupted dopaminergic responses can be modeled artificially in computational simulations and 

measured using advanced imaging techniques like PET scans or fMRI (Langdon et al. 2018; 

Mollick et al. 2020; Reneman et al. 2021). Importantly, disrupted dopaminergic responses can be 

detected through digital tools like eye trackers and online cognitive testing platforms. 
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Overlapping Sets of Symptoms in Clinical Data 

This lack of strict localization of the disease in the brain means that Parkinson’s patients can have 

overlapping manifestations of other NDs, even including these, which are characteristic of 

Alzheimer’s disease.  

To describe these manifestations briefly, [A5] distinguishes three sets of symptoms, which are 

related to different structures in the brain being affected by the disease. These are: 

- The set of motor symptoms (observed primarily in PD, less evident in AD). 

- The set of cognitive symptoms (observed primarily in AD, secondarily in PD). 

- The set of emotional symptoms (observed in both, but characteristic for late-onset AD). 

Cognitive impairment in Parkinson’s disease is diverse and varies in its impact on different 

cognitive functions, and it can manifest in several ways. While there are overlapping sets of 

symptoms between PD and AD, they are distinct diseases with different primary manifestations 

and treatment approaches.  

However, the overlap of these sets complicates the diagnostic process, potentially leading to 

misdiagnoses or delays. Therefore, neurologists must use clinical evaluations and tests to 

determine precisely whether and how a person is affected by these diseases. These methods will 

be described in detail in the next chapter. 

Importantly, there is an opportunity for digital tools that can measure all these disrupted 

dimensions together. By simultaneously measuring the sets of cognitive, motor, and emotional 

symptoms, digital applications can capture the complex structure of neurodegenerative diseases 

through the analysis of digital traces (Brem et al. 2023). However, in the context of machine 

learning, it is crucial to note that accurate prediction of symptoms brings challenges (Alfalahi et 

al. 2023). 

Specifically, [A6] presents that when analyzing datasets, the symptoms observed in patients 

might be influenced by other factors, including comorbidities and individual variability in disease 

progression. This complexity necessitates models that can differentiate between overlapping 

symptoms and provide accurate predictions under these conditions. 

Impact of Symptomatic Treatment on Diagnostic Data 

After evaluations that led to clinical diagnosis, various treatments can support those affected by 

the disease. However, there is no cure for PD and AD, and only symptomatic treatment can be 
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offered. This includes both medication and non-pharmacological approaches (such as exercise 

and physical, occupational, and speech therapies) (Armstrong and Okun 2020). One of the 

primary medications used is levodopa, an “early” form of dopamine.  

Levodopa can be ingested and transported through the blood-brain barrier, where it is converted 

into dopamine in the brain, helping to replenish the depleted dopamine levels. However, 

dopamine-based therapies typically help with initial motor symptoms. Nonmotor symptoms 

require nondopaminergic approaches (Armstrong and Okun 2020). 

Other medications, such as dopamine agonists, MAO-B inhibitors, COMT inhibitors, and 

amantadine, can also be used to enhance or mimic dopamine’s effects. Amantadine, originally 

used as an antiviral drug, seems to improve all cardinal motor features of PD (Crosby et al. 2003; 

Rascol et al. 2021). Interestingly, study [C1] used a digital questionnaire for data collection and 

statistical analysis indicated that amantadine reduces the severity of SARS-Cov-2. 

Notably, in addition to medication, treatment plans may include therapies, and lifestyle changes 

to help manage symptoms and improve quality of life (Armstrong and Okun 2020).  

Furthermore, advanced treatments, such as deep brain stimulation (DBS), can also be 

considered for some patients (Armstrong and Okun 2020). DBS involves surgically implanting 

electrodes in specific areas of the brain, such as the subthalamic nucleus (STN), which is highly 

connected to regions responsible for movement control, as described in “Disrupted Signal in 

Neural Networks” chapter. The electrodes deliver electrical impulses that modulate neural 

activity, emulating the effect of dopamine on the STN, and this mechanism can lead to reduction 

of motor symptoms. Therefore, this treatment can considerably enhance movement control in 

patients with Parkinson’s disease. 

Medical procedures like DBS require advanced digital imaging techniques (Butson et al. 2007). 

Machine learning models use 3D data from MRI scans to analyze and quantify neural structures 

by volume and size (Watts et al. 2020). This data provides valuable, objective input for ML models. 

Lastly, in the context of data, it is important to note that patients with medicated PD may exhibit 

test results similar to those of healthy controls (Rosenblum et al. 2020). However, this similarity 

does not indicate the absence of PD, but rather that the therapy is effective. Consequently, this 

lack of clear differences makes it difficult for traditional diagnostic methods to accurately detect 

PD, requiring additional approaches for assessment. 
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Classification of Disease Progression 

When measuring the progression of the disease it has to be noted that the assessment of 

cognitive function in PD is complex and requires careful consideration of both the disease -

specific and general aging-related factors. However, regular cognitive evaluations, both baseline 

and serial, are necessary to capture the wide spectrum of cognitive impairment in PD (Goldman 

et al. 2018). Therefore, this section serves as a summary of different rating scales, used in the 

context of PD. 

Standard neurological examination performed by neurologists in movement disorders includes 

mainly two tests, namely Unified Parkinson Disease Rating Scale (UPDRS; especially Part III) and 

the Hoehn and Yahr scale (Hoehn and Yahr 1967; Goetz et al. 2008; Baschi et al. 2020).  

Scales of the Disease 

UPDRS is a comprehensive tool used to measure the severity and progression of Parkinson’s 

disease (Goetz et al. 2008). Part III of this test assesses motor function, including tremor, rigidity, 

bradykinesia (slowness of movement), and postural instability. It involves a series of tasks that 

the patient performs, which are then rated by the clinician. The UPDRS is sensitive to changes 

over time, making it useful for tracking disease progression and evaluating treatment effects. 

The Hoehn and Yahr (H&Y) is the second commonly used scale to describe the progression of 

Parkinson’s disease in stages, ranging from Stage 1 (mild symptoms) to Stage 5 (severe disability) 

(Hoehn and Yahr 1967). The scale provides a coarse categorization of disease severity. 

In studies described in this thesis, neurologists provided measures of PD severity using UPDRS 

scale. This is because the higher granularity of the UPDRS (a wider scale of points versus H&Y) 

allows for more detailed understanding of the disease progression. 

Cognitive Data 

Moreover, neuropsychological testing is necessary for assessment of cognitive changes in 

Parkinson’s disease (Goldman et al. 2018). The selection and performance of these tests is not 

strictly standardized and can be influenced by various factors including the patient's age, 

educational background, language proficiency, and physical capabilities. Particularly in PD, 

motor impairments can complicate the assessment. Thus, it is necessary to incorporate tests 

that do not heavily depend on manual skill or motor speed (Goldman et al. 2018). 

Additionally, understanding cognitive function in PD requires insight into what constitutes normal 

versus pathological aging. This has to be done considering the specific motor and non-motor 
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symptoms of PD, the effects of medical or surgical treatments, and any co-morbid 

neuropsychiatric complications. Therefore, cognitive function assessments in PD are conducted. 

This approach evaluates a range of potentially affected cognitive areas (Goldman et al. 2018). 

Thus, evaluations often include a combination of tests that assess global cognitive abilities and 

specific neuropsychological functions. These typically measure orientation, attention, executive 

functions, abstract reasoning, memory, language, perception, visuospatial abilities, praxis (the 

ability to plan and execute coordinated, purposeful movements), and motor skills (Goldman et 

al. 2018).  

However, there is no standardized method for obtaining cognitive complaints, and cognitive 

screening tests often lack specificity for PD. This creates a need for more normative data, 

particularly for individuals from lower educational or socioeconomic backgrounds. 

As mentioned, standardized functional assessments are also lacking, although some PD-specific 

tools exist (Goldman et al. 2018). Commonly used tools used for cognitive assessment include 

scales like Mini-Mental State Examination (MMSE) or Montreal Cognitive Assessment (MoCA) 

(Goldman et al. 2018). MoCA has proven to be more effective than some other cognitive tests 

(Smith et al. 2007; Zadikoff et al. 2008).  

Behavioral and Temporal Data 

Because impairment of motor control in PD is major issue, it is important to read cognitive data 

together with behavioral and temporal data that can provide more detailed insights into the 

disease (Lugtenborg et al. 2022). This approach assumes to directly measure motor performance 

and its degradation. 

This can be done with a few methods, including the use of multiple, so-called tracking tasks 

(Lugtenborg et al. 2022). Tracking task involves visual monitoring and motor control to complete 

the sequences. These tasks are designed to evaluate the precision and consistency of motor 

movements over time, providing insights into the progression of motor control impairment. 

Additionally, the integration of behavioral and temporal data with cognitive assessments allows 

for a comprehensive analysis of how motor and cognitive functions interact in PD. 

Affected Data 

Moreover, in addition to cognitive testing, it’s important to evaluate other factors that might affect 

cognition, such as mood disorders (depression, anxiety), behavioral issues (like psychosis), sleep 



17 
 

disturbances, and overall functional abilities. Interpretation of these elements is necessary for a 

complete approach to PD (Goldman et al. 2018). 

Mood disorders, for instance, can worsen cognitive decline and affect the patient ’s quality of life. 

Behavioral issues, such as psychosis, can complicate treatment plans and patient management. 

Sleep disturbances are also critical to monitor, as they can significantly impact cognitive 

functions and daily living activities. Assessing overall functional abilities provides insight into the 

patient’s capability to perform everyday tasks and maintain independence. Integrating these 

diverse factors in datasets is required for a comprehensive approach to PD. 

Multidimensional Data 

Furthermore, some screening techniques can help to address multiple dimensions in a 

consolidated way. For example, The Trail Making Test (TMT) is a neuropsychological test that 

measures diverse cognitive functions, including attention, visual search and scanning, 

sequencing, mental flexibility, and motor speed. TMT is commonly used to evaluate cognitive 

function in individuals with neurological conditions. It consists of two parts: A and B. 

The Trail Making Test Part A (TMT A) is a neuropsychological assessment tool primarily sensitive 

to processing speed and visual attention. It measures an individual’s ability to rapidly connect a 

sequence of numbered circles in ascending order. TMT A focuses on basic scanning, attention, 

and motor speed.  

The Trail Making Test Part B (TMT B) is a cognitive test known for its sensitivity to executive 

functions (involving attention, memory, visual search, motor function, and sequencing abilities). 

Trail B is generally more sensitive to executive functioning than TMT A since it requires multiple 

abilities to complete it. 

Using these multidimensional assessments, it is possible to identify specific cognitive deficits, 

but also observe how these deficits interact with each other, resulting in the degradation of motor 

skills and emotional well-being. Tools like the TMT can, therefore, enhance the accuracy of 

diagnoses.  

Imaging Data 

Additionally, imaging data—the test results obtained from imaging tests—are often incorporated 

into PD research. This data often comes from Magnetic Resonance Imaging (MRI). Imaging 

biomarkers in PD are increasingly important for monitoring progression in clinical trials and also 

have the potential to improve clinical care and management (Mitchell et al. 2021). 
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MRI scans provide 3D images of brain structures and can show specific changes in brain anatomy 

associated with PD. These imaging biomarkers help in tracking the progression of the disease, 

and even identifying early signs of neurodegeneration. Incorporating imaging data into PD 

research and clinical practice allows for a more precise and individualized approach to patient 

care.  

Digital Phenotyping 

With the observable progress in machine learning, digital approach and applied informatics is 

becoming increasingly important in neurodegenerative disease research. This is supported by 

research presented in [A5], which confirms that machine learning and digital tools can help in the 

early detection of neurodegenerative diseases, potentially enabling earlier interventions that 

could slow disease progression.  

Current research focuses on validating digital biomarkers and ML-based predictive models in 

identifying early-stage neurodegenerative diseases. These approaches analyze data from various 

sensors and computerized versions of classical tests, such as the computerized Trail Making Test 

(cTMT) and computerized Montreal Cognitive Assessment (cMoCA). Additionally, digital tests can 

measure changes in attributes related to disease phenomena, collectively referred to as the 

“digital phenotype.” This includes analyzing facial expressions (as disturbances may suggest 

hypomimia, the reduction of emotional facial expression), eye movements (which can be 

disrupted in PD), and data from accelerometers in wearables (which can potentially detect 

tremors or movement disruptions). 

These digital studies in NDs are conducted by multiple research groups around the world, 

including the Digital Biomarkers in Neurodegenerative Disease Group (nd.pja.edu.pl), an initiative 

started by Przybyszewski in 2018, with focus on basic and applied research for the early diagnosis 

of neurodegenerative diseases. Recent research includes study [C3], which was designed to 

identify AD biomarkers in healthy individuals by analyzing cognitive attributes from BIOCARD 

data, showing patterns indicative of potential early stages of AD. Using granular computing 

methods, the research predicted that some healthy subjects might develop varying degrees of 

dementia, validating the potential of machine learning for early AD detection and prevention. 

Furthermore, Śledzianowski (2024), in his PhD thesis, demonstrated that PD progression could 

be observed in eye movement and facial expression properties using machine learning methods 

(Śledzianowski 2024). Earlier, Szymański (2019) explored various digital biomarkers, such as 

MRI/DTI imaging and local blood flow in the brain, proving their effectiveness in classifying PD 

symptoms, including both motor and non-motor symptoms (Szymański 2019). His research also 
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investigated the use of eye movement data for classification models, suggesting broader 

applications for other neurodegenerative diseases. Collectively, these studies validate the use of 

digital technologies in neurodegenerative disease research and provide input for further 

investigation in the field, and findings described in [A1-A8] continue and extend research done 

within this group. 

In summary, given the opportunities presented by previous studies in using selected methods, as 

well as the extreme challenge of managing and precisely detecting PD, this thesis focuses on 

three types of data sources: diffusion tensor imaging (DTI), eye-tracking, and online cognitive 

testing, along with selected ML algorithms to model the patterns in the data. 

MRI and Machine Learning 

Magnetic Resonance Imaging (MRI) plays a crucial role in the modern study of neurodegenerative 

diseases. Variations of this technique, such as Diffusion Weighted Imaging (DWI), provide 

insights into the structural details of the brain, allowing to visualize and quantify changes in brain 

anatomy and connectivity. These parameters can then be associated with diseases like 

Parkinson’s and Alzheimer’s, helping to model their progression using machine learning. 

 

Figure 2. Screenshot from 3DSlicer presenting a scan of a patient with exposed electrodes and neural tracts considered 

in the DTI study [A1] showing connectivity at different DBS stimulation amplitudes. 

In the context of PD, an especially interesting extension of DWI is Diffusion Tensor Imaging (DTI). 

This approach measures the behavior of water molecules over time, including both diffusion rates 

and directions, represented as 3D vectors (tensors).  

DTI is particularly useful in neurodegenerative diseases because it captures tractography, 

showing the structure of nerve tracts. This is because water molecules show greater motion along 

the direction of nerve fibers, thus making DTI an effective tool for mapping these structures. 
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Furthermore, because some treatments for PD involve invasive procedures, mapping the brain’s 

actual structure is crucial. Deep Brain Stimulation (DBS) involves inserting a thin electrode into 

the brain and is often associated with post-operative complications. DTI is a non-invasive method 

for visualizing neural structural connectivity, making it useful for understanding the impact of 

electrode contacts on the brain and potentially reducing complications (Przybyszewski et al. 

2016). 

Detailed mapping of brain structures is complex but required for planning and executing 

interventions effectively and safely, and some digital tools can support this process. For example 

study described in [A1] incorporated 3DSlicer for the registration of MRIs with an anatomical 

brain atlas (Figure 2). 3DSlicer (Harvard Medical School, Boston, MA) is software platform for the 

visualization, processing, segmentation, registration, and analysis of medical, biomedical, and 

other 3D images and meshes (Kikinis et al. 2014). It is peer-reviewed and a commonly used tool 

for planning and navigating image-guided procedures.  

In the context of DBS, 3DSlicer allows for the overlay of preoperative MRI with postoperative DTI 

to study different pathways of connectivity between the DBS electrode and functional brain 

circuits. By combining these imaging modalities, it is possible to correlate stimulation 

parameters with the activation of specific brain structures for a more comprehensive 

understanding of both anatomical positioning and functional outcomes.  

This approach is valuable for studying how different positions of the stimulating electrode 

contacts, and stimulation parameters influence brain functionality. This method differs from the 

traditional approach in which neurologists would assess the efficacy of DBS by observing patient 

symptoms over time, a process commonly referred to as “DBS tuning.” However, analysis 

presented in [A1] shows that with advanced imaging techniques it is possible to predict and study 

stimulation effects in a more targeted and systematic manner. 

Eye Movements 

Following the importance of digital imaging, eye movements emerge as another crucial aspect in 

the study of neurodegenerative diseases. This is because of research which shows that simple 

reaction times, which decline in individuals with PD, can be effectively assessed through eye 

movement measurements. These measurements are useful in early diagnosis, monitoring 

disease progression, and differentiating between PD and other cognitive impairments.  

Neurodegenerative conditions like PD affect the mechanisms controlling eye movements. For 

example, changes in saccadic delay have been linked to changes in the UPDRS  III (motor 
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examination), indicating that disruptions in eye movement patterns are a sign of disease 

progression (Sledzianowski et al. 2019). 

 

Figure 3. Studies [A3], [A4] used a head-mounted saccadometer JAZZ (Ober Consulting, Poland), which was able to 

measure the reflexive saccades (RS) in the high frequency (1000 Hz). The advantage of this setup is lack of disruption 

from head movements. 

Eye movements can be categorized into saccades, smooth pursuits, and antisaccades, each with 

distinct characteristics. Saccades are rapid eye movements between targets and can be divided 

into visually-guided (reflexive – RS) saccades, and internally-guided (voluntary). Smooth pursuit 

refers to the continuous movement of the eyes as they follow a moving object, and antisaccades 

are eye movements in the opposite direction of a suddenly appearing target. When eyes stop 

scanning and focus on a single point it is called fixation. 

For these types of eye movements, various parameters such as delay, duration, and maximum 

speed can be defined and measured. They are affected by age, as eye movement efficiency 

improves until the early 30s and then gradually declines (Hunfalvay et al. 2024). Interestingly, 

young children and elderly individuals show worse values in eye movements, while young adults 

had more stable eye movement patterns (including saccades, fixations, and pursuits).  

The production of saccades is a complex process that depends on the coordinated excitatory and 

inhibitory inputs from various cortical and subcortical structures on the brainstem, where the 

motor commands for saccades are finalized (Klarendic and Kaski 2021). Dysfunction in this 

network impacts the delicate balance required for precise saccadic movements, leading to the 

characteristic eye movement abnormalities seen in neurodegenerative conditions. 
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These insights can be used for early detection and monitoring of neurological and cognitive 

disorders because eye movements are often susceptible to degradation in neurodegenerative 

diseases. Therefore, eye movements currently are a critical area of study in understanding and 

diagnosing neurodegenerative conditions such as Mild Cognitive Impairment (MCI) and 

Parkinson’s disease (Liao et al. 2024).  

Accurate measurement of eye movements requires specialized hardware and software. The most 

common method is video-based eye tracking, which can be performed using either specialized 

eye trackers or webcams. While webcams have lower frames per second (FPS) compared to 

dedicated eye trackers, [A5] describes that they can be used with convolutional neural networks 

(CNN) to achieve accuracy comparable to standalone eye trackers.  

As a benchmark for these approaches, outputs from more specialized devices that can capture 

data with high frequency often serve as a standard. Therefore, studies described in [A3] and [A4] 

used a head-mounted device with an infrared (IR) sensor, specifically the JAZZ Novo from Ober 

Consulting, Poland. The advantage of this setup is lack of disruption from head movements and 

ability to capture eye movements at 1000 frames per second, providing high frequency and 

precision of data (Figure 3). 

Computerized Tests 

Because of the importance of not only motor but also cognitive data, and the extension of findings 

from eye tracking regarding the possibility to detect bradykinesia (slowness of movement) 

through eye movement, there is an opportunity for computerized tests that can capture not only 

cognitive but also motor changes using different input methods, such as cursor movements. 

However, there is an ongoing discussion whether digital cognitive tools are comparable and 

trustworthy in the same way as their pen-and-paper equivalents. Therefore, Latendorf et al. 

(2021) evaluated that paper-based and digital versions of all test procedures correlated highly 

with each other (Latendorf et al. 2021). This validity was further concluded by others, including 

Linari et al. who validated the computer version of TMT (cTMT) showing that the reaction times 

(RTs) and performance profiles are consistent with the classic TMT (Linari et al. 2022).  

Moreover, Linari et al. (2022) presented an identical saccade duration, saccade amplitude, and 

fixation duration suggest a similar visual mechanism between parts A and B (Linari et al. 2022). 

The observed difference in the number of fixations might originate in a more complex processing 

of the task, more related to higher-order cognitive processes than visual mechanisms. In other 
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words, to solve both parts of the task, subjects seem to use their visual machinery in a curiously 

similar way, except that TMT-B requires a more intensive scanning of the visual scene. 

Interestingly, more complex tests, including digital version of Montreal Cognitive Assessment 

(cMoCA) require longer processing time in their pen-and-paper counterparts (Snowdon et al. 

2015; Latendorf et al. 2021). This is related to the use of digital devices or user-friendliness 

because questions include tasks such as drawing a cube and a clock, which can be challenging 

depending on the approach used. 

To validate this approach, studies [A6-A8] describe a custom online platform to administer a 

group of neuropsychological tests, including computer versions of both the MoCA and the Trail 

Making Test (Figure 4), along with other tests evaluating well-being and cognitive state.  

This custom platform incorporated additional measures, specifically both instrumental reaction 

time (IRT) and time-to-submit (TTS) for each task, as adding extra temporal measures to cognitive 

tests (such as TMT-B) can improve the accuracy of predicting UPDRS III group classification. This 

platform is an example of a test that integrated behavioral, temporal, and cognitive data without 

requiring specific hardware. 

 

Figure 4. The image presents a single selected screen from interactive cognitive task screen where the user is asked to 

pick points in a specific sequence. Web TMT B measures errors, initiation time and execution time [A8]. 
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III. Models for Classification of Parkinson’s Disease 

To describe better the challenge of PD classification, there are two primary approaches to data 

modelling (Figure 5). The first, most common is binary classification. This approach focuses on 

differentiating between individuals with Parkinson’s Disease and those without (healthy controls 

- HC). The goal is to develop models or algorithms that can accurately classify a given individual 

into one of these two categories based on various types of data. The second approach involves 

disease stratification, determine the stage or severity of Parkinson’s Disease in patients. It often 

involves creating models to predict disease progression or to categorize patients into different 

stages of the disease. 

 

 

Proposed Workflow 

Despite differences in objectives, as well as in ML models, there is a common approach to 

evaluation of machine learning workflow. Importantly, managing limited datasets requires 

careful assessment (Figure 6).  

Therefore, the process begins with the sensor, which is able to register relevant parameters. Data 

from this sensor is then placed in the database, to keep the record of the patient. The next step in 

the workflow involves data preprocessing (profiling, cleansing, reduction, transformation, 

enrichment, and validation - including statistical analysis). 

After confirmation that the dataset is complete, a train_test_split approach should allocate 

around 30% of the data for testing before modeling. This split is done randomly to ensure that 

70% of subjects were used for training and 30% for testing, preventing systematic bias in the 

distribution. 

Figure 5.The two main approaches to PD detection and their respective outcomes. 
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To further mitigate the risk of overfitting, cross-validation techniques are necessary to apply 

during the model training phase. Thanks to this approach, it is possible to assess the model ’s 

performance more accurately and ensure its generalizability to new, unseen data.  

Selected model-specific techniques can help to address the issue of overfitting. For models like 

Logistic Regression, [A7] describes how to apply regularization methods to penalize complexity 

and discourage the learning of noise from the training set. This step helps to prevent overfitting, 

making models more robust to unseen data. The final step is the application of testing dataset on 

tuned models in order to validate the predictions.  

In practice, this workflow helps to minimize the risk of overfitting and data leakage and impacts 

the reliability of the results. 

 

 

Statistical Analysis 

As presented in the workflow, the main step after dataset assembly is data preprocessing. An 

important part of this step includes statistical analysis. Summarizing the statistical main features 

of a dataset helps to review collected data. This includes calculating measures of central 

tendency (mean, median, mode), measures of variability (range, variance, standard deviation), 

and creating visual representations like histograms and charts. Testing differences between two 

Figure 6. Workflow for ML evaluation. Starting from sensor data collection, the workflow proceeds through data 

preprocessing (profiling, cleansing, reduction, transformation, enrichment, and validation). The dataset is then split into 

training (70%) and testing (30%) sets. Machine learning models are trained with cross -validation and grid search for 

hyperparameter tuning. Model-specific methods, such as regularization, are applied to prevent overfitting. The tuned 

models are validated using the testing dataset to generate predictions. 
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groups by means of attributes (e.g., using t-tests, chi-square tests) provides an overview of 

similarities and differences between them. 

Two approaches assume either using specialized software (e.g., IBM SPSS Statistics) or 

calculating statistics using programming languages, such as Python. Python offers open-source 

libraries such as Pandas for data manipulation, NumPy for numerical computations, Matplotlib 

and Seaborn for data visualization, and various libraries for statistical analysis (Hunter 2007; 

McKinney 2010; Pedregosa et al. 2011; Harris et al. 2020; Waskom 2021). 

Studies [A6-A8] used both approaches, combining specialized statistical software and code-

based methods. Using SPSS for basic statistical analysis gives a good overview of the dataset. 

However, it is worth visualizing more in-depth connections between variables, for example using 

the Pearson’s correlation coefficient, which can be calculated using Python and Pandas library. 

Furthermore, the Seaborn library can help to visualize these correlations in the form of a heatmap 

(Waskom 2021). Pearson’s correlation is considered an effective method for assessing 

associations due to its dependence on covariance, making it easily interpretable. 

After processing and dividing the data, the next step is machine learning modeling. This is 

important because statistics are often not enough to draw conclusions from the complexity and 

variability seen in digital biomarkers. In essence, when statistical tests fail to find something 

“significant,” machine learning models can start to detect more complex, nonlinear relationships 

that are not immediately obvious. 

Machine Learning 

Often when we look at data, it can be difficult to make sense of the information it contains 

(Mahesh 2020). The patterns or insights might not be immediately clear, especially if we have 

collected a lot of variables. In these situations, we can turn to machine learning, which is a type 

of technology that helps us find hidden patterns and make predictions based on the data (Mahesh 

2020). Machine learning algorithms can analyze complex datasets and extract meaningful 

information that might not be obvious to the human eye. 

However, conclusions have to be understandable for scientists and practitioners due to the 

necessity for precision medicine. Therefore, there is a need for systems that can process 

information in a way similar to human thinking, which often involves abstraction and dealing with 

incomplete information. This need drove the development of various machine learning models 
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(function-approximation approach), and its subset of methods described by granular computing 

(rule-based approach). 

Machine learning techniques can be broadly categorized into supervised learning, unsupervised 

learning, and reinforcement learning. In the context of PD research, supervised learning is often 

used, where the algorithm is trained on a labelled dataset, learning to make predictions or 

decisions based on input data. Studies [A3], [A4], [A7], [A8] employed a range of these ML 

techniques to model the patterns in medical data. 

Primarily, ML algorithms can approximate functions that map inputs to outputs, thereby 

identifying patterns. This is crucial because, in computational terms, the task of PD detection can 

be defined as a multiclass classification problem, with the objective of predicting the disease 

severity level across various groups of individuals. Therefore, the following sections present the 

foundations of computational theory (formalization of a problem) and the selection of the best-

performing algorithms, including Logistic Regression, Random Forest, and Rough Set approach. 

Computational Approach 

Computationally, a medical dataset consists of 𝑁 training samples (𝑥1,𝑦1), … , (𝑥𝑁,𝑦𝑁), where 

each 𝑥𝑖 represents the vector of features (e.g. results of tests) for the 𝑖 -th sample (e.g. for each 

patient), and 𝑦𝑖 is a corresponding class label (e.g. the class of disease severity). The goal is to 

find a function 𝑔:𝑋 → 𝑌. This function is mapping from the input space 𝑋 to the output space 𝑌. 

Here, the function 𝑔 belongs to a set of potential functions 𝐺, referred to as the hypothesis space. 

This is the set of all functions that the learning algorithm can choose from.  

In the light of that, machine learning algorithm creates and adjusts a mapping function from input 

features (e.g., patient results) to output labels (e.g., medical diagnoses), using a given set of 

training samples. This is a non-trivial task and thus there are a couple of specific approaches to 

this general problem, resulting in a wide selection of machine learning algorithms. 

This means however that there is no single universal solution to all machine learning problems. 

The choice of model (e.g., Decision Trees, Neural Networks, Support Vector Machines, Logistic 

Regression, Random Forest, RSES) depends on the nature of the data and the specific 

characteristics of the disease patterns. Ultimately, the best-performing models can be 

embedded in a broader ecosystem of “artificial intelligence” (AI) - a system capable of making 

decisions or predictions that we perceive as “intelligent.” 
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Optimization and Verification 

Because of this challenge with model selection, there is a group of studies that focus on the 

analysis and the evaluation of outcomes using selected machine learning algorithms in the 

context of Parkinson’s disease classification (Sharanyaa et al. 2020; Ouhmida et al. 2022; Biswas 

et al. 2023). This analysis is important, because it leads to the selection of the proper tool for the 

prediction of PD. This comparison can be done in multiple ways.  

Therefore, studies [A3], [A4], [A7], and [A8] selected multiple algorithms to compare them side 

by side. By evaluating different models, they target to identify the most effective approach for 

accurately predicting disease severity and progression in PD. 

A commonly used and simple metric is the accuracy of prediction. This parameter gives a 

fundamental overview of the performance of each classifier as it is easily understandable. 

Furthermore, accuracy score impacts multiple metrics as well. These other metrics, like 

precision, recall, F1 score, ROC (Receiver Operating Characteristic curve), and AUC (Area under 

the ROC curve) are often verified for better overall performance overview. 

In PD, by the means of these metrics, the literature reveals that common selection of best 

performing algorithms includes Logistic Regression, Random Forest, Naïve Bayes, Decision 

Trees, K-Nearest Neighbours, Artificial Neural Networks, Support Vector Machine, and Gradient 

Boosting Machines (Sharanyaa et al. 2020; Ouhmida et al. 2022; Biswas et al. 2023).  

Studies described in [A3], [A4], [A7], and [A8] evaluated selected ML models, often together with 

granular computing approach. In the classic ML approach, the highest performance (in terms of 

accuracy and precision) was consistently achieved with Logistic Regression and Random Forest. 

However, as discussed later, these methods were often outperformed by the Granular 

Computing approach utilizing rough-set rules. In light of these findings, the following sections 

provide a brief overview of the selected algorithms. 

Logistic Regression 

Logistic Regression (LR) predicts categorical outcomes by modeling a linear relationship between 

the input variables and the log-odds of the outcome. The core of Logistic Regression is the 

sigmoid function, which is defined as: 𝑝 = 1

1+𝑒−(𝑏0+𝑏1𝑋)
 . Here, 𝑝 is the probability of the positive 

class, 𝑏0 represents the baseline log-odds when all predictor variables are zero (intercept term), 

𝑏1 represents the strength and direction of the association between 𝑋  and the outcome 

(coefficient for the predictor variable 𝑋). This formula is useful because it transforms the log-odds 
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into output values between 0 and 1, modeling them as probabilities. While the basic form of 

Logistic Regression is binary, it can be extended to manage multinomial outcomes. LR is 

particularly popular in healthcare analysis and medical research and yielded good results in the 

study [A6].  

Random Forest 

Study [A4] shows that Random Forest (RF) presents good performance in complex PD 

classification. The core of Random Forest are outcomes of multiple Decision Trees. Each 

individual tree provides a prediction based on a random subset of the data and features. In RF, 

the final prediction for an observation is usually obtained by aggregating the predictions from all 

individual trees, either by averaging (for regression tasks) or by taking the mode (for classification 

tasks). Notably, Random Forest provides a metric called “feature importance” that indicates how 

much each feature contributes to the model’s predictions, helping to identify the most influential 

variables in the dataset. As with Logistic Regression, the approach offered by RF is important for 

making informed clinical decisions and for identifying potential areas for intervention. 

Granular Computing 

Analysis of classical ML methods’ performance versus the Rough-Set Theory (RST) described in 

[A3] suggests that granular computing approach using rough-set rules is able to provide good 

predictions on medical datasets (Pawlak 1982).  

In the concept of granular computing (GrC), granules are collections of elements grouped 

together based on their similarity, functionality, or other criteria. These can be data points, 

objects, or pieces of information. Objects characterized by the same information are considered 

indiscernible. Any set of all similar objects forms a basic granule (or atom) of knowledge about 

the universe. Each set can be described by rules that define which objects certainly belong to the 

set (lower approximation) and which objects “possibly” belong to the set (upper approximation). 

Rough Set Theory can be applied to small datasets. Moreover, generated rules often are 

discovered in scenarios where comprehensive models might not be feasible. 

Computational Theory of Mind 

In the discussion about models that can process information in a way similar to human thinking, 

the brain’s functioning is often compared to that of a digital computer or a Universal Turing 

Machine, which processes symbols (Turing 1937). However, psychophysical experiments and 

humans’ ability to recognize complex objects, such as faces, in various contexts and lighting 

conditions, suggest otherwise. This challenges the idea of symbolic representation and instead 
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supports the notion that concept representation based on similarities may be a more accurate 

model for how the brain works. 

While others interpreted principles of universal computing machine as a model of the brain, 

Turing himself had a different perspective on how the brain functions. Besides his development 

of the UTM, Turing contributed to the field of morphogenesis (Turing 1990). He proposed that 

natural patterns like stripes, spots, and spirals can arise from the interaction of chemical 

substances, which he called “morphogens.” This is a process where chemicals move between 

cells causing them to “transform,” causing the organism to develop its shape or specific pattern. 

This theory offers a dynamic view of biological development that contrasts with the fixed, 

predetermined computational process implied by the Universal Turing Machine. 

Biological systems, including those studied in morphogenesis, often involve uncertain 

information. Rough Set Theory manages data where some information may be imprecise or 

missing. Therefore, [A5] argues that simple rules correspond with morphogenesis principles and 

allow for a nuanced understanding of cognitive processes. 

This comparison can be explained using visual classification tasks to understand how the brain 

processes information. Visual classification involves specific neural interactions, such as 

asynchronous process integration in the retina. The visual classification model is based on the 

receptive field properties of neurons in different visual areas and uses both feedforward and 

feedback interactions between them (Figure 7). 

In higher visual brain areas, people use processes similar to granular computing to identify upper 

and lower approximations of the retinal image. These approximations are compared with different 

object models stored in the visual cortex. As object recognition progresses, lower visual areas are 

tuned to extract properties of the selected model, and the gap between the upper and lower 

approximations narrows. When the border set becomes empty, the object is successfully 

recognized. This approach can be applied to propose various models that approximate the actual 

(and future) state of tested subjects. 

Specifically, the feedforward pathways use “driver logical rules” to combine properties extracted 

in each area into hypotheses related to possible objects. Then, the feedback pathways use 

“modulator logical rules” to help transform weak concepts of objects’ physical properties into 

crisp classifications in psychophysical space. This process approximates how the brain utilizes 

logical rules to transform blurred object concepts into clear categorizations. 
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Studies on macaques, such as those by Przybyszewski et al. (2000) show that back-projection 

pathways from the striate cortex (V1) to the lateral geniculate nucleus (LGN) enhance neuron 

responses based on visual contrast, supporting the theory of visual processing and object 

recognition. (Przybyszewski et al. 2000). These are connections that go from one part of the brain 

and back to an area that supplies input to it. Research shows that these back connections make 

neuron responses stronger, depending on the contrast of what is seen. Here as well, as object 

recognition progresses, lower visual areas are tuned to extract properties of the selected model, 

and the gap between the upper and lower approximations narrows (object is recognized). 

 

Figure 7. The receptive field properties of neurons feed into both feedforward and feedback pathways. Feedforward 

pathways use “driver logical rules” to create hypotheses of possible objects, while feedback pathways employ 

“modulator logical rules” to refine these hypotheses into crisp classifications. Higher visual brain areas then utilize GrC 

to compare upper and lower approximations of retinal images with stored object models, leading to object recognition 

as the gap between these approximations narrows [A5]. 

This observation gives an opportunity to reconsider the algorithms we use to develop digital 

diagnostic tools. Insights from how biology works, as suggested by Turing’s theories and recent 

research on xenobots (so-called “living robots,” Levin et al. 2021), suggest that simple rules can 
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create a complex organism (Blackiston et al. 2021). This view is maintained throughout all papers 

in this thesis, and it is contrary to computationally heavy, AI-driven “black box” methods. 

IV. Contributions 

The results of this research combine three distinct approaches towards data collection: using 

diffusion tensor imaging, eye tracking, and online cognitive testing. Each method was integrated 

with machine learning algorithms to analyze the data. 

DTI and Machine Learning 

The first study, [A1] (“DTI Helps to Predict Parkinson’s Patient’s Symptoms Using Data Mining 

Techniques”, 2019), focused on postoperative (after DBS) patients. This approach involved ML to 

identify brain abnormalities through DTI analysis (Figure 2). In this work, I conducted the analysis 

of RST model results and provided a detailed description of the methods and findings. The initial 

analysis included discovering correlations between given attributes aligned with their importance 

using correlation heatmap. Then, based on the obtained values, it was possible to select relevant 

attributes for the data mining process, performed in RSES software. 

The study included three subsets of the dataset, each targeting a different UPDRS  II or UPDRS III 

marker: “#8: handwriting distortion”, “#20: tremor at rest: face, lips, chin,” and “#21: action or 

postural tremor of hands - left hand.” For each subset, I conducted experiments based on defined 

attributes, leading to conclusions about possible UPDRS values after DBS treatment. The results 

of the prediction for the left-hand tremor based on given DTI parameters revealed an accuracy of 

0.967 with a coverage of 0.425. The prediction result for the “face, chin, lips tremor” achieved an 

accuracy of 0.824 with a coverage of 0.7. The last experiment, detecting UPDRS value changes 

for the “handwriting distortion,” achieved an accuracy of 0.878 with a coverage of 0.667. 

Using rough set rules, the model detected issues such as handwriting distortion after deep brain 

stimulation treatment with notable accuracy. DTI analysis focused on finding ways (connections) 

to determine the structure of the motor cortex depending on the stimulation parameters and 

contact with electrodes. This approach provided insights into specific brain microstructural 

changes that were different in PD patients.  

Further research with independent cohorts is necessary to validate and extend these findings, 

because this approach provided valuable insights into disease progression and helped 

differentiate between PD subclasses. 
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Eye-Tracking and Machine Learning 

The second approach involved analyzing rapid eye movements, specifically saccades, to identify 

patterns that differentiate PD patients. Saccades were measured using head-mounted eye-

tracker (Figure 3). 

Study [A2] provides analysis of this approach, and reviews various tests, using saccades, 

antisaccades, and pursuit, to predict disease progression using ML methods. The predictive 

algorithms described in the study included a range of techniques, such as granular computing, 

Naive Bayes, Decision Trees, Logistic Regression, C-/Linear Support Vector Classifiers, K-

Nearest Neighbors Classifier, and Random Forest. The review demonstrated that by applying ML 

algorithms to high-dimensional eye movement data, it is possible to detect significant changes 

related to neurodegenerative symptoms, proposing new insights into the underlying mechanisms 

of these diseases. 

Furthermore, in the study [A3] (“Comparison of Different Data Mining Methods to Determine 

Disease Progression in Dissimilar Groups of Parkinson’s Patients”, 2020), the objective was to 

predict the results of different PD patients’ treatments to find an optimal one.  In this study I 

compared Rough Sets and various machine learning models, including Logistic Regression, 

Random Forest, Decision Tree, KNN, SVC, GradBoost, and GaussianNB, to describe and predict 

disease progression expressed as UPDRS values. This study showed that eye-tracking can play a 

crucial role in identifying different stages of PD. Because of the extensive granulation of the task, 

I coded the pipeline for the evaluation of ML models (Rough Sets were modeled independently), 

where each model was given the same task and the ability to hypertune itself in the best  possible 

way. When each model was prepared, they reported their scores and hypertuned parameters to 

analyze their behavior. This study included three groups of PD patients: 23 BMT (Best Medical 

Treatment) patients on medication, 24 DBS (Deep Brain Stimulation) patients on medication and 

DBS therapy after surgery, and 15 POP (Postoperative) patients who had undergone surgery 

earlier. Each patient had three visits every six months. The study estimated UPDRS changes 

based on disease duration, saccadic eye movement parameters, and neuropsychological tests 

(PDQ39 and Epworth Sleepiness Scale). The results showed that RS rules predicted UPDRS 

values with global accuracies of 70% for BMT visits, 56% for DBS, and 67% and 79% for POP visits. 

ML models provided similar accuracy ranges, with the best performance in specific sessions. 

However, in contrast to RS rules, ML models could predict the results of one session (session 3 - 

MedON) in POPW1 patients based on DBSW2 session three results. This is a limited case but 
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shows some common mechanisms between DBS and POP groups. In this work, I was responsible 

for the creation and evaluation of ML models, as well as the description of the results. 

This was further investigated in [A4] (“Eye-Tracking and Machine Learning Significance in 

Parkinson’s Disease Symptoms Prediction”, 2020). Here, I used data of patients from the BMT 

group (third visit), DBS (3rd visit), and POP (1st visit). The independent test set consisted of the 

POP group from the second visit. Using an upgraded version of the pipeline code for ML 

evaluation, I selected, hyper-tuned, and observed the behavior of ML models under this task, and 

I described the outcomes. In this study, by combining eye-tracking data with ML algorithms, the 

model achieved a 75% accuracy rate in predicting subclasses of UPDRS for patients in advanced 

stages of the disease. The overall accuracy for distinguishing all classes was moderate at 57%. 

However, it is important to highlight that this model was designed to solve a multi-class (four-

class) classification problem among dissimilar PD groups. While using fewer groups would lead 

to better overall accuracy, the multi-class approach provides a more granular view of the data, 

capturing rules among the different stages and characteristics of PD. 

Despite the scores presented by these results, it is worth noting that the study was limited by 

sample size, which may affect the generalizability of the findings. Further research with larger 

cohorts is necessary to validate these results and fully establish the utility of eye-tracking as a 

non-invasive tool for PD diagnosis and monitoring. Nevertheless, the ML models were able to 

detect distinctive eye movement patterns characteristic for different stages of the disease.  

Digital Cognitive Tests and Machine Learning 

The newest approach involves using data from web-based cognitive tests to identify motor and 

cognitive signs of Parkinson’s Disease. This is an outcome of the review [A5] that explored digital 

biomarkers (tools designed for remote neurocognitive data collection and ML analysis) as a 

potential solution for early diagnosis of NDs. Integration of web digital tools holds a potential to 

transform ND diagnostics, making early detection tools more cost-effective and globally 

accessible. 

For the evaluation of this approach, I created a web test to acquire specific motor (instrumental 

reaction time - IRT and time to submit - TTS) and cognitive (Trail Making Test A and B, Montreal 

Cognitive Assessment) data as biomarkers for disease progression. In 2023, I presented first 

preliminary findings of the web platform and initial model for data. Study [A6] (“Investigating the 

Impact of Parkinson’s Disease on Brain Computations: An Online Study of Healthy Controls and 

PD Patients”, 2023), collected data from individuals with PD and healthy controls using an online 
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platform and multiple neuropsychological tests. Using Logistic Regression, the model achieved 

an accuracy rate of 91.1% in differentiating PD patients from healthy controls. However, two PD 

patients were misclassified as healthy subjects, and two healthy individuals were misclassified 

as PD patients. I also utilized multinomial Logistic Regression to predict the UPDRS III group of 

patients and healthy individuals, achieving similarly high accuracy. These findings suggest that 

web cognitive and behavioral tests can detect changes in brain computations, potentially 

indicating the onset of PD before clinical symptoms appear. 

In the subsequent study [A7] (“Classification of Parkinson’s Disease Using Machine Learning with 

MoCA Response Dynamics”, 2024), I examined the diagnostic efficiency of ML models using 

MoCA test results to classify scores of people with PD and healthy subjects. I implemented both 

rule-based modeling using Rough Set Theory and classic ML techniques such as Logistic 

Regression, Support Vector Machines, and Random Forests. The diagnostic accuracy of the best-

performing model (RST) increased from 80.0% to 93.4%, and diagnostic specificity increased 

from 57.2% to 93.4% only when the MoCA score was combined with proposed temporal metrics 

(IRT and TTS). This highlights that online platforms can detect subtle signs of bradykinesia 

(slowness of movement, a hallmark symptom of PD) and use this as a biomarker to provide more 

precise and specific diagnoses. Despite the constrained number of participants (15 PD patients 

and 16 healthy controls), the results suggest that incorporating time-based metrics into cognitive 

screening algorithms may significantly improve their diagnostic capabilities. 

Finally, in 2024, I used the same platform to distinguish between symptoms of mild-PD and 

advanced-PD. In study [A8] (“Recognizing Patterns of Parkinson’s Disease using Online Trail 

Making Test and Response Dynamics – Preliminary Study”, 2024), I evaluated the effectiveness 

of an online version of TMT A and TMT B, incorporating time-based measures to recognize 

cognitive and motor manifestations of PD severity. For validation, this research was conducted 

with 15 PD patients. The study applied TMT sensitivity to executive function impairments by 

measuring response and reaction times and correlating these with stages of PD severity. I used 

various ML models, including Naïve Bayes, Logistic Regression, Support Vector Machine, and 

Random Forest, to predict disease severity based on TMT performance. Among these, Random 

Forest was the most effective, achieving 80% accuracy (AUC=0.92), indicating good performance 

in distinguishing between mild and advanced stages of PD. Although limited by sample size, this 

preliminary study highlights the role of digital tools in capturing specific changes in PD that can 

be relevant for diagnostics and monitoring of PD. 
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Consequently, findings from these studies present the utility of web-based platforms in 

assessing cognitive and motor functions in PD patients. By integrating temporal dynamics with 

traditional cognitive tests, we can achieve higher diagnostic accuracy and specificity.  

This approach not only assists early detection but also enables continuous monitoring of disease 

progression in a non-invasive manner. Importantly, the results suggest that the inclusion of digital 

tools in routine clinical practice can support the detection and management of 

neurodegenerative diseases. 

Research in Virtual Reality 

Furthermore, it is worth noting that patients are experiencing navigation problems in 3D space in 

both Alzheimer’s disease and Parkinson’s disease. Thus, I also evaluated the possible impact of 

virtual reality (VR) on early disease detection as a parallel direction for diagnosis (Figure 8). 

 

Figure 8. The prototype of the application assessing the recognition of numbers and letters in the right order (TMT B) 

implemented in the VR environment on the Oculus Go device (demo  online: nd.pja.edu.pl/ar-vr.html). 

As confirmed in web platform studies, TMT Part B is sensitive to executive functioning since the 

test requires multiple abilities to complete it, and thus it is more difficult in 3D. My role in this area 

was to develop a prototype application for assessing the recognition of numbers and letters in the 

correct order within a VR environment using the Unity engine (demonstration is available online: 

nd.pja.edu.pl/ar-vr.html). In this context, the challenges of the virtual environment, such as 

cybersickness, are described in a “Further Research” section of [A2]. The potential of VR 

technology, however, should not be dismissed.  
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As discussed in the referenced literature, VR applications have shown significant promise in 

cognitive assessments, particularly in tasks involving visuospatial processing, which is critical in 

the early detection of Alzheimer’s disease and other neurodegenerative conditions. But 

accessibility issues and hardware requirements cannot be overlooked. Thus, future research 

should focus on optimizing these VR tools for broader clinical use, especially because it creates 

an immersive environment.  

This is important because recent research has shown that engaging in action video games can 

lead to structural changes in the brain, particularly in regions associated with sensory processing, 

attention, and spatial navigation. Interestingly, it is possible to induce changes in gray matter 

thickness while playing action video games, as found in [C2]. The structural plasticity of the insula 

could be linked to the quality of the gaming experience and the skills developed during gameplay. 

However, due to the additional hardware overhead required for VR, I suggest that the web 

approach holds promise for being more accessible by not needing dedicated hardware and 

software. 

Summary of Contributions 

In summary, my contributions to the field include the development of digital assessment 

platforms integrated with machine learning models for complex datasets, as well as the 

implementation, evaluation, analysis, and interpretation of the results. 

I implemented and evaluated various ML models for the specific challenges posed by complex 

Parkinson’s disease datasets. This work involved researching algorithms, tuning model 

parameters, and ensuring that the models effectively captured and predicted patterns related to 

disease progression. 

Furthermore, I conducted a detailed analysis and interpretation of the results generated by these 

ML models. This included measuring performance and improving the explainability of the models, 

making their predictions more understandable and actionable. 

A significant aspect of my contributions was the development of a web-based cognitive 

assessment platform designed to collect and process both cognitive and motor data from 

patients. This platform provided data for the ML workflow and demonstrated its capability to 

generate insightful datasets that register subtle changes in disease progression. 

Additionally, I proposed and validated two new behavioral digital biomarkers: Instrumental 

Reaction Time (IRT) and Time To Submit (TTS). These biomarkers were incorporated into the 
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assessment process and significantly enhanced the accuracy and specificity of the test results. 

By capturing these temporal metrics, the platform provided a more nuanced understanding of 

motor and cognitive impairments associated with Parkinson’s disease. 

Each method provided computational insights into disease progression and contributed to 

determining PD severity based on digital data and machine learning models. Thus, the methods 

described in this thesis contribute to the field of computer science through the design and 

development of digital platforms and explainable machine learning workflows that can be applied 

to complex and limited datasets, such as those related to neurodegenerative diseases. 

V. Discussion  

The integration of DTI, eye tracking, and online cognitive testing with machine learning ML 

algorithms presented the ability to draw conclusions relevant for PD diagnosis and treatment 

monitoring. Each method demonstrated unique strengths in identifying and predicting PD 

symptoms, although they are limited by sample sizes, thus requiring further research for 

validation, including longitudinal studies. 

The study on DTI and ML focused on postoperative DBS patients, employing Rough Set Theory to 

predict symptoms such as tremors and handwriting distortion. The results showed high accuracy 

in predictions, particularly for left-hand tremors (0.967 accuracy) and handwriting distortion 

(0.878 accuracy). This approach highlighted the ability of DTI to reveal brain abnormalities linked 

to PD and provided insights into the microstructural changes associated with the disease.  

Furthermore, eye-tracking studies focused on rapid eye movements (saccades) to differentiate 

PD patients. By comparing various ML models and rough sets, the studies aimed to predict 

disease progression and treatment outcomes. RS rules predicted UPDRS values with good 

accuracy, while ML models showed similar accuracy ranges and were able to predict specific 

session results in certain cases. A subsequent study achieved a 75% accuracy rate in predicting 

subclasses of UPDRS using eye-tracking data. Again, despite the promising results, the sample 

size again calls for further validation for the broader applicability of these findings. Nonetheless, 

these studies underscore the potential of eye-tracking as a non-invasive diagnostic tool for PD. 

Web-based cognitive testing emerged as a powerful tool for detecting motor and cognitive signs 

of PD. Preliminary findings showed a high accuracy rate (91.1%) in differentiating PD patients 

from healthy controls using Logistic Regression. Further studies combined cognitive test scores 

with temporal metrics, significantly improving diagnostic accuracy and specificity. The inclusion 
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of time-based metrics in cognitive screening algorithms highlights the potential for online 

platforms to capture subtle signs of PD, enabling early detection and continuous monitoring. 

Additional direction explored in these studies was the use of virtual reality for the implementation 

of TMT B. While VR environments present challenges such as cybersickness, web-based 

approaches offer greater accessibility and do not require specialized hardware. Furthermore, the 

integration of temporal dynamics with traditional cognitive tests via web platforms can enhance 

diagnostic accuracy and support disease management. 

In conclusion, this discussion offers a brief overview of the key points covered in articles included 

in this thesis. It serves as a summary of the more detailed discussions presented in each of 

publications, and I encourage the reader to refer to those original works for a comprehensive 

analysis. 

VI. Conclusions 

This work presents the feasibility and validity of digital methods and machine learning for the 

detection of Parkinson’s disease. While many challenges remain, the results indicate that 

machine learning workflows can be effectively applied to complex and limited disease datasets. 

This has the potential to advance the development of improved digital diagnostic approaches.  

In conclusion, selected digital biomarkers combined with machine learning can be applied to 

detect PD symptoms in an objective and reliable manner. Further research should focus on 

evaluating these methods with independent samples and exploring their longitudinal application. 
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Glossary 

Phrase Definition 

3DSlicer An open-source software platform for visualization, processing,  

segmentation, registration, and analysis of medical and biomedical images. 

Accuracy A metric used to evaluate the performance of a classification model. 

AD Alzheimer’s disease. 

Amantadine A medication originally used as an antiviral drug that improves motor 

features of PD. 

Antisaccades Eye movements in the opposite direction of a suddenly appearing target. 

AUC Area under the ROC curve, a measure of the overall performance of a binary 

classification model. 

Binary 

Classification 

A classification task that involves differentiating between two categories. 

BMT Best Medical Treatment, a group of patients receiving optimal medical 

therapy. 

Bradykinesia Slowness in initiating or performing movements, which is a common 

symptom of Parkinson’s disease. 

cMoCA Computerized Montreal Cognitive Assessment. 

CNN Convolutional neural networks, a class of deep neural networks commonly 

used in analyzing visual data. 

COMT 

inhibitors 

Medications that inhibit the breakdown of dopamine. 

Cross-

validation 

A technique for assessing how a model will generalize to an independent 

dataset. 

cTMT Computerized Trail Making Test. 

DBS Deep brain stimulation, a surgical treatment involving implanting 

electrodes in specific brain areas to modulate neural activity. 

Decision Trees A hierarchical structure used for classification and regression tasks. 
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Digital 

Biomarkers 

Data collected from interactions with technology to understand human  

behavior or cognitive function. 

Disease 

Stratification 

The process of categorizing patients into different stages or severity of a 

disease. 

Dopamine A neurotransmitter essential for smooth, coordinated muscle activity  

and various brain functions. 

Dopamine 

agonists 

Medications that mimic dopamine’s effects. 

DTI Diffusion tensor imaging, a type of MRI used to measure neural  

structural connectivity. 

Epworth  A scale used to measure daytime sleepiness. 

F1 score The harmonic means of precision and recall. 

Fixations Moments when the eyes stop scanning and focus on a single point. 

GaussianNB Gaussian Naive Bayes, a probabilistic classifier based on Bayes’ theorem. 

GradBoost Gradient Boosting, a machine learning technique used for regression and  

classification tasks. 

Granular 

Computing 

A computational approach used to analyze patterns in data for disease 

prediction. 

Granule A collection of elements grouped together based on similarity or 

functionality. 

Hoehn and 

Yahr Scale 

A scale used to describe the progression of Parkinson’s disease in stages,  

from mild symptoms to severe disability. 

Hypomimia Reduction of emotional facial expression. 

IR sensor Infrared sensor used for precise measurement of eye movements. 

IRT Instrumental reaction time. 

JAZZ Novo A head-mounted device with an infrared sensor used for capturing eye 

movements. 

Levodopa A medication used to replenish depleted dopamine levels in the brain. 
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Logistic 

Regression 

A classification algorithm used to predict categorical outcomes based  

on input variables. 

Machine 

Learning 

A technique which focuses on learning patterns from data, even when those 

patterns are too subtle to be identified by traditional statistical techniques. 

MAO-B 

inhibitors 

Medications that inhibit the breakdown of dopamine. 

MCI Mild Cognitive Impairment. 

MedON Medication ON, a state where PD patients are evaluated while on 

medication. 

MedOFF Medication OFF, a state where patients are evaluated while they are off 

their medication. 

MMSE Mini-Mental State Examination, a tool used for cognitive assessment. 

MoCA Montreal Cognitive Assessment, a cognitive test more effective than some  

others for assessing cognitive function in PD. 

MSA Multiple system atrophy. 

NDs Neurodegenerative diseases. 

PD Parkinson’s disease. 

PDD Dementia in Parkinson’s Disease. 

PDQ39 Parkinson’s Disease Questionnaire-39, a tool used to measure the quality 

of life in PD patients. 

Pearson’s  A measure of linear correlation between two sets of data. 

POP Postoperative, a group of patients who have undergone surgery. 

Precision A metric that measures the accuracy of the positive predictions made by 

the model. 

PSP Progressive supranuclear palsy. 

Random Forest 

(RF) 

An ensemble learning method that uses multiple decision trees for 

 classification and regression tasks. 
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Recall A metric that measures the ability of the model to identify all relevant  

instances in the dataset. 

Regularization Techniques used to prevent overfitting in machine learning models by 

penalizing large coefficients. 

ROC curve A graphical representation of the diagnostic ability of a binary classifier. 

Rough Set 

Theory (RST) 

Rough Set Theory, a mathematical approach to deal with vagueness  

and uncertainty in data. 

RSES Rough Set Exploration System, software used for data mining and  

analysis using Rough Set Theory. 

Saccades Rapid eye movements between targets. 

Smooth pursuit Continuous movement of the eyes as they follow a moving object. 

SN Substantia Nigra, a deeply pigmented gray matter situated in the midbrain. 

SNc Substantia Nigra pars compacta, a specific region within the Substantia 

Nigra. 

SPSS Statistical software used for data management and analysis. 

STN Subthalamic nucleus, a brain region involved in movement control. 

SVC Support Vector Classifier, a type of support vector machine used for 

classification tasks. 

TMT Trail Making Test, a neuropsychological test that measures various 

cognitive functions. 

train_test_split A technique for dividing a dataset into training and testing subsets. 

TTS Time-to-submit, a measure used in cognitive tests. 

Unity engine A cross-platform game engine used to develop simulations  

and interactive experiences. 

UPDRS Unified Parkinson Disease Rating Scale, a comprehensive tool used  

to measure the severity and progression of Parkinson’s disease. 

VR Virtual Reality, simulated experience that employs 3D near-eye displays. 
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DTI Helps to Predict Parkinson’s Patient’s Symptoms Using Data 

Mining Techniques 

A. Chudzik, A. Szymański, J. P. Nowacki, and A. W. Przybyszewski  

1. Type: Conference paper presented in Yogyakarta, Indonesia, during the Asian Conference 

on Intelligent Information and Database Systems - Special Session on Analysis of Image, 

Video, Movements and Brain Intelligence in Life Sciences (Springer, 2019) 

2. Score: 70 points (MEiN list of January 5, 2024). 

3. Abstract: Deep Brain Stimulation (DBS) is commonly used to treat, inter alia, movement 

disorder symptoms in patients with Parkinson’s disease, dystonia, or essential tremor. 

The procedure stimulates a targeted region of the brain through implanted leads that are 

powered by a device called an implantable pulse generator (IPG). The mentioned targeted 

region is mainly chosen to be subthalamic nucleus (STN) during most of the operations. 

STN is a nucleus in the midbrain with a size of 3 mm × 5 mm × 9 mm that consists of parts 

with different physiological functions. The purpose of the study was to predict Parkinson’s 

patient’s symptoms defined by Unified Parkinson’s Disease Rating Scale (UPDRS) that 

may occur after the DBS treatment. Parameters had been obtained from 3DSlicer 

(Harvard Medical School, Boston, MA), which allowed us to track connections between 

the stimulated part of STN and the cortex based on the DTI (diffusion tensor imaging). 

4. Contribution: I conducted the analysis of RST model results and prepared the description 

of the methods and findings. 

5. Reference: A. Chudzik, A. Szymański, J. P. Nowacki, and A. W. Przybyszewski, "DTI Helps 

to Predict Parkinson’s Patient’s Symptoms Using Data Mining Techniques," in Intelligent 

Information and Database Systems, F. L. and H. T.-P. and T. B. Nguyen Ngoc Thanh and 

Gaol, Ed., Cham: Springer International Publishing, 2019, pp. 615–623. doi: 10.1007/978-

3-030-14802-7_53. 
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Machine Learning and Eye Movements Give Insights into 

Neurodegenerative Disease Mechanisms 

A. W. Przybyszewski, A. Śledzianowski, A. Chudzik, S. Szlufik, and D. Koziorowski 

1. Type: Article published in Sensors (MDPI, 2023). 

2. Score: 100 points (MEiN list of January 5, 2024). 

3. Abstract: Humans are a vision-dominated species; what we perceive depends on where 

we look. Therefore, eye movements (EMs) are essential to our interactions with the 

environment, and experimental findings show EMs are affected in neurodegenerative 

disorders (ND). This could be a reason for some cognitive and movement disorders in ND. 

Therefore, we aim to establish whether changes in EM-evoked responses can tell us about 

the progression of ND, such as Alzheimer’s (AD) and Parkinson’s diseases (PD), in 

different stages. In the present review, we have analyzed the results of  psychological, 

neurological, and EM (saccades, antisaccades, pursuit) tests to predict disease 

progression with machine learning (ML) methods. Thanks to ML algorithms, from the high-

dimensional parameter space, we were able to find significant EM changes related to ND 

symptoms that gave us insights into ND mechanisms. The predictive algorithms 

described use various approaches, including granular computing, Naive Bayes, Decision 

Trees/Tables, Logistic Regression, C-/Linear SVC, KNC, and Random Forest. We 

demonstrated that EM is a robust biomarker for assessing symptom progression in PD 

and AD. There are navigation problems in 3D space in both diseases. Consequently, we 

investigated EM experiments in virtual space and how they may help find 

neurodegeneration-related brain changes, e.g., related to place or/and orientation 

problems. In conclusion, EM parameters with clinical symptoms are powerful precision 

instruments that, in addition to their potential for predictions of ND progression with the 

help of ML, could be used to indicate the different preclinical stages of both diseases. 

4. Contribution: I wrote parts of the article, including the challenges of virtual environments 

in the Further Research section. 

5. Reference: A. W. Przybyszewski, A. Śledzianowski, A. Chudzik, S. Szlufik, and D. 

Koziorowski, "Machine Learning and Eye Movements Give Insights into 

Neurodegenerative Disease Mechanisms," Sensors, vol. 23, no. 4, p. 2145, Feb. 2023, doi: 

10.3390/s23042145. 
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Comparison of Different Data Mining Methods to Determine 

Disease Progression in Dissimilar Groups of Parkinson’s Patients 

A. W. Przybyszewski, A. Chudzik, S. Szlufik, P. Habela, and D. M. Koziorowski 

1. Type: Article published in Fundamenta Informaticae (IOS Press, 2020). 

2. Score: 70 points (MEiN list of January 5, 2024). 

3. Abstract: Parkinson’s disease (PD) is the second after Alzheimer’s most popular 

neurodegenerative disease (ND). Cures for both NDs are currently unavailable. 

OBJECTIVE: The purpose of our study was to predict the results of different PD patients’ 

treatments to find an optimal one. METHODS: We have compared rough sets (RS) and 

others, in short, machine learning (ML) models to describe and predict disease 

progression expressed as UPDRS values (Unified Parkinson’s Disease Rating Scale) in 

three groups of Parkinson’s patients: 23 BMT (Best Medical Treatment) patients on 

medication; 24 DBS patients on medication and on DBS therapy (Deep Brain Stimulation) 

after surgery performed during our study; and 15 POP (Postoperative) patients who had 

had surgery earlier (before the beginning of our research). Every PD patient had three visits 

approximately every six months. The first visit for DBS patients was before surgery. Based 

on the following condition attributes: disease duration, saccadic eye movement 

parameters, and neuropsychological tests: PDQ39 (Parkinson’s Disease Questionnaire - 

disease-specific health-related quality-of-life questionnaire), and Epworth Sleepiness 

Scale tests we have estimated UPDRS changes (as the decision attribute). RESULTS: By 

means of RS rules obtained for the first visit of BMT/DBS/POP patients, we have predicted 

UPDRS values in the following year (two visits) with global accuracy of 70% for both BMT 

visits; 56% for DBS, and 67%, 79% for POP second and third visits. The accuracy obtained 

by ML models was generally in the same range, but it was calculated separately for 

different sessions (MedOFF/MedON). We have used RS rules obtained in BMT patients to 

predict UPDRS of DBS patients; for the first session DBSW1: global accuracy was 64%, 

for the second DBSW2: 85% and the third DBSW3: 74% but only for DBS patients during 

stimulation-ON. ML models gave better accuracy for DBSW1/W2 session S1(MedOFF): 

88%, but inferior results for session S3 (MedON): 58% and 54%. Both RS and ML could not 

predict UPDRS in DBS patients during stimulation-OFF visits because of differences in 

UPDRS. By using RS rules from BMT or DBS patients we could not predict UPDRS of POP 

group, but with certain limitations (only for MedON), we derived such predictions for the 

POP group from results of DBS patients by using ML models (60%). SIGNIFICANCE: 
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Thanks to our RS and ML methods, we were able to predict Parkinson’s disease (PD) 

progression in dissimilar groups of patients with different treatments. It might lead, in the 

future, to the discovery of universal rules of PD progression and optimize the treatment. 

4. Contribution: I developed the pipeline for evaluating machine learning models with 

consistent tasks and optimal hyperparameter tuning, and I prepared the corresponding 

sections of the paper describing these models. 

5. Reference: A. W. Przybyszewski, A. Chudzik, S. Szlufik, P. Habela, and D. M. Koziorowski, 

"Comparison of Different Data Mining Methods to Determine Disease Progression in 

Dissimilar Groups of Parkinson’s Patients," Fundam Inform, vol. 176, no. 2, pp. 167–181, 

Dec. 2020, doi: 10.3233/FI-2020-1969. 

  



55 
 

Eye-Tracking and Machine Learning Significance in Parkinson’s 

Disease Symptoms Prediction 

A. Chudzik, A. Szymański, J. P. Nowacki, and A. W. Przybyszewski 

1. Type: Article presented online during the Asian Conference on Intelligent Information and 

Database Systems (ACIIDS) - Special Session on Interactive Analysis of Image, Video and 

Motion Data in Life Sciences (Springer, 2020). 

2. Score: 70 points (MEiN list of January 5, 2024). 

3. Abstract: Parkinson’s disease (PD) is a progressive, neurodegenerative disorder 

characterized by resting tremor, rigidity, bradykinesia, and postural instability. The 

standard measure of the PD progression is Unified Parkinson’s Disease Rating (UPDRS). 

Our goal was to predict patients’ UPDRS development based on the various groups of 

patients in the different stages of the disease. We used standard neurological and 

neuropsychological tests, aligned with eye movements on a dedicated computer system. 

For predictions, we have applied various machine learning models with different 

parameters embedded in our dedicated data science framework written in Python and 

based on the Scikit Learn and Pandas libraries. The models proposed by us reached 75% 

and 70% accuracy while predicting subclasses of UPDRS for patients in advanced stages 

of the disease who respond to treatment, with a global 57% accuracy score for all classes. 

We have demonstrated that it is possible to use eye movements as a biomarker for the 

assessment of symptom progression in PD. 

4. Contribution: I selected, hyper-tuned, and observed the behavior of ML models for this 

task and described the results in the article. 

5. Citation: A. Chudzik, A. Szymański, J. P. Nowacki, and A. W. Przybyszewski, "Eye-Tracking 

and Machine Learning Significance in Parkinson’s Disease Symptoms Prediction," in 

Intelligent Information and Database Systems, K. and S. A. and T. B. and C. S. Nguyen 

Ngoc Thanh and Jearanaitanakij, Ed., Cham: Springer International Publishing, 2020, pp. 

537–547. doi: 10.1007/978-3-030-42058-1_45. 
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Machine Learning and Digital Biomarkers Can Detect Early Stages 

of Neurodegenerative Diseases 

A. Chudzik, A. Śledzianowski, and A. W. Przybyszewski  

1. Type: Article published in Sensors (MDPI, 2024).  

2. Score: 100 points (MEiN list of January 5, 2024). 

3. Abstract: Neurodegenerative diseases (NDs) such as Alzheimer’s Disease (AD) and 

Parkinson’s Disease (PD) are devastating conditions that can develop without noticeable 

symptoms, causing irreversible damage to neurons before any signs become clinically 

evident. NDs are a major cause of disability and mortality worldwide. Currently, there are 

no cures or treatments to halt their progression. Therefore, the development of early 

detection methods is urgently needed to delay neuronal loss as soon as possible. Despite 

advancements in Medtech, the early diagnosis of NDs remains a challenge at the 

intersection of medical, IT, and regulatory fields. Thus, this review explores "digital 

biomarkers" (tools designed for remote neurocognitive data collection and AI analysis) as 

a potential solution. The review summarizes that recent studies combining AI with digital 

biomarkers suggest the possibility of identifying pre-symptomatic indicators of NDs. For 

instance, research utilizing convolutional neural networks for eye tracking has achieved 

significant diagnostic accuracies. ROC-AUC scores reached up to 0.88, indicating high 

model performance in differentiating between PD patients and healthy controls. 

Similarly, advancements in facial expression analysis through tools have demonstrated 

significant potential in detecting emotional changes in ND patients, with some models 

reaching an accuracy of 0.89 and a precision of 0.85. This review follows a structured 

approach to article selection, starting with a comprehensive database search and 

culminating in a rigorous quality assessment and meaning for NDs of the different 

methods. The process is visualized in 10 tables with 54 parameters describing different 

approaches and their consequences for understanding various mechanisms in ND 

changes. However, these methods also face challenges related to data accuracy and 

privacy concerns. To address these issues, this review proposes strategies that 

emphasize the need for rigorous validation and rapid integration into clinical practice. 

Such integration could transform ND diagnostics, making early detection tools more cost-

effective and globally accessible. In conclusion, this review underscores the urgent need 

to incorporate validated digital health tools into mainstream medical practice. This 

integration could indicate a new era in the early diagnosis of neurodegenerative diseases, 
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potentially altering the trajectory of these conditions for millions worldwide. Thus, by 

highlighting specific and statistically significant findings, this review demonstrates the 

current progress in this field and the potential impact of these advancements on the 

global management of NDs. 

4. Contribution: I prepared the original draft of the review, including parts of the theoretical 

computational aspects of neurodegenerative diseases. 

5. Reference: A. Chudzik, A. Śledzianowski, and A. W. Przybyszewski, "Machine Learning 

and Digital Biomarkers Can Detect Early Stages of Neurodegenerative Diseases," 

Sensors, vol. 24, no. 5, p. 1572, Feb. 2024, doi: 10.3390/s24051572. 
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Investigating the Impact of Parkinson’s Disease on Brain 

Computations: An Online Study of Healthy Controls and PD 

Patients 

A. Chudzik, A. Drabik, and A. W. Przybyszewski 

1. Type: Conference paper presented online in Phuket, Thailand, during the Asian 

Conference on Intelligent Information and Database Systems - Special Session on AI in 

Neurology to Brain Computations (Springer, 2023). 

2. Score: 70 points (MEiN list of January 5, 2024). 

3. Abstract: Early detection of Parkinson’s disease (PD) is critical for effective management 

and treatment. In our recent study, we collected data on brain computations in 

individuals with PD and healthy controls using an online platform and multiple 

neuropsychological tests. Using Logistic Regression, we achieved an accuracy rate of 

91.1% in differentiating PD patients and healthy controls. However, two PD patients were 

classified as healthy subjects, and two healthy individuals were misclassified as PD 

patients. We also utilized multinomial Logistic Regression to predict the UPDRS3 group 

of patients and healthy individuals, achieving the same high accuracy. Our findings 

suggest that cognitive and behavioral tests can detect early changes in brain 

computations, potentially indicating the onset of PD before clinical symptoms appear. 

This has significant implications for early detection and intervention of neurological 

disorders, improving outcomes and quality of life for affected individuals. Overall, our 

study provides new insights into the utility of neuropsychological tests and statistical 

methods for detecting and monitoring PD. 

4. Contribution: I coded the web platform, conducted the analysis, and prepared the 

original draft of the article. 

5. Reference: A. Chudzik, A. Drabik, and A. W. Przybyszewski, "Investigating the Impact of 

Parkinson’s Disease on Brain Computations: An Online Study of Healthy Controls and PD 

Patients," in Intelligent Information and Database Systems: 15th Asian Conference, 

ACIIDS 2023, Phuket, Thailand, July 24–26, 2023, Proceedings, Part II, Berlin, Heidelberg: 

Springer-Verlag, 2023, pp. 235–246. doi: 10.1007/978-981-99-5837-5_20. 
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Classification of Parkinson’s Disease Using Machine Learning with 

MoCA Response Dynamics 

A. Chudzik and A. W. Przybyszewski  

1. Type: Article published in Applied Sciences (MDPI, 2024). 

2. Score: 100 points (MEiN list of January 5, 2024). 

3. Abstract: Neurodegenerative diseases (NDs), including Parkinson’s and Alzheimer’s 

disease, pose a significant challenge to global health, and early detection tools are crucial 

for effective intervention. The adaptation of online screening forms and machine learning 

methods can lead to better and wider diagnosis, potentially altering the progression of 

NDs. Therefore, this study examines the diagnostic efficiency of machine learning models 

using Montreal Cognitive Assessment test results (MoCA) to classify scores of people 

with Parkinson’s disease (PD) and healthy subjects. For data analysis, we implemented 

both rule-based modeling using Rough Set Theory (RST) and classic machine learning 

(ML) techniques such as Logistic Regression, support vector machines, and Random 

Forest. Importantly, the diagnostic accuracy of the best performing model (RST) 

increased from 80.0% to 93.4% and diagnostic specificity increased from 57.2% to 93.4% 

when the MoCA score was combined with temporal metrics such as IRT—instrumental 

reaction time and TTS—submission time. This highlights that online platforms are able to 

detect subtle signs of bradykinesia (a hallmark symptom of Parkinson’s disease) and use 

this as a biomarker to provide more precise and specific diagnosis. Despite the 

constrained number of participants (15 Parkinson’s disease patients and 16 healthy 

controls), the results suggest that incorporating time-based metrics into cognitive 

screening algorithms may significantly improve their diagnostic capabilities. Therefore, 

these findings recommend the inclusion of temporal dynamics in MoCA assessments, 

which may potentially improve the early detection of NDs. 

4. Contribution: I coded the web platform, conducted the analysis, and prepared the 

original draft of the article. 

5. Reference: A. Chudzik and A. W. Przybyszewski, "Classification of Parkinson’s Disease 

Using Machine Learning with MoCA Response Dynamics," Applied Sciences, vol. 14, no. 

7, p. 2979, Apr. 2024, doi: 10.3390/app14072979. 
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Recognizing Patterns of Parkinson’s Disease using Online Trail 

Making Test and Response Dynamics – Preliminary Study 

A. Chudzik, J. P. Nowacki, and A. W. Przybyszewski 

1. Type: Conference paper that will be presented in Kolkata, India, during the International 

Conference on Pattern Recognition - ICPR (2024). 

2. Score: 70 points (MEiN list of January 5, 2024). 

3. Abstract: Neurodegenerative diseases (NDs), including Parkinson's (PD) and Alzheimer's 

(AD) disease are devastating conditions that affect millions worldwide, with the number 

of cases expected to rise significantly in the coming years. Despite considerable 

advancements in understanding their pathophysiology, etiology, and treatment, there is 

still a lack of effective disease-modifying interventions. Currently, no cure exists and there 

is an urgent need for modern tools that allow precise detection and objective severity 

scoring for the development of new therapeutic targets and approaches. Therefore, this 

study evaluates the effectiveness of an online version of the Trail Making Test Part A and 

B (TMT A and TMT B), incorporating time-based measures, to recognize cognitive and 

motor manifestations of Parkinson's disease severity. For validation, this research was 

conducted with 15 Parkinson’s patients under care at UMass Chan Medical School. This 

study applied the TMT sensitivity to executive function impairments by measuring 

response and reaction times, to correlate these with stages of PD severity. Machine 

learning models (Naïve Bayes, Logistic Regression, Support Vector Machine, and Random 

Forest) were used to predict the disease severity based on TMT performance. Among 

these, Random Forest was the most effective, achieving scores with an Area Under the 

Curve (AUC) of 0.92, indicating good performance in distinguishing between mild and 

advanced stages of PD. Although limited by a small sample size, this preliminary study 

highlights the role of digital tools in enhancing PD diagnostics and monitoring. Future 

research with larger cohorts and longitudinal designs is essential to validate these 

preliminary findings and further develop digital diagnostics as crucial in the fight against 

neurodegenerative diseases. 

4. Contribution: I coded the web platform, conducted the analysis, and prepared the 

original draft of the article. 

5. Reference: A. Chudzik, J. P. Nowacki, and A. W. Przybyszewski, "Recognizing Patterns of 

Parkinson’s Disease using Online Trail Making Test and Response Dynamics – Preliminary 

Study," ICPR 2024. PREPRINT. 
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Amantadine treatment in Parkinson’s disease patients as a 

modulatory factor of SARS-Cov-2 infection 

S. Szlufik, A. Chudzik, A. Przybyszewski, and D. Koziorowski 

1. Type: Abstract published in Parkinsonism & Related Disorders (Elsevier, 2023). 

2. Abstract: Background: Amantadine has been used for the prevention and treatment 

3.  of viral influenza A, but more recently it is used mainly in PD patients. Previous studies 

showed a possible impact of amantadine on COVID-19 severity in patients using this drug 

due to other (neurological diseases, mainly PD). Therefore the aim of this study was to 

evaluate the possible impact of amantadine on the SARS-Cov-2 infection in Parkinson’s 

disease (PD) patients. Methods: It was a nation-wide survey performed in Polish PD 

population from 01.2021 till 01.2022. All members of Polish PD foundations have been 

asked to answer a survey e 140 PD patients filled the questionnaire consisting of 35 

questions concerning the amantadine treatment, Parkinson’s disease and SARS -Cov-2 

infection history. The patients were divided into 2 groups: group A+ which was treated with 

amantadine (57 cases) and group A- (83 non-amantadine takers). Results: We have 

observed more slight symptoms and progression of SARS-Cov-2 infection in PD patients 

taking amantadine (8 patients COVID-19+) than in PD patients not taking amantadine (12 

patients COVID-19+). The symptoms of COVID-19 in A+ group were slight weakness, 

sweating or none of symptoms whereas group A- mainly demonstrated cough, smell loss, 

high temperature e one of group A- patients was hospitalized. Conclusions: Amantadine 

treatment in PD patients can reduce the severity of SARS-Cov-2 infection in PD patients. 

4. Contribution: I created an online questionnaire and analyzed the results. 

5. Reference: S. Szlufik, A. Chudzik, A. Przybyszewski, and D. Koziorowski, "Amantadine 

treatment in Parkinson’s disease patients as a modulatory factor of SARS -Cov-2 

infection," Parkinsonism Relat Disord, vol. 113, Aug. 2023, doi: 

10.1016/j.parkreldis.2023.105606. 
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Structural neuroplasticity induced by training in the form of a first-

person shooter video game 

N. Kowalczyk, M. Myśliwiec, M. Skorko, P. Dobrowolski, A. Chudzik, and A. Brzezicka 

1. Type: Abstract published in 9th Annual Conference Aspects of Neuroscience Abstract 

Book (Warsaw University, 2019). 

2. Abstract: Over the last few years, computer games have evolved from an unrealistic and 

straightforward two-dimensional environment to experience becoming more similar to a 

real-life activity. Due to the increasing impact that video games playing has been having 

on global society, the cognitive effects of video games have become an exciting matter to 

be considered on a scientific level. While many studies show that playing action video 

games has a positive impact on a vast range of cognitive skills, numerous studies show 

negligible or no cognitive effect. There is nevertheless only a handful of studies that focus 

on possible structural changes as an effect of playing a video game. Those do show that 

playing action video games induces grey matter thickness changes in structures like the 

parahippocampal cortex, somatosensory cortex, superior parietal lobule or insula. The 

first aim of the presented study was to see whether or not approximately 30 hours of 

training is sufficient for any cognitive and structural changes to occur. The region of 

interest (ROI) approach was used to select structures of the brain that could be related to 

the gaming experience. The second aim of the study was to see whether or not the cortical 

thickness in specific structures can be predictive of the quality of the training process. A 

strong effect of insula did occur – while its right side negatively changed its thickness as 

an effect of training, the left side correlated positively with the game achievements. 

3. Contribution: I wrote a parser for demos (replays of user sessions) that extracted relevant 

data about the performance of each participant. 
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the brain linked to AD start occurring 20-30 years before the first symptoms arise. By the 

time symptoms become apparent, many areas of the brain have already been affected. 
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methods to analyze AD progressions and estimate them "backward" in time to discover 

the beginning of the disease. 
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Abstract. Deep Brain Stimulation (DBS) is commonly used to treat, inter alia,
movement disorder symptoms in patients with Parkinson’s disease, dystonia or
essential tremor. The procedure stimulates a targeted region of the brain through
implanted leads that are powered by a device called an implantable pulse
generator (IPG). The mentioned targeted region is mainly chosen to be sub-
thalamic nucleus (STN) during most of the operations. STN is a nucleus in the
midbrain with a size of 3 mm � 5 mm � 9 mm that consist of parts with
different physiological functions. The purpose of the study was to predict
Parkinson’s patient’s symptoms defined by Unified Parkinson’s Disease Rating
Scale (UPDRS) that may occur after the DBS treatment. Parameters had been
obtained from 3DSlicer (Harvard Medical School, Boston, MA), which allowed
us to track connections between the stimulated part of STN and the cortex based
on the DTI (diffusion tensor imaging).

Keywords: Subthalamic nucleus � UPDRS � RSES � MRI � DTI � DBS �
Parkinson’s disease � Data mining

1 Introduction

Neurodegenerative diseases, in which we could distinguish Parkinson Disease (PD),
have their background in neurodegeneration which could be described as progressive
loss of structure or function of neurons, including the death of neurons. PD is primarily
related to the substantia nigra degeneration which leads to dopamine insufficiency.
Standard medication in PD is L-DOPA, which is a precursor of dopamine. However,
disease progression affects in L-DOPA efficiency decay which may be revealed in on-
off symptom fluctuation.

Thus, the neurologist has often to extend standard medication therapy to DBS
(Deep Brain Stimulation) surgery [1]. DBS treatment depends on stimulation of the
subthalamic nucleus (STN) which is dorsal to the substantia nigra and medial to the
internal capsule. STN is also being known as a “hyper direct pathway” [2] of motor
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control, contrasting with the direct and indirect pathways implemented elsewhere in the
basal ganglia. However, the procedure of application the DBS electrode under the
appropriate placement is challenging and may affect in different recovery time and
treatment effectiveness.

The searching of localization of the subthalamic nucleus is done mainly by the
registrations of neuronal activity via microelectrode recording (MER) [8]. MER is an
intraoperative analysis of multi-unit activity (MUA). The commonly used criteria for
electrophysiological localization of the STN are qualitative and mainly based on visual
and acoustic observations of changes in spike frequencies and background activity. The
characteristics of spike trains change during the whole path of brain structures and
differ when the electrode passes through the thalamus, zona incerta, lenticular fasci-
culus, subthalamic nucleus, and the substantia nigra. Bursts in the background activity
and sudden increases in the frequency of neuronal spiking are signs that electrode is
near to STN. To obtain additional confirmation of the correct electrode placement,
supplementary kinesthetic responses measurements aligned with microstimulation are
being proceeded. There are two main strategies in searching for STN. First one depends
on a single microelectrode which leads to the necessity of multiple passes for correct
localization of the motor region. The second one uses 4–5 microelectrode insertions
simultaneously. It has to be noticed that any stimulation or manipulation of the non-
motor STN region is usually avoided since it can provoke psychiatric and cognitive
dysfunctions [7].

To predict the neurological effects related to different electrode-contact stimula-
tions, we have extracted specific parameters acquired from diffusion tensor imaging
(DTI). We have demonstrated that with the data mining methods, supported with the
rough set theory, it is possible to predict Parkinson’s patient’s symptoms, according to
Unified Parkinson’s Disease Rating Scale (UPDRS) [9].

2 Methods

In this research, the subject of study was data acquired from nine patients with
advanced PD, which have had DBS electrodes implanted. The primary step was the
analysis of the data acquired from the DTI by 3DSlicer software. Those parameters
were: two technical values (fiducial region size which determines the tractography
radius for selected electrode contact; stopping value - the value of ceasing for the
generation of the given tract) and an amount of tract reaching the proximity of given
ROI, distinguished between left and right side for every region.

The process of the tractography generation was described in previous works [3, 4].
The generation was carried separately for each contact, and it was on DTI data from the
pre-OP DWI (pre-operational diffusion-weighted imaging). The DWI to DTI (diffusion
tensor imaging) data was estimated by the use of least squares function approximation.
Then, to generate relevant tracts, a proper ROI (region of interest) has been set for each
patient, based on electrode contacts. Next, a module called Tractography Interactive
Seeding has been applied in order to generate tracts. For every patient, two sets of data
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have been generated- with a minimal and large (over 30) number of tracts into primary
and supplementary motor cortices (Fig. 1). The parameters that were used during the
creation of individual tractography were fiducial region size and stopping value,
mentioned previously.

The analysis included discovering of the correlation between given attributes
aligned with the importance. This operation was performed with the usage of pandas
library, which is a Python tool for data analysis and statistics [6]. Based on the obtained
values, it was possible to select the attributes relevant in the data mining process, which
was performed in RSES software.

We have used the RSES 2.1.1 (Rough System Exploration Program) with imple-
mentation of RS rules to process our data. An information system [5] can be considered
as a pair:

S ¼ U;Að Þ

Where:

U ¼ universe of objects
A ¼ set of attributes
V ¼ set of values
a uð Þ ¼ unique element of V
a 2 A
u 2 U
A decision table for S is the 3-tuple:

S ¼ U;C;Dð Þ

Where:

C ¼ condition attributes
D ¼ decision attributes

Information table contains rows, where each denotes a particular rule that connects
condition and decision attributes for a single measurement of a specific patient.

For results evaluation, we have used a technique called cross-validation, which is a
suitable method for estimating the performance of a predictive model, selection of
features or parameters adjustment. It is based on the approach of partitioning a data set
X into n subsets Xi. Then, given algorithm is performed n times, each time using a
different training set X − Xi and validating the results on Xi.

The classifier could be considered to be relevant because of attributes selection that
had been done by an algorithm itself. For example, when the left hand tremor is taken
as a prediction value, the RSES assumed that relevant attributes are related to, inter alia,
hand tracts.
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3 Results

The first step was to create a decision table that consists of data attributes obtained from
3DSlicer, based on diffusion tensor imaging, as described previously in the section on
Methods. Then, RSES methods were applied, to get decision rules. To achieve that,
rows and columns of Table 1 must have been exchanged so that parameters of different
patients were in rows, and their results (attributes) were in columns.

Fig. 1. Screenshots taken from Slicer 3D project of sample patient. We can observe trajectories
of both implanted electrodes marked by orange lines, which are aligned with dead tissue visible
on MRI slices as a result of surgery. Position of the electrodes is visualized with relevant
neighboring structures: STN, Globus Pallidus and Thalamus. DTI tractography is generated from
left STN showing connections going to SM and M1 areas of cortex. (Color figure online)
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In all experiments, we had used the Unified Parkinson Disease Rating Scale
(UPDRS) which gave us information about the disease progression in various parts of
the body in the context of disease-dependent factor (tremor).

The dataset has been spited into three, smaller subsets, where each was targeted to a
different UPDRS marker (“left-hand tremor”, “face, lips, chin tremor”, “handwriting
distortion”). On every subset, we had conducted an experiment based on defined
attributes that led to the conclusion of possible UPDRS value after application of DBS
treatment on the patient.

3.1 Prediction of the Left-Hand Tremor

Attributes that were relevant during the discretization process were strictly related to
Slicer data acquired from the right side of the area, such as fiducial region size,
stopping value, tracts for hand, lip and foot (Fig. 2).

The results of the prediction of the left-hand tremor based on given DTI parameters
revealed the accuracy of 0.967 with the coverage of 0.425 (Table 2).

3.2 Prediction of the Facial Area Tremor

For this task, chosen attributes were related both to the left and right part of the area.
From the left side: fiducial region size, stopping value and lip tracts. From the right
side: stopping values, and tracts for lips and foot (Fig. 3).

Prediction result of the “face, chin, lips tremor” was with the accuracy as high as
0.824 with the coverage of 0.7 (Table 3).

Table 1. A fragment of the input dataset. UPDRS <code> - UPDRS value for specific motoric
classification of patient’ condition; Slicer L/R fiducial region size – Slicer tractography radius for
selected electrode contact (in millimeters); Slicer L/R stopping value – Slicer parameter for
ceasing generation of the given tract; Slicer L/R tracts lip/hand/foot – number of tract reaching
proximity of lip/hand/foot ROI.

Patient ID 10 10 20

UPDRS 21 L Hand action or postural tremor 0 1 2
Slicer R fiducial region size 5 5 5
Slicer R stopping value 0.21 0.21 0.21
Slicer R tracts hand 2 3 3
Slicer R tracts lip 4 15 2
Slicer R tracts foot 15 2 2
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3.3 Prediction of the Handwriting Disturbances

The last experiment with the detection of UPDRS value change of the “handwriting”
test was with the accuracy of 0.878 by the coverage 0.667 (Fig. 4).

The relevant attributes were: DBS and BMT. Furthermore, mainly parameters from
the left side Slicer were observed as relevant, such as fiducial region size, stopping
value, hand and lip tracts. From the right side, only one technical value (stopping) was
taken under consideration (Table 4).

Fig. 2. Computed correlation between Slicer parameters and UPDRS examination: action or
postural tremor of Hands – Left hand. The similarity between the two parameters is correlated
with the color of the cell in the matrix (lighter shade represents higher similarity and
contrariwise). (Color figure online)

Table 2. Confusion matrix of UPDRS #21: action or postural tremor of hands - left hand by
rules obtained from 3DSlicer values based on DTI data. Number of tested subjects: 8. Accuracy
(total): 0.967. Coverage (total): 0.425. TPR stands for “true positive rate”.

A
ct
ua
l

Predicted
0 1 2 No. of obj. Accuracy Coverage

0 2.6 0.0 0.0 5.2 0.8 0.48
1 0.2 0.6 0.0 2.0 0.5 0.30
2 0.0 0.0 0.0 0.8 0.0 0.00
TPR 0.76 0.6 0.0
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4 Discussion

Deep brain stimulation is currently widely applied as a surgical choice of treatment for
patients with advanced PD. The benefits of STN stimulation are due to combined
mechanisms and involve several adjacent structures. To improve the success of the
procedure, more selectivity is needed and both topographical level and stimulation
parameters must be enhanced [1].

This article represents the continuation of previous findings presented in [7] that are
useful to the surgeon as a tool for confirmation that the subthalamic nucleus is near to
the microelectrode path. Furthermore, it extends them even more with data mining
techniques to predict the neurological effects related to different electrode-contact
stimulations.

Fig. 3. Computed correlation between Slicer parameters and UPDRS examination: tremor at rest,
face, lips, and chin. The similarity between the two parameters is correlated with the color of the
cell in the matrix (lighter shade represents higher similarity and contrariwise). (Color figure online)

Table 3. Confusion matrix of UPDRS #20: tremor at rest, face, lips, chin by rules obtained from
3DSlicer values based on DTI data. Total number of tested subjects: 10. Accuracy (total): 0.824.
Coverage (total): 0.7.

A
ct
ua
l

Predicted
0 1 2 3 No. of obj. Accuracy Coverage

0 4.75 0.50 0.00 0.25 6.5 0.867 0.866
1 0.25 0.75 0.00 0.00 1.5 0.750 0.833
2 0.00 0.00 0.00 0.00 0.5 0.000 0.000
3 0.25 0.00 0.00 0.25 1.5 0.125 0.250
TPR 0.93 0.50 0.00 0.25
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5 Conclusions

Our recent research described above was meant to determine if data mining can predict
possible Parkinson’s patient’s symptoms based only on the DTI data of patients who go
through the DBS surgery. We have applied the rough set theory on the data obtained
from DTI after the operation to conclude whether it is possible to create a system that is
unbiased of human opinion.

Fig. 4. Computed correlation between Slicer parameters and UPDRS examination: handwriting.
The similarity between the two parameters is correlated with the color of the cell in the matrix
(lighter shade represents higher similarity and contrariwise). (Color figure online)

Table 4. Confusion matrix of UPDRS #8: handwriting distortion by rules obtained from
3DSlicer values based on DTI data. Total number of tested subjects: 6. Accuracy (total): 0.878.
Coverage (total): 0.667.

A
ct
ua
l

Predicted
0 1 2 3 4 No. of obj. Accuracy Coverage

0 3.33 0.17 0.00 0.00 0.00 4.00 0.944 0.878
1 0.00 0.00 0.00 0.00 0.00 0.83 0.000 0.000
2 0.00 0.00 0.17 0.00 0.00 0.50 0.167 0.083
3 0.00 0.00 0.33 0.00 0.00 0.33 0.000 0.167
4 0.00 0.00 0.00 0.00 0.00 0.33 0.000 0.000
TPR 1.00 0.00 0.17 0.00 0.00
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The results have shown that it is possible to introduce a new, autonomous, doctor
independent and a highly accurate method of disease course prediction.

What is more, this approach enables a new way for a deduction of an impact of a
region-specific stimulation of STN and its effect on patients.

However, since this results have been based on a small data set, further work is
required to perform more credible statistics and verification in the sake of elimination
of overfitting problem.
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Abstract: Humans are a vision-dominated species; what we perceive depends on where we look.
Therefore, eye movements (EMs) are essential to our interactions with the environment, and ex-
perimental findings show EMs are affected in neurodegenerative disorders (ND). This could be a
reason for some cognitive and movement disorders in ND. Therefore, we aim to establish whether
changes in EM-evoked responses can tell us about the progression of ND, such as Alzheimer’s
(AD) and Parkinson’s diseases (PD), in different stages. In the present review, we have analyzed
the results of psychological, neurological, and EM (saccades, antisaccades, pursuit) tests to predict
disease progression with machine learning (ML) methods. Thanks to ML algorithms, from the
high-dimensional parameter space, we were able to find significant EM changes related to ND symp-
toms that gave us insights into ND mechanisms. The predictive algorithms described use various
approaches, including granular computing, Naive Bayes, Decision Trees/Tables, logistic regression,
C-/Linear SVC, KNC, and Random Forest. We demonstrated that EM is a robust biomarker for
assessing symptom progression in PD and AD. There are navigation problems in 3D space in both
diseases. Consequently, we investigated EM experiments in the virtual space and how they may help
find neurodegeneration-related brain changes, e.g., related to place or/and orientation problems.
In conclusion, EM parameters with clinical symptoms are powerful precision instruments that, in
addition to their potential for predictions of ND progression with the help of ML, could be used to
indicate the different preclinical stages of both diseases.

Keywords: Alzheimer’s disease; Parkinson’s disease; eye movements; Rough Set; machine learning

1. Introduction

Neurodegenerative brain changes start about two decades before the first detectable
symptoms [1,2]. During this period, everyone develops various plastic compensatory brain
mechanisms. The rates and processes of neurodegenerative disease (ND) progressions
have a vast patient-specific spectrum. The main aim of this review is to look, from this
perspective, at the early processes related to neurodegenerative changes and to precisely
characterize them by using granular computing (GC) or other ML methods. Our leading
candidate for a possible early biomarker is related to eye movements (EM). We have
concentrated on reflexive EM, such as reflexive saccades (RS), antisaccades (AS), and
pursuit EM. Generally, these movements slow down and become less precise with aging,
but these changes are more pronounced due to ND. It means that one needs to differentiate
between processes related to aging and those related to ND, which is one of the major
problems with early ND biomarkers. We base our approach on identifying similarities
between different groups of patients and whether patients’ EM and symptoms become
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more like those of patients in the advanced stages of ND with disease progression. We
have demonstrated this approach in different groups of Parkinson’s disease (PD) patients.
In the next step, we assumed that more minor cognitive and motor symptoms might be
related to more minor changes in EM parameters. This could be a possible approach for
the early detection of preclinical ND.

There are three kinds of symptoms in neurodegenerative disease. As different symp-
toms are related to different structures in the brain, there is an essential question as to
whether ND processes are independent of or specific to different parts of the brain. The
three kinds of symptoms are as follows:

- Cognitive symptoms are dominant in Alzheimer’s disease (AD) but are secondary in
Parkinson’s disease (PD);

- Motor symptoms are characteristic of PD and less evident for AD;
- Emotional symptoms are mostly related to depression and are observed in both

diseases but are characteristic of LOAD (late-onset AD) [3,4].

It is widely recognized that neurodegenerative processes start from the basal ganglia
in PD and typically from the hippocampus in AD. In PD, the structure that degenerates
first is the substantia nigra (part of the basal ganglia), whose neurons are responsible for
releasing dopamine. The lack of dopamine slows down and affects movement regulation
(GO—NOGO antagonism) [5]. In addition, there is a connection between the striatum and
the prefrontal cortex that influences memory and cognition [5]. Finally, as dopamine is the
reward neurotransmitter, it affects the reward systems (pleasure feelings) and might lead
to depression [3].

The place cells in the hippocampus are responsible for orientation deficiency (naviga-
tion problems) in AD, and connections between the hippocampus and the frontal cortex are
responsible for memory and cognitive problems. Through its connections to the striatum,
the prefrontal cortex might also affect movement in AD. Depression is the main reason for
the late onset of AD (LOAD) in older subjects (over 65 years of age) [4].

This review is mainly based on work with Parkinson’s patients under different ther-
apies and at various stages of the disease. We have demonstrated how different ML
algorithms can help to predict disease development and how, by using ML, we can com-
pare PD symptoms of less and more advanced patients. Therefore, the main question
is: if we can predict disease development, can we also predict the start of ND disease?
This question might also be related to looking for sensitive biomarkers that might indicate
neurodegenerative brain changes even before the first observable symptoms. We have
extensively tested and evaluated eye movement (EM) as a potential biomarker in PD.

Multiple studies have demonstrated that EM helps to predict peripheral movement
disorders as well as cognitive and emotional symptom progressions. EM is also affected
in AD, so it could be an excellent biomarker for both diseases. One very characteristic
parameter of EM in both PD and AD is the delay of the reflexive saccades (RSLat—the time
difference between the light spot position change and the start of eye movement). However,
RSLat is also related to aging and, to be a significant biomarker, must also be linked to
changes in many other, still unidentified, parameters.

To find practical consequences of changes in EM and other ND-related parameters for
everyday life, we can immerse the user in a virtual reality (VR) world. The advantage of
VR in comparison to the real environment is that one can control significant features of the
VR world and test the influence of different parameters on the subject’s behavior.

Hence, one needs to test a high-dimensional and noisy parameter space, and we
suggest that ML methods are the right tool for it.

2. Eye Movements and Neurodegenerative Diseases
2.1. Standard Neurological Approach

Experienced neurologists use their clinical knowledge and experience from many years
of practice to estimate symptom development and the best treatment for an individual
Parkinson’s disease (PD) patient. However, because of the long period of compensatory
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mechanisms unique to each patient, there is a famous saying that “No two people face
Parkinson’s in quite the same way.” Therefore, a neurologist must consider not only motor
symptoms, but many others, and must even try to understand a patient’s cognitive and
emotional symptoms through the Theory of Mind space [6,7] to estimate disease progression
in the individual patient.

Typically, eye movement analysis coexists in the broader context of other neuropsy-
chological measurements. They can be related to the following tests: PDQ-39/PDQ-8—a
39/8-question test related to health difficulties in everyday living (summaries of both
tests are strongly correlated), ESS—Epworth sleeping scale results (related to sleepiness
problems, predominantly during the day), BDI—Beck’s depression inventory (21-item
quantitative measure of symptoms of depression), TMT A and TMT B tests (Trail Making
Test—part A measures psychomotor speed and part B is related to executive function).
Another test, AIMS—Abnormal Involuntary Movement Score—measures the involuntary
movements of patients. Additionally, neurologists can use more wide-ranging cognitive
tests, such as MoCA (Montreal cognitive assessment) for the detection of MCI (mild cog-
nitive impairment) for PD and AD or dementia (AD), or the similar, but shorter, MMSE
(Mini-Mental State Examination), which is less sensitive than MoCA, but has established
clinical values. Another important test, the FAS (Phonemic Verbal Fluency) test involves
orally producing words that start with the letters F, A, and S, evaluates the cognitive func-
tion and measures language-related executive functioning. The most common decisive
attribute is the UPDRS (Unified Parkinson’s Disease Rating Scale), an essential neurological
test for the effects of PD long-treatment effects. The UPDRS score estimates daily activity
(non-motor—UPDRS I and motor—UPDRS II) and motor-related problems (UPDRS III). It
is the so-called “Gold Standard” for determining PD progressions. Alzheimer’s disease
progression is mainly related to cognitive changes (normal, MCI, dementia), and disease
progression is determined by the CDR (Cognitive Dementia Rating) scale as the decision
attribute.

2.2. EM in PD—Saccades

There is pervasive, clinically oriented, literature related to reflexive saccade (RS) la-
tency in PD in comparison to same-age healthy controls showing different, contradictory
results [8]. However, a meta-analytic review [9] demonstrated, by analyzing 47 represen-
tative studies (from 1529 references), that the RS latency depends on which method was
used by different authors: gap, step, or overlap. Different methods are determined by the
time difference (∆t) between the fixation point disappearance and the target appearance:
if ∆t > 0, then it is the gap method; if ∆t = 0, then it is the step method; and if ∆t < 0, it is
the overlap method. By using quantitative pooling analysis, Chambers and Prescott [9]
demonstrated that the slowed response time in PD, compared to a control, is strongest in
the step method (∆t = 0), weaker in the gap method (∆t > 0), and negligible in the overlap
method (∆t < 0).

In a study [10], standard neurological attributes and PDQ39, Epworth, and AIMS were
measured, as well as EM—reflexive saccades (Figure 1). The authors compared different
algorithms for the classification of UPDRS, UPDRS II, and UPDRS III in 10 PD patients.
A six-fold cross-validation method was used. For the accuracy measure of UPDRS, the
best results were given by RSES (Rough Set Exploration System based on Rough Set theory,
which is an important implementation of GC—granular computing) with a global accuracy
of 0.90, the second was Random Forest, which had a global accuracy of 0.68, and the third
was a Tree Ensemble, with 0.65 global accuracy. For UPDRS II, the best results were for the
Random Forest with an accuracy of 0.80, the second was RSES with 0.79, and the third was
Bayesian classification, which gave an accuracy of 0.77. For the UPDRS III, the best was
RSES classification, which gave a 0.82 accuracy, and the Decision Table (with Weka), which
gave an accuracy of 0.77.
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Figure 1. Saccades at various stages of PD. Recordings were performed with different UPDRS
measured in clinical conditions under a doctor’s supervision. The red line is related to light spot
movements, and the blue and green curves are related to reflexive saccades performed by two
different PD patients in different stages of the disease: the blue curve denotes EM at the beginning
of the disease, and the green curve at advanced PD. Notice the significant difference in response
latencies [11].

The results above agree in general with a recent publication [12] where they tested
horizontal and vertical saccades and antisaccades (AS) for healthy control and PD subjects
in different stages of the disease, measured by Hoehn and Yahr stages (H&Y2 and H&Y3).
The PD group displayed decreased vertical saccade amplitudes and increased vertical
saccade and AS latencies. AS latency increased for H&Y2 and H&Y3 patients, but AS
errors (correlated with MoCA—Montreal cognitive assessment test’s score) were similar
for control and H&Y2 subjects, but larger for H&Y3 subjects. Levodopa has increased
vertical saccade latency but decreased AS latency. This work has described many different
difficult-to-analyze mechanisms that might be easier to put through machine learning
methods.

In one study [13], it was demonstrated that saccades could predict cognitive decline in
PD patients. In 140 PD and 90 age-matched participants, the authors evaluated differences
in RS metrics between early-PD and healthy age-matched adults. They assessed RS and
cognition at baseline at 18, 36, and 54 months. RS parameters were latency, duration,
amplitude, peak velocity, and average velocity, and the cognitive assessment contained
executive function, attention, fluctuating attention, and memory. RS parameters, with
the help of linear mixed-effects models, were used as predictors of cognitive decline over
54 months. At the baseline, RS was impaired in PD patients compared to the control group.
RS parameters predicted a decline in global cognition, executive function (verbal fluency),
attention, and memory over 54 months in PD patients. However, only reductions in global
cognition and attention were predicted by RS parameters in age-matched subjects, which
means that cognitive changes were not just age-related [13]. The dependence between RS
latency and executive functions was also confirmed earlier [14]. In addition, manual and
saccadic performances are uncorrelated in the average population, but both are similarly
affected by PD [15].

Abasi et al. [16] tested whether vestibular therapy exercises might recover both oculo-
motor functions and postural control (in the upright position) in patients with PD. Vestibu-
lar therapy is a set of exercises that affect the basic elements of central sensorimotor integra-
tion. They tested 11 idiopathic PD patients voluntarily contributing to the survey based on
the following criteria: central vestibular dysfunction and Hoehn and Yahr scale scores ≤ 3.
Videonystagmography (VNG) and Berg Balance Scale (BBS) scores were measured as the
control. PD patients undertook vestibular rehabilitation training for 24 sessions (3 sessions
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per week). VNG and BBS scores were appraised again 48 h after completing the last session
of the exercise. Investigators detected significant advances in balance (p ≤ 0.015), and
eye-tracking and gaze performance were statistically enhanced in seven and six patients,
respectively.

Wong et al. [17] investigated the relationship between EM parameters and execution
in different cognitive tests in Parkinson’s patients. In the eye-tracking experiment, subjects
were asked to look for a number embedded in an array of alphabets distributed randomly
on a workstation screen. Researchers calculated the average amplitude of saccades and
fixation duration and correlated these data with the results of cognitive tests. It was
established that prolonged fixation time was linked with inferior performance in verbal
fluency, as well as in visual and verbal memory, showing that EM parameters are alternate
markers for cognitive function in PD patients.

Wong et al. [18] studied the correlations between EM and cognitive functions in
patients with Parkinson’s disease. A total of 62 patients with non-demented Parkinson’s
disease and 62 controls of the same sex, similar age, and equivalent education were exposed
to cognitive and oculomotor tests. Researchers observed a negative correlation between
the length of eye fixation and functioning in semantic verbal fluency, as well as verbal and
visual memory undertakings. Researchers concluded that increased duration of visual
fixation correlates with poor results in semantic verbal fluency and verbal and visual
memory tasks in non-dementia PD. In another 2-year follow-up study, 49 of the primary
62 patients (15 cases/31% were classified as MCI (with mild cognitive impairment)) were
examined in the context of the relationship between domain-specific cognitive impairment
and the progression of visual fixation duration. Researchers noticed that the duration
of fixations increased significantly after two years. For the analysis, they used ANOVA
with repeated measurements, and according to the results, impairment of semantic verbal
fluency, visual and verbal recognition memory, and indicative attention function had a
significant effect on the extension of the duration of visual fixation [18]. Repeated measures
beyond two years showed a correlation between prolonged visual fixation and different
types of cognitive impairment associated with cholinergic dysfunction. According to
the authors, it provides preliminary evidence that the observed eye-tracking model is a
surrogate marker for the cholinergic deficit in Parkinson’s disease.

Archibald et al. [19] assessed the error rates and visual exploration tactics of subjects
with Parkinson’s disease, in relation to the extension of their cognitive impairment, while
performing a battery of visuo-cognitive tasks. They found that error rates were significantly
higher in those PD groups with either MCI (p = 0.001) or dementia (p < 0.001) in comparison
to cognitively normal subjects with Parkinson’s. When matched to cognitively normal
Parkinson’s disease patients, the exploration tactic, as measured by EM-tracking variables,
was least efficient in the dementia group and inefficient to a lesser extent in MCI patients.
In control subjects and cognitively normal subjects with Parkinson’s, it was established that
saccade amplitude was drastically reduced in the groups with MCI or dementia.

The fixation period was stretched in all PD patients in relation to healthy control
subjects but was most prolonged for cognitively impaired PD groups. The average fixation
period was strongly related to disease severity. The authors concluded that the increase
in the fixation period, existing even in cognitively normal patients with PD, implies a
disease-specific influence on the systems directing visual search.

2.3. EM in PD—Antisaccades

One of the well-proven experimental models used to examine the inhibition of auto-
matic reflexive responses is the antisaccade task (AS) [20].

In a study [21], the significance of antisaccade (AS) parameters for the classification
of Parkinson’s disease motor and motor variations (UPDRS II and UPDRS IV) was tested.
There were 11 PD patients examined in 4 sessions. In addition to the standard neurological
attributes, AS parameters such as delay, duration, and maximum speed were measured.
RSES was used for the data discretization and attribute reduction and to perform a 5-fold
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cross-validation. The best result was obtained by the RSES Decomposition Tree, which splits
the dataset into fragments represented as a tree’s leaves [21]. The UPDRS III classification
results indicated an accuracy of 0.85 with a coverage of 0.48. Surprisingly, the UPDRS
IV was estimated with an accuracy of 0.91 and coverage of 0.39, so UPDRS IV showed a
more significant correlation with antisaccade parameters. Thus, UPDRS IV showed greater
sensitivity in predicting antisaccade parameters [21]. From the results, it also emerged
that attributes describing methods of patient treatment (again, the session attribute) and
mean duration were most sensitive in predicting the scores of both UPDRS III and IV. An
example of AS in two different PD patients is shown in Figure 2.

As described above, different analysis methods influence the RS latency [9]. In a review
meta-analysis, Waldthaler et al. [22] analyzed the influence of the paradigm (gap, step,
overlap) on AS latency and errors. They [22] compared the results of 703 PD patients with
600 healthy controls for antisaccade latency and 831 patients and 727 healthy controls for
antisaccade error rate. Over 60% of studies excluded PD with dementia. Like RS latencies,
the mean AS latency was 339.8 ms in the PD patients and 294.2 ms in the healthy group in
the gap paradigm, and 411.7 ms in the PD patients and 368.6 ms in the healthy group in the
step paradigm. This was measured for PD patients with disease duration between 0.7 and
14.7 years and UPDRS III scores between 5 and 85, from early to advanced disease stages.
In a meta-analysis, the authors [22] demonstrated that AS latency increases with disease
severity, and an increase in the levodopa dosage influences the AS error rate (negatively
moderating effect).
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Figure 2. Antisaccades (AS) at various stages of PD. The red line is related to the light spot movements,
and the blue and green curves are related to reflexive AS performed by two different PD patients in
different stages of the disease: the blue curve denotes EM at the beginning of the disease, and the
green curve in the advanced PD stage. Notice the significant difference not only in response latencies,
but also in AS speed, and that a more advanced PD patient started with a saccade that changed to
AS [21].

A study by Waldthaler et al. [23] tested whether patients with Parkinson’s taking
dopaminergic medication performed better at response inhibition during antisaccade tasks.
Levodopa intake has favorable or harmful effects on dopamine-dependent cognitive tasks
based on essential basal dopamine intensities in ventral segments of the striatum, agreeing
with the dopamine overdose theory. Thirty-five patients with Parkinson’s (and 30 healthy
subjects) completed antisaccade tasks in OFF and ON medication conditions. Investigators
computed multiple linear regressions to forecast the alterations in antisaccade delay and
directive mistakes, and to express saccade rate based on age at Parkinson’s disease onset,
disease duration, levodopa-equivalent circadian amount, motor indicator difficulties, and
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executive functions. According to their results, earlier disease onset and milder motor
symptoms in the OFF-medication status were related to diminished inhibition ability
response after levodopa intake, mirrored in enlarged express saccades and mistakes. They
concluded that levodopa might have opposite results on oculomotor reaction inhibition
contingent on the age at Parkinson’s disease onset and motor disease gravity.

During their next study, Waldthaler et al. [24] examined whether there was any cor-
relation between the development of motor and cognitive indications in 25 patients and
Parkinson’s disease (age: 61.4 +/− 6.8, disease duration: 6.0 +/− 4.5 years). A total of 10 pa-
tients from all 25 PD patients received subthalamic nucleus DBS (deep brain stimulation)
during the follow-up period (from DBS surgery to follow-up visit: 4.5 +/− 2.1 months).
All PD patients were examined in ON medication and ON-DBS states, and modifications of
dopaminergic treatment were permitted during the follow-up epoch. PD patients without
DBS who displayed substantial improvement in motor signs after one year also received
higher levodopa equivalent dosages at follow-up. Generally, the antisaccade (AS) delay
(baseline: 339 +/− 72 ms, mean change: 95 +/− 1.1 ms) and mistake rate (baseline: 0.52,
mean change: −0.02 +/− 0.3) stayed steady in the non-DBS group. In the DBS group, the AS
delay tended to increase (baseline: 295 +/− 78 ms, mean change: 48 +/− 75 ms (p = 0.09)),
but the mistake rate improved at follow-up (baseline: 0.76, mean change: −0.21 +/− 0.3
(p = 0.048)). The change in AS delay was connected to change in MDS-UPDRS III in both
groups (non-DBS group baseline: 25.7 +/− 13, mean change: 0.3 +/− 7.4; DBS group
baseline: 27.2 +/− 16.5, mean change: −5.2 +/− 17.8) and with the change in MoCA score
in the non-DBS group (25.8 +/− 3.1, mean change 1.3 +/− 3.1). The authors indicate that
AS delay may be sensitive to the development of motor and cognitive signs over time in
Parkinson’s disease patients.

2.4. EM in PD—Saccades and Antisaccades

The same group of patients as in [21] was used for UPDRS prediction based on RS
and AS measurements. The best accuracy of 0.89 was achieved by Decision Trees [11]. The
results showed that the accuracy of the predictions increased with the number of significant
attributes that were obtained by, for example, averaging RS and AS duration or by adding
the averaged standard deviations of each patient’s latencies [11].

The authors of [22] demonstrated that RS and AS latencies were correlated with the
results of neuropsychological tests in 65 PD patients, but only the results for AS latencies
concerning patients’ cognitive impairment were statistically significant. In a study [25],
19 drug-naïve PD patients and 20 age-matched controls were examined. Patients had
clinically probable idiopathic disease within three years of disease onset. Their RS latencies
were like those of the controls, but AS error rates differed significantly (PD 15% vs. 8.7%
for controls).

Fooken et al. [26] studied different tasks and conditions in which the oculomotor
function in Parkinson’s patients is preserved. A total of 16 patients with Parkinson’s
disease and 18 healthy, age-matched controls performed a set of tasks of saccades (RS),
anti-saccades (AS), pursuits, and rapid ‘go/no-go’ manual interventions. Compared to
the control group, PD patients showed regular impairment in tasks with fixed targets:
prosaccades were hypometric, and AS were wrongly started towards the indicated target
in 35% of the trials compared to 14% of errors in the control group. In PD subjects, task
errors were linked with short-latency saccades, demonstrating anomalies in inhibitory
control. However, the patients’ EMs in response to dynamic targets were well-preserved.
Parkinson’s disease patients can track and predict a moving target and make quick go/no-
go decisions with the same precision as healthy people. The intercepting hand movements
of the patients were slower on average but indicated adaptive processes compensating
for the motor slow down. Researchers concluded that the preservation of eye and hand
movement functions in PD is linked to a separate functional pathway through the upper
colliculus–brainstem loop that detours the frontal–basal ganglia network.
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Kocoglu et al. [27] investigated how social processes and behaviors change in PD
during spatial signaling tasks. Socially relevant directional cues, such as photos of people
looking left or right, have been found to redirect attention. In conclusion, the basal ganglia
can play a role in responding to such directional signals. In this research, patients and
healthy controls performed pro- and anti-saccade tasks in which different directional signs
preceded the appearance of the target. They analyzed reaction time, prediction errors, and
correlations with PD severity and cognitive assessment scores. Patients displayed increased
errors and answer times with the AS (antisaccade) task, but not with the RS (saccade) task.
The control subjects made the most predictive errors in the finger-pointing trials, and the
PD patients were mostly affected by the arrow, gaze, and pointing clues. It has been found
that PD patients have a reduced ability to suppress responses to directional signals, but
this effect is not specific to social signals.

Munoz et al. [28] studied whether bilateral deep stimulation of the basal ganglia–
subthalamic nucleus (STN DBS) may affect the control of inhibition of eye movement in PD.
They investigated the effect of DBS amplitude on inhibitory power during an antisaccade
procedure on 10 PD patients after their DBS surgery. Subjects without medication (12 h,
overnight) performed the antisaccade tasks with a set of different DBS stimulation ampli-
tudes (from 0—no stimulation to 5—higher levels). The prosaccade error rate (related to
a saccade at the beginning of the antisaccade) increased with increasing DBS stimulation
amplitude (p < 0.01). Moreover, the saccade error rate increased with the decrease in the
modeled volume of tissue activated (VTA) and decreased overlap of the STN stimulation
area, but this connection was determined by the stimulation amplitude (p = 0.04). They
concluded that the directional prosaccade error rate during the antisaccade task indicated
impaired inhibitory control and suggested that higher stimulation amplitude settings can
be modulatory for inhibitory control.

2.5. EM in PD—Pursuit

Another study tested how effective diagnostic parameters of slow (pursuit) eye move-
ments are for the prediction of PD symptom development [29,30]. Horizontal pursuit EM
with three different sinusoidal movement speeds was measured. The gain and accuracy
(EM measurement section) were estimated. The discretization and attribute reduction
with RSES demonstrated that the significant attributes were precise for the accuracy of
the fastest sinusoidal movement speed, and gains decreased for medium and high si-
nusoidal movement light spot speeds [29,30]. The result of the 4-fold cross-validation
gave a global accuracy of 0.77 for the UPDRS III prediction. An accuracy of 0.8 for the
session number prediction (different treatments) in 10 PD patients was found. The above
predictions were obtained for a sample of 20 patients using different binning methods
(KNIME auto-binner), which allowed the grouping of UPDRS III data in intervals of equal
frequencies. A 90% accuracy in predictions on these data was achieved with the RSES and
5-fold cross-validation [30]. When comparing the accuracy results of different classifiers,
the RSES is in first place in the ranking, ahead of SVM (59%), Naive Bayes (55%), and
Random Forest (52%) [30].

In this context, in her review, Frei [31] analyzed 29 articles (from 819 found) on smooth-
pursuit eye movements in PD patients and compared them to those in normal subjects. She
found that in 18 articles, the gain was measured and reduced in PD patients compared
to controls in 16 of these papers. In two papers, the gain was reduced for higher target
velocities. In three articles, accuracy was measured and found to be reduced in PD. There
were also correcting saccades during smooth-pursuit EM that were more dominant in
more advanced PD and for faster smooth pursuits, but quantification of saccades was
difficult [31].

In another study, deep brain stimulation (DBS) increased smooth-pursuit accuracy
(p < 0.001) and smooth-pursuit gain (p = 0.005), especially for faster smooth pursuits
(p = 0.034) [32].
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In their study, Farashi et al. [33] observed eye movements (EMs) during inactive states
(eyes closed and eyes open), measuring EM using vertical electrooculography (VEOG).
They performed the analysis in the time, frequency, and time–frequency axes of the VEOG
time series. The authors completed a categorization by comparing healthy subjects and
PD patients in OFF and ON medication conditions. They used an SVM (support vector
machine) classifier and allowed multiple-differentiation-corrected p-values. The VEOG
data achieved 69.10% and 87.27% discrimination precision for OFF and ON medication
conditions, respectively. The authors established that PD patients’ vertical EM had smaller
amplitude changes than healthy subjects in OFF medication conditions. The levodopa
treatment augmented such changes in vertical EM during the eyes-closed situation and
diminished during the eyes-open situation. As a result of levodopa treatment, VEOG time
series amplitudes may change, although vertical EM rates were not affected (frequency
contents).

2.6. EM in PD—Pupillometry

Parkinson’s disease patients develop a distorted pupillary response dependent on an
abnormality in the retinal ganglion cells. Tabashum et al. [34] illustrated an arrangement
for pupil size estimates that permits the discovery of pupil parameters to measure the
post-illumination pupillary response (PIPR) with a Kalman filter estimating the pupil center
and diameter over time. The pupillary reaction was estimated in the contralateral eye
to two diverse light stimuli (470 and 610 nm) for 19 Parkinson’s patients and 10 healthy
subjects. Net PIPR displayed different reactions to wavelengths (0.13 mm for Parkinson’s
patients and 0.61 mm for healthy subjects, proving an extremely significant differentiation
(p < 0.001)).

Tsitsi et al. [35] evaluated gaze constancy and pupil size in steady light surroundings,
as well as eye movements (EMs) during constant fixation in a group of 50 Parkinson’s
disease subjects (66% males) with unilateral to mild symptoms (Hoehn and Yahr 1–3;
Schwab and England 70–90%) and 43 control subjects (37% males) with an eye tracker
(1200 Hz) and logistic regression analysis. They examined the potency of the relationship of
EM measures with the ROC curve results of 0.817, 95% CI: 0.732–0.901, and concluded that
eye-tracking-established amounts of gaze fixation and pupil reaction might be valuable
biomarkers of Parkinson’s disease indications.

2.7. EM in PD—Multimodal Approach

Bonnet et al. [36] investigated how connections between vision and posture are exag-
gerated in Parkinson’s patients. PD subjects have been shown to display unusually low
levels of synergy in their posture self-control. These impaired reactions are related to the
neurodegeneration processes in Parkinson’s disease that affect the basal ganglia, which
facilitate the integration of both types of movements. They tested 20 PD patients (mean
age: 60) on levodopa and 20 age-matched-healthy subjects (mean age: 61) with a detailed
visual assignment (target-seeking scenarios in an image) and an inaccurate control task
(arbitrarily viewing an image) in which pictures were projected onto a large screen. Lower
back, upper back, head, and EM were registered simultaneously. To analyze behavioral
synergies, the authors computed Pearson correlations between EM and postural actions.
The associations between EM and upper- and lower-back movements were diminished in
Parkinson’s subjects. The healthy control subjects did not display important correlations
between EM and postural activities. Generally, their results revealed that the Parkinson’s
subjects were unable to correct and change their postural rigidity to achieve success in the
visual task. Moreover, these problems may occur in the early stages of Parkinson’s (an early
biomarker opportunity).

Zhang et al. [37] investigated 49 Parkinson’s patients, including 35 early-stage (Hoehn
and Yahr: 1–2 staging) and 14 advanced PD subjects (Hoehn and Yahr scale: 3 to 5 stag-
ing) and 23 healthy subjects. In addition to clinically significant PD symptoms, video-
oculography was used to measure EM features such as eye fixation stability, horizontal and
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vertical reflexive saccade (RS), and horizontal and vertical smooth-pursuit movements. The
authors discovered that five EM features—specifically square wave jerk frequency, vertical
RS delays, the accuracy of the vertical–upward RS, and the horizontal smooth-pursuit RS
gain—were meaningfully different in Parkinson’s and normal subjects. By merging all five
features, the authors achieved a symptomatic sensitivity of 78.3% and a specificity of 95.2%.
The study discovered that more deficiencies in upward–vertical RS than in other directions
were related to disease duration and the stage of development of Parkinson’s disease.

Perkins et al. [38] investigated whether Sleep Behavior Disorder (RBD) indicates PD.
With video-based eye tracking, researchers tested saccade, pupillary, and blink responses
in RBD and isolated REM (rapid eye movement) with 22 PD and 22 RBD patients and
74 healthy controls. They found that RBD patients did not have significantly different
saccades compared to healthy controls, but PD patients differed from both healthy controls
and RBD patients. They concluded that RBD and PD patients had altered pupil and blink
behavior compared to healthy controls. Because RBD saccade parameters were comparable
to healthy controls, brain areas responsible for pupil and blink control may be impacted
before saccadic control areas, making them a potential prodrome of PD.

2.8. Prediction of Disease Progression in Different PD Groups

The goal in [39] was to predict Parkinson’s disease progression in advanced-stage
patients based on data obtained from patients under different treatments and at different
stages of the disease. Patients from the BMT group (only on medication, third visit), DBS
group (after recent deep brain stimulation surgery, third visit), and POP group (after older
DBS surgery, first visit) were used as a training dataset—a model. The model was tested on
the data obtained from the POP group during the second visit. A dedicated data science
framework written in Python was used and based on the Scikit Learn and Pandas libraries
that implemented different multiclass strategies, such as k-Nearest Neighbors Classifier,
Support Vector Classifier, Decision Tree Classifier, and Random Forest Classifier. In this
trial, the Random Forest Classifier achieved the highest overall accuracy score of 0.75 and an
accuracy of 0.7 when predicting subclasses of UPDRS for patients in advanced stages of the
disease who responded to treatment, with a global 0.57 accuracy score for all classes [39].

The purpose of another study [40] was to predict the results of different PD patient
treatments to find the optimal one. The study compared the intelligent methods based on
Rough Set theory with several different machine learning algorithms, namely Gaussian
Naive Bayes, Decision Tree, Logistic Regression, C-Support Vector, Linear SVC, and Ran-
dom Forest. Generally, the Rough Set method gave better accuracy, but less coverage, than
other algorithms. On the other hand, the Rough Set-based approach allows the creation of
more general rules without the necessity of additional data splitting (into different sessions),
which was required in the other ML models to obtain accuracies similar to those obtained
by RS. An example is the prediction of UPDRS in a DBS patient group from rules obtained
from BMT patients. Global accuracy for DBS patients was 0.64 for the first visit, 0.85 for the
second visit, and 0.74 for the third visit. Other methods gave accuracies of 0.88, 0.58, and
0.54, respectively [40].

The principal conclusion from this comparison is the observation that RS is a much
more universal method when considering medical data. Finally, it was demonstrated that it
is possible to estimate symptoms and their time development in populations treated differ-
ently, which may, in the future, lead to the discovery of universal rules of PD progression
and to the optimization of treatment.

2.9. Prediction of Disease Progression Related to Motor, Cognitive, and Emotional Longitudinal
Changes in PD Patients

In [41], two BMT groups of patients (only on medication) were tested. The first one,
less advanced, was tested three times every half year (visit 1, visit 2, visit 3). In the second
BMT group, more advanced patients were tested only once. All tests were performed with
the following condition attributes: PDQ39, Epworth, depression score (Beck test), TMT A
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and B, disease duration, and fast EM. The decision attribute was UPDRS. With the help of
Rough Set theory (RSES), rules describing the more advanced BMT group were constructed
and used to predict disease progression over three visits in the less advanced BMT group
of patients. Using all condition attributes, general rules gave accuracies as follows: visit
1—0.68, visit 2—0.86, and visit 3—0.88. When rules were related only to motor attributes,
the accuracies were as follows: visits 1—0.80, 2—0.93, and 3—1.0. For rules related to
cognitive attributes, the results were as follows: visit 1—0.50, visit 2—0.60, and visit 3—0.64.
The higher accuracy can be interpreted as more similar patient symptoms. General and
motor-related accuracies increased with disease progression (visit numbers), which means
that the less advanced group of patients became more like the advanced group. However,
this was not the case for cognition-related symptoms that gave lower accuracies, which
means that their progressions were not as strongly correlated with disease development.

The influence of the patient’s emotions on the accuracy of the predictions of disease
progression in the same group or different groups of patients was also tested through the
depression score (Beck test) [42]. The progressions of the BMT group (only on medication)
for visits 2 and 3 and the DBS group (deep brain stimulation) for visit 1 were compared
based on the BMT symptoms during visit 1. The predictions were performed with the help
of RSES and with standard neurological testing and EM parameters. Based on rules from
first visit BMT patients, the prediction of symptoms (UPDRS) of BMT for visits 2 and 3 had
accuracies of 0.7 and 0.7, but by adding the depression score, accuracies increased to 0.77
and 0.80 [42]. Similar predictions were calculated for the DBS group progression based on
first visit BMT rules. Accuracies obtained for the DBS group were as follows: visit 1—0.64,
visit 2—0.77, and visit 3—0.74. Adding the depression score to all attributes, improved
accuracies of visit 1 to 0.77, visit 2 to 0.85, and visit 3 to 0.8 were demonstrated [42]. In
summary, the depression score has a significant influence on predicting Parkinson’s disease
progression.

2.10. EM in AD vs. PD

The impairment of the oculomotor system in AD manifested with longer RS latency
along with higher variability in accuracy and speed [43]. Yang et al., 2012, found similarities
between three groups: AD patients, patients with amnestic mild cognitive impairment
(aMCI), and healthy elderly subjects [43]. All groups showed shorter latencies in the
gap tests (when there is a time delay between the disappearance of the fixation spot and
the appearance of the light spot in the periphery) than in the overlap tests (when the
above spots’ appearance overlaps in time). However, in both tests, AD patients showed
abnormally long saccade latencies. Although there was no significant difference in the
accuracy (gain) and the velocity (both mean and peak velocity) between the three groups
of subjects, AD patients showed an abnormally high coefficient of variation in the latency,
accuracy, and speed of the reflexive saccades. There was a significant correlation between
scores for the Mini-Mental State Examination (MMSE) and latencies of the saccades when
comparing the MCI subjects to healthy elderly subjects [43].

Wilcockson et al. [44] explored AS eye movements in patients with amnestic and non-
amnestic variants of MCI. There were 68 patients with dementia due to AD, 42 had amnestic
MCI (aMCI), 47 had non-amnestic MCI (naMCI), and 92 were age-matched healthy controls
(HC). The latencies for AS correction in the AD group were significantly longer than those
for the HC and naMCI groups, but AS latencies in the AD group did not differ significantly
from latencies in the aMCI group, even after age difference corrections [44]. They obtained
similar results for the percentage of uncorrected AS errors. The AD and aMCI groups had
similar and higher error rates than the naMCI and HC groups. This demonstrated that MCI
patients are more likely to develop dementia due to AD than age-matched healthy adults.
People with aMCI are at the highest risk of progressing to AD [45], and AS measurements
might be an additional prognostic tool for predicting which people with MCI are more
likely to progress to AD. It is worth noting that AS latency is a sensitive measure of the
inhibitory process and is related to disease progression in the early stages of AD and PD.
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In research by Pereira et al. [46], MCI sufferers were similarly impaired in their vol-
untary saccadic reaction times compared to AD sufferers, with a longer time to correct
erroneous saccades.

Boxer et al. [47] compared saccade and antisaccade parameters in patients with fron-
totemporal dementia (FTD), patients with AD, and healthy subjects. The patients with AD
showed an increased saccade latency compared to the FTD group during the horizontal
saccade tasks. This might be related to the different dorsal parietal lobe roles in these two
groups of patients [47]. In the AS task, all FTD and AD patients were impaired relative
to the healthy subjects. The AD patients made fewer correct AS than controls, and they
had more difficulty correcting saccade direction when they began from saccade instead of
AS [46].

The relationships between AS parameters and measures of inhibitory control, atten-
tion, working memory, and self-monitoring showed correlations and common patterns
reflecting deficits in executive function, confirming cognitive impairment in MCI and AD
patients [46].

In Figure 3, we compared the latency of the reflexive saccades for normal subjects
with those of AD and PD patients. These are averaged values for patients in different
stages of the disease. However, latencies for AD and PD patients look similar and they are
significantly longer than the mean RS latency for normal subjects.
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Figure 3. A comparison of the average results +/− SD of the AS latencies, obtained in a group of
27 age-matched normal controls (healthy people), 10 AD subjects, and 12 patients with PD. The
averages of the control group and AD patients are derived from the research results obtained from [43]
and the average of the PD patients from the results obtained from [11].

Three studies found a reduction in pursuit gain along with an increase in correction
saccades in patients with Alzheimer’s disease [48–50].

3. Further Research

The ultimate research goal is to identify unrecognized changes in the brain which can
cause AD and PD. We think introducing the methods to a wider audience might enable the
fulfillment of the following points:

- Results must be based on a broader control group.
- Tests must ensure repeatability and reproducibility in a non-experimental environment.
- Methods must be extended with new digital biomarkers that can be observed in a

three-dimensional space.

Therefore, our research team aims to design, evaluate, and introduce modern methods
of data aggregation based on online self-assessments and virtual reality environments.
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Virtual Reality—A Research Opportunity

In recent years, advances in technology related to display, computation, and controllers
have brought to the market new solutions that have changed digital content consumption,
including virtual reality (VR) technology.

To classify this approach, Milgram et al. [51] introduced the term “virtuality contin-
uum”, relating to the mixture of classes of objects presented in any display situation. This
representation describes a superset of the user’s perception of the environment. The contin-
uum starts from the authentic environments (consisting solely of natural objects) and ends
in completely simulated, virtual environments. It includes different stages of representative
forms, such as augmented reality (AR) and virtual reality (VR). These representations of
the environment and the areas interpolated together comprise the term Extended Reality
(XR). VR refers to devices that occlude the user’s view of the physical world only, allowing
sight of digitally rendered images. VR devices can mimic stereoscopic vision by presenting
slightly different, separate images to both eyes. The main idea is to immerse the user in the
virtual world by depriving external stimuli during a content presentation. VR devices are
headsets that entirely cover the field of view (FoV) and project the image directly to both
eyes.

The wide availability of devices and improving quality mean they are being used
on an increasing scale. Therefore, VR technology could be the next gold standard in
cognitive assessment. The need for new tools has emerged from criticism of the current
cognitive screening tools because these tests often (30 of 50 classical screening tools) miss a
visuospatial component, such as the Clock Drawing Test, the Cube Drawing Test, and the
Intersecting Shapes Test [52]. Because visuospatial tasks demonstrate significant diagnostic
and prognostic potential in AD [53], VR applications have great potential as an assessment
tool in dementia [54]. One example is shown in Figure 4, where the standard executive
function Trial B test is performed in 3D instead of 2D (on the paper). In this case, in addition
to engaging executive processes related to 2D, the subject must also activate 3D orientation
processes that often fail in ND (especially in AD).

Sensors 2023, 23, x FOR PEER REVIEW 14 of 22 
 

 

 

 
Figure 4. The prototype of an application testing the recognition of numbers and letters in the correct 
order implemented in a VR environment on an Oculus Go device. Trail B is generally thought to be 
sensitive to executive functioning since it requires a wide range of skills to complete. In 2D, it en-
gages attention, memory, visual screening abilities, motor functioning, and cognitive processes, and 
it is likely to be even more difficult in 3D. 

There are individual differences in susceptibility to VR sickness, and age is one of the 
factors. Brooks [56] presented that over-50s are more likely to experience virtual reality 
sickness than younger adults. Another factor is gender. Park [57] discovered that women 
are more vulnerable to virtual environments in terms of motion sickness (MS) or simulator 
sickness (SS). Furthermore, Kennedy [58] claimed that women are more susceptible than 
men, and the main reasons could be hormone differences and that women have a wider 
field of view. Depending on the immersive content, 20–95% of users typically experienced 
some form of cybersickness, ranging from a slight headache to an emetic response. This 
was not the conclusion in more recent research [59], which found no evidence that the 
incidence of motion sickness or the severity of motion sickness symptoms differed be-
tween the sexes. 

Figure 4. The prototype of an application testing the recognition of numbers and letters in the correct
order implemented in a VR environment on an Oculus Go device. Trail B is generally thought to
be sensitive to executive functioning since it requires a wide range of skills to complete. In 2D, it
engages attention, memory, visual screening abilities, motor functioning, and cognitive processes,
and it is likely to be even more difficult in 3D. Squares in green are already marked, and in white will
be chosen in the proper order by the pointer in pink.
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One of the main concerns of VR usage might be the physiological phenomenon
called VR sickness (cybersickness). The most usual explanation is the sensory conflict
theory [55]. According to this theory, VR sickness is caused by discrepancies in the sensory
communication sent to the brain as the operator progresses through the virtual environment.
Symptoms frequently reported include general distress, headache, eyestrain, stomach
sensitivity, nausea, sweating, spite disorder (a.k.a. drowsiness), disorientation, and a
nausea response. Symptoms can last from minutes to days post-exposure, with after-effects
displaying as postural ataxia, visual displacement (e.g., altered vestibular-ocular reflex),
and altered hand–eye harmonization, among other disorders. Cybersickness (CS) has
been called the “elephant in the room” due to the possibility for it to radically limit VR
equipment’s uptake.

There are individual differences in susceptibility to VR sickness, and age is one of the
factors. Brooks [56] presented that over-50s are more likely to experience virtual reality
sickness than younger adults. Another factor is gender. Park [57] discovered that women
are more vulnerable to virtual environments in terms of motion sickness (MS) or simulator
sickness (SS). Furthermore, Kennedy [58] claimed that women are more susceptible than
men, and the main reasons could be hormone differences and that women have a wider
field of view. Depending on the immersive content, 20–95% of users typically experienced
some form of cybersickness, ranging from a slight headache to an emetic response. This
was not the conclusion in more recent research [59], which found no evidence that the
incidence of motion sickness or the severity of motion sickness symptoms differed between
the sexes.

These factors are common obstacles that impact the widespread use of technology,
particularly among the elderly. However, with improving technology (higher resolution
and frequencies), this problem seems likely to fade and should be eliminated in the future.
Caserman [60] conducted a meta-analysis and compared different head-mounted displays
(HMD) and stimuli. For example, Oculus Rift HMD vs. HTC Vive HMD and matched
stimuli vs. unmatched stimuli. The meta-analysis results show that last-generation HMD
devices have significantly fewer problems with CS, although they are still present. The
findings reveal user experience (UX) flaws that could be obstacles in medical research. Thus,
research group selection must be performed carefully and precisely until the technology
can deal with cybersickness.

Immersive virtual environments allow researchers to create realistic environments
while maintaining a high level of experimental control. For example, Garcia [61] suggests
that it is possible to create experimental conditions where a virtual human modifies tone
of voice while maintaining neutral facial expressions that would allow the study of the
impact of tone of voice on persons with dementia. Furthermore, Flynn [62] presented
findings that demonstrated that it is feasible to work in virtual environments with people
with dementia. Bek et al. [63] found differences in eye gaze for emotional expressions
which are static and dynamic. According to the researchers, PD may reduce the ability to
utilize motion in emotion recognition, and eye movements reveal subtle effects of motion
on emotion processing in PD. Researchers concluded that measuring eye gaze for moving
faces enhances understanding of emotion recognition.

Additionally, as presented in [64,65], early detection of Alzheimer’s disease can be
supported by navigation tasks. This study used an immersive virtual reality paradigm in
which participants walked through simulated environments to investigate path integration
tasks. This study shows that a virtual reality navigation task can distinguish patients with
moderate cognitive disabilities at low and high risk of developing dementia with better
classification accuracy than classic cognitive measures. Virtual reality spatial cognition
assessments have also been shown to be more sensitive than traditional visuospatial
pencil-and-paper tests, such as the Mental Rotation Test, in detecting spatial navigation
deficiencies [66]. Research papers also present a definite connection between virtual and
real-world findings, for example, proof that wayfinding navigation performance on a
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mobile app-based VR navigation task is closely correlated with real-world city street
wayfinding performance [67].

A VR environment also provides vast possibilities for diminished curiosity research,
which are behavioral changes that are extremely difficult to measure experimentally. A
particular group of studies devoted to novel visual object perception (curiosity) associated
with aging [68–71] presented that AD patients distributed their viewing time equally and
spent significantly less time than controls looking at the novel (unpredictable) stimuli
versus classical stimuli (in comparison to healthy subjects). Such novelties can be a horse
that appears to have no hind legs or a lion that appears in a children’s classroom, as
in the classical study from 1992 [68]. Because a VR environment with proper hardware
enables the simulation of real-world and synthetic objects with outstanding detail, one can
automatically measure the subject’s attention span based on eye movement registration in
3D space for prominent and less obvious examples of artifacts.

Moreover, Mandera [72] shared the opinion that virtual reality can be a supportive
therapy for patients with MCI and various forms of dementia to improve adherence to
cognitive training of older adults with cognitive impairment. This opinion is coherent with
the outcome of the meta-analysis prepared by Kashif et al. [73]. Out of nine studies on
motor function, six reported equal improvements in motor function compared to other
groups. In addition, VR groups achieved superior results in improving static balance
among patients with PD.

Our research group also evaluated the possible impact on early disease detection. We
created a prototype of an application testing the recognition of numbers and letters in the
correct order implemented in a VR environment. The test assumed that Trail B is generally
sensitive to executive functioning since the test requires multiple abilities to complete
it. Part B requires attention, memory, visual screening abilities, motor functioning, and
cognitive processes in 2D, and we intuit that it is more difficult in 3D.

In the context of previous research, it is worth noting that there are VR headsets with
eye tracking on the market, such as the HTC VIVE Pro Eye. Hence, they can be used as
standalone research environments that allow us to control the experiment remotely, without
on-site supervision. Furthermore, they add a spatial dimension to our research, connected
to the motor reaction of the eyes combined with actions executed by the subject’s hands.

4. Discussion

In this review, we have demonstrated that the parameters of reflexive eye movement
are significant in estimating Parkinson’s and Alzheimer’s disease progressions. Therefore,
they might also be good biomarkers in the preclinical stages of these ND diseases. Various
saccade abnormalities were found in Parkinson’s [74–77] and Alzheimer’s diseases, e.g.,
in reviews [78] and using computational attention models under realistic scenarios for
AD [79]. Even if many authors have demonstrated EM pathologies in AD and PD, they did
not demonstrate how we can use EM parameters to predict the disease progression of many
different patients or even patients with different treatments and symptoms. However,
in [80], the authors used LR (logistic regression), SVM (support vector machine), and
NB (Naive Bayes) algorithms to classify normal (NC), MCI, and AD subjects based on
novelty preference (NP), pupil diameter (PD), saccade orientation (SO), and re-fixation
(RE) and fixation duration (FD) differences between watching a familiar or a novel image
(see discussion above related to [68–71]). The division into NC (n = 30 subjects), MCI
(n = 10), and AD (n = 20) was assessed by clinicians based on standard assessments and
neuropsychological tests [80]. The authors used a cross-validation method on 20 NC and
all AD subjects to determine classification algorithms that distinguish between AD and
NC. In the next step, they used this algorithm to distinguish NC from MCI. They repeated
the classification process 100 times by changing partitions of NC subjects and, each time,
testing different NC subjects against all MIC patients and averaging all results. The best
results were obtained for all attributes: NP + PD + SO + RE + FD. For the SVM algorithm,
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accuracy was 0.87 and sensitivity 0.97. These are great results, giving the basis for our
proposal for VR testing.

In [81], the authors used oculomotor behavior to differentiate diagnoses between
normal subjects, AD sufferers, and behavior variants of frontotemporal dementia (bvFTD)
and a semantic variant of primary progressive aphasia (svPPA) groups. They tested RS, AS,
and pursuit EM. By comparing RS latency, AS success (successfully performed AS), and
spatial accuracies of RS, AS, and pursuit, the authors found that AD patients performed the
worst in all these tests. Additionally, the mean MMSE was 16.7 +/− 5.2 and was the lowest
for AD compared to other patients. MMSE = 15 and below signifies the probability of
total impairment, and there are such patients in this group. SVM and k-Nearest Neighbors
(k-NN) algorithms were used to classify AD vs. control, bvFTD vs. control, and AD v.
bvFTD, and they obtained a mean accuracy above 0.92. The svPPA group was too small for
the ML procedures [81].

As we have described above (see Figure 3), there are many similarities in the properties
of eye movements between AD and PD. However, in our projects, we have not only
predicted the PD stage (UPDRS) from reflexive EM and neuropsychological test results,
but also tried to predict the progression of the disease (longitudinal studies). We have also
demonstrated that we can take a group of more advanced Parkinson’s disease patients as
a ”Model”. This approach allows us to see PD progression as patients’ symptoms change
relative to the model, which means that the multidimensional sets of their values (granules)
become more similar to the set (granule) of the model. This approach allows us to compare
different rates of various patients’ disease development and relate the effectiveness of
different treatments (our different groups of PD: BMT, DBS, and POP).

Another critical issue is related to disease progression and related changes in different
parts of the brain or symptoms related to the motor/cognitive and emotional systems [41].
We have estimated PD progression by all of our (general) attributes, by only motor-related
attributes, and by only cognitive symptoms. The general and motor attributes predicted
disease progression (UPDRS changes) well, but the correlation with cognitive attributes
was much weaker [41]. The cognitive attributes do not change with disease progression in
all PD patients, and this is the opposite of Alzheimer’s disease, which is mainly related to
cognitive changes (MMSE changes).

We have demonstrated for PD patients that the depression score (measured by Beck’s
depression inventory) is an essential attribute in the estimation of disease progression, and
its value significantly increases the accuracy of UPDRS estimation [42]. In Alzheimer’s
disease, depression is a significant factor, especially for older subjects with late onset of AD
(LOAD) and for patients over 65 years of age [82]. Another essential function related to
preclinical AD relates to motor symptoms, and they can even predict MCI [83]. They are
related to muscle strength decrease and deficient grip strength [83]. Physical frailty, gait and
balance problems, and loss of other motor functions can all precede cognitive impairment
by several years. Even the trajectory of gait speed can precede MCI by 12 years [84,85].
Therefore, experiments in VR using familiar and novelty objects could also test the subject’s
motor abilities and responses to different emotions.

There are two different ML classification approaches for predicting ND symptoms.
The first one, more clinically oriented, is that based on neuropsychological and clinical
tests, experienced neurologists decide each patient’s disease stage: (1) in Alzheimer’s
disease—normal, MCI, dementia; (2) in Parkinson’s disease—normal, early-stage, medium,
or advanced, or they can use the Hoehn and Yahr scale. In the next step, different parame-
ters of EM, with the help of ML methods, attempt to classify patients following the doctors’
findings. In [80], the authors used five parameters related to novelty preference to differen-
tiate normal and MCI subjects based on training normal subjects and AD patients. There
were also five parameters related to RS, AS, and pursuit EM used to differentiate no disease
from AD and AD from FTD (frontotemporal dementia) [81]. Our approach was different,
as we took all eight neuropsychological and clinical parameters and four EM attributes
together with ten to twelve parameters (in different studies) to classify four different ranges
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of PD stages. An even higher dimension of parameters was used in the BIBIOCARD study,
where there were 181 condition parameters used to classify four stages of the disease—
normal = 1, impaired and not MCI = 2, MCI = 3, dementia = 4—in a longitudinal study
lasting over twenty-five years [86]. However, they have only used nine attributes, namely
age, education, two cognitive testing results, two MRI scan results, two cerebrospinal fluid
parameters, and APOE genotype, to predict the probability of progression from normal to
MCI in the next 5 years. We have used their 11 cognitive test results and APOE genotype
to determine, with the granular computing approach, that some of their normal patients
might already have mild/very mild dementia or questionable impairment [87].

5. Conclusions

Alzheimer’s and Parkinson’s diseases are two of the most common neurodegenerative
age-dependent diseases for which, despite many years of intensive research, we still do not
have a cure. Both diseases have complex etiology and many years of hidden, non-reversible
neurodegenerative processes (ND) with devastating effects on the brain. When the first
symptoms appear, a large part of the brain has already disappeared. One possible solution
is to find the neurodegenerative processes early enough to test possible methods to slow
them down or even cure them.

We have described many papers showing that eye movement parameters change with
disease progression and that they are also sensitive to the early stages of both diseases.
However, the parameter space describing different measured attributes and methods has a
very high dimension. To find significant subspace(s) with parameters sensitive to disease
progression, we have proposed the use of different AI (machine learning) algorithms. These
algorithms describe disease symptoms more precisely than the standard approach and can
also predict disease development. We have given several examples of such AI (ML) meth-
ods and have demonstrated their effectiveness for the most common neurodegenerative
diseases.

Therefore, the major differences between classical (statistical) and AI approaches are
not only opportunities to reduce the dimension of the parameter space, but also to ask
diverse questions about the nature of the diseases. For example, as mentioned above, many
authors found pathological saccade parameters in AD and PD, but using the AI approach,
we ask a different question: can EM parameters predict the AD/PD progression in different
individual patients having different treatments, and in diverse disease stages? Responses
to this question are related to the mechanisms of the disease.

There is a related difference between subject testing in real and virtual worlds. In
the real environment, we can find many differences in behaviors such as EM, emotions,
or peripheral body movements between ND and control subjects. We cannot control
significant features of the real world and determine how changes in this environment may
influence the subject. However, in virtual reality, we can ask the question: how do different
features in the surroundings influence the individual subject? Again, finding isolated
elements in the surroundings that, in a unique way, influence the behavior of the individual
subjects gives insight into ND mechanisms.

We think that the next research step should be into virtual reality. VR offers tremen-
dous possibilities in the experimental environment. Researchers can simulate virtually
every scenario in a strictly controlled environment where interactions can be controlled
in real time. Furthermore, the patient is always safe because the experiment occurs in the
laboratory or physician’s office. Development environments, such as Unity 3D, are offered
free of charge and enable the design and development of VR applications. Therefore,
virtual reality applications can become a valuable tool for dementia assessment if only more
interdisciplinary teams, combining health professionals and computer scientists, would
pave the way to new applications in this area. Much research has been done already, and
more research is required on the scale of its usability for patients.
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Abstract. Parkinson’s disease (PD) is the second after Alzheimer’s most popular neurodegener-
ative disease (ND). Cures for both NDs are currently unavailable. OBJECTIVE: The purpose of
our study was to predict the results of different PD patients’ treatments in order to find an opti-
mal one. METHODS: We have compared rough sets (RS) and others, in short, machine learning
(ML) models to describe and predict disease progression expressed as UPDRS values (Unified
Parkinson’s Disease Rating Scale) in three groups of Parkinson’s patients: 23 BMT (Best Medi-
cal Treatment) patients on medication; 24 DBS patients on medication and on DBS therapy (Deep
Brain Stimulation) after surgery performed during our study; and 15 POP (Postoperative) patients
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who had had surgery earlier (before the beginning of our research). Every PD patient had three
visits approximately every six months. The first visit for DBS patients was before surgery. On
the basis of the following condition attributes: disease duration, saccadic eye movement parame-
ters, and neuropsychological tests: PDQ39 (Parkinson’s Disease Questionnaire - disease-specific
health-related quality-of-life questionnaire), and Epworth Sleepiness Scale tests we have esti-
mated UPDRS changes (as the decision attribute). RESULTS: By means of RS rules obtained
for the first visit of BMT/DBS/POP patients, we have predicted UPDRS values in the follow-
ing year (two visits) with global accuracy of 70% for both BMT visits; 56% for DBS, and 67,
79% for POP second and third visits. The accuracy obtained by ML models was generally in the
same range, but it was calculated separately for different sessions (MedOFF/MedON). We have
used RS rules obtained in BMT patients to predict UPDRS of DBS patients; for the first session
DBSW1: global accuracy was 64%, for the second DBSW2: 85% and the third DBSW3: 74% but
only for DBS patients during stimulation-ON. ML models gave better accuracy for DBSW1/W2
session S1(MedOFF): 88%, but inferior results for session S3 (MedON): 58% and 54%. Both RS
and ML could not predict UPDRS in DBS patients during stimulation-OFF visits because of dif-
ferences in UPDRS. By using RS rules from BMT or DBS patients we could not predict UPDRS
of POP group, but with certain limitations (only for MedON), we derived such predictions for the
POP group from results of DBS patients by using ML models (60%). SIGNIFICANCE: Thanks
to our RS and ML methods, we were able to predict Parkinson’s disease (PD) progression in dis-
similar groups of patients with different treatments. It might lead, in the future, to the discovery
of universal rules of PD progression and optimise the treatment.

Keywords: Neurodegenerative disease, rough set, decision rules, granularity.

1. Introduction

This publication is an extension of the original communication given at PReMI 2017 and published
in LNCS [1]. Only very experienced PD neurologists are successful in implementing individually
adjusted therapy. In general doctors have very limited time for each patient and they have different
academic backgrounds which may lead to introduction of variable treatments of patients and it may
lead to confusions and ineffective therapy. We propose to improve doctor’s approach by adding more
automatic measurements and intelligence symptom classification [2, 3] that is similar to that was found
in the visual system for the complex objects recognition [4].

It is important to estimate patient’s disease stage as it determines different sets of therapies. Typical
neurological standards are based on the Hoehn and Yahr and the UPDRS (Unified Parkinson’s Disease
Rating) scales. The last one is more precise and it will be mainly used in this study. We would like to
estimate disease progression in different groups of patients that were tested during three visits every
half-year.

This study is using several different AI methods in order to predict disease progression of Parkin-
son’s patients with different treatments and in different disease stages. The ultimate purpose of our
distinctive data mining methods is to find direction(s) to the optimal therapy for different patients
with Parkinson’s disease (PD). It is not easy as ’each PD is different’ as effect of many compensatory
individual processes in response to dying brain cells.
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Our method may lead to the introduction of a more precise follow-up and even can be extended to
telemedicine by using results of neuropsychological tests with parameters of the reflexive eye move-
ments in order to predict UPDRS (disease progression) [1-3]. The primary Parkinson’s disease symp-
toms are motor tested by neurologists as UPDRS III (Unified Parkinson’s Disease Rating Scale, motor
part III). Generally, it is difficult to measure them in a doctor-independent, automatic way. However,
measurements of the gait as well as eye movements (EM) can be automatised [5]. Our fast (saccadic)
EM tests are natural. When we notice a new object that appears in our visual field, we automatically,
with a delay, look at it (perform a saccade) or sometimes look in the opposite direction (perform an
antisaccade). Parameters of these fast EM are important PD biomarkers. Our antagonistic oculomotor
actions are mainly suppressed by signals that substantia nigra (SN) sends to superior colliculus [6].
As SN is affected by Parkinson’s disease and in less extent by ageing, the reflexive saccades delay
is an important parameters related to the PD progression as we have demonstrated previously [2, 3].
The new aspect of this study is related to an extension of our previous results for patients with similar
treatments [2, 3]. We would like to predict, using data mining methods, disease progression of patients
with different therapies: on only medication, with short term DBS (deep brain stimulation), or more
advanced patients with long term DBS. In the original communication [1], we have used only rough
set theory methods and our predictions were not possible for all groups of patients. In this work, we
have also used other ML models that helped to improve our estimates. Contents of each section are
the following: the Methods section has two subsections: Rough Set and Machine Learning; the Re-
sults section has the following subsections: Comparing longitudinal UPDRS changes, BMT patients
disease progression prediction, DBS and POP patients: rules for estimation of disease progression,
Disease progression of DBS patients estimated by rules from BMT patients, Disease progression of
POP patients estimated by rules from DBS patients; the following sections: Discussion and Conclu-
sions have no subsections.

2. Methods

All 62 PD patients were divided into three groups: BMT patients (medication only), and patients on
medication and with implanted electrodes in the STN (subthalamic nucleus [3]) during our study:
DBS group or before our study: POP group.

The Deep Brain Stimulation (DBS) surgery was performed in the Institute of Neurology and Psy-
chiatry, Warsaw Medical University. PD patients were tested in the following sessions: MedON/MedOFF
sessions (sessions with or without medication). The other groups: DBS and POP patients were also
tested in StimON/StimOFF session were DBS stimulation was switched ON or OFF. All combinations
gave four sessions: 1) MedOFFStimOFF; 2) MedOFFStimON; 3) MedONStimOFF; 4) MedONSti-
mON. Details of these procedures were described earlier [3]. Neurologists from WMU performed
the UPDRS and neuropsychological tests. Fast eye movements - reflexive saccades were recorded as
described in detail before [2, 3]. The following parameters of saccades were measured: the delay (la-
tency) related to time difference between the beginning of the light spot movements and the beginning
of the eye movement; saccade’s amplitude in comparison to the light spot amplitude; max velocity
of the eye movement; duration of saccade defined as the time from the beginning to the end of the
saccade.
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2.1. Rough Set

Our data mining analysis follows rough set (RS) theory after Zdzislaw Pawlak [7] because RS gave
previously the best results in PD symptoms classifications in comparison to other methodologies [3].
Our data are represent as a decision table where rows represented different measurements (may be
obtained from the same or different patients) and columns are related to different attributes. An infor-
mation system [7] is as a pair S = (U, A), where U, A are finite sets: U is the universe of objects; and
A is the set of attributes. The value a(u) constitutes a unique element of V (where V is a value set) for
a ∈ A and u ∈ U .

A decision table for S is the triplet: S = (U, C, D) where: C, D are condition and decision attributes
[8]. Each row of the information table gives a particular rule that connects condition and decision at-
tributes for a single measurement of a particular patient. As there are many rows related to different
patients and sessions, they gave many particular rules. Rough set approach allows generalising these
rules into universal hypotheses that may determine optimal treatment options for an individual PD
patient. Different rules’ granularities (abstraction) are similar to complex objects recognition [4] and
may simulate association processes of the ”Golden Neurologist”.
In the present study, we are trying to use data from different groups of patients for training and test-
ing. The purpose was to find limits of rules that may predict symptoms development of patients with
different treatments at different disease stages.
We have used the RSES 2.2 (Rough System Exploration Program) [9] with implementation of RS
rules to process our data. By means of RSES we have generated rules using four different methods:
exhaustive algorithm, genetic algorithm, covering algorithm, or LEM2 algorithm. In each case, we
selected a particular algorithm that gave the shortest set of rules.

In rough set approach our discretisation was based on the cut values. We have replaced original
attributes with new, binary attributes which indicate whether actual attribute value for an object is
greater or lower than c (see [8]), we define c as a cut. This algorithm is implemented in RSES 2.2.

In RSES classification we have used 6-fold method, which means that the population was divided
into 6 random subgroups and 5 were used for training and one for testing six times by changing in
every trial-testing group. Global accuracy and coverage were the means of accuracy and coverage
from all individual tests.

We have used standard RSES parameters: type of classifier: Decision rules (with 6 folds as de-
scribed above), exhaustive algorithm of rules computation with shortening ratio: 1.0, and conflicts
resolved by standard voting. These parameters gave the best global accuracy.

2.2. Machine Learning

For the evaluation of the results acquired by RSES we have also used additional methods of a super-
vised learning process. Because our data contains a set of N training samples of the form (x1, y1),
..., (xn, yn) such that xi is the feature vector of the ith sample and yi is its class, it is possible to use
a supervised learning algorithm which seeks for a function g : X → Y , where the X is the input
space, and the Y is the output space. The g function is an element of some space of possible functions
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G, known as the hypothesis space. There is a slight difference in this approach in the comparison to
RSES because supervised learning does not allow us to create the ”none of the above” labels per se. In
the circumstances of dealing with medical data, it is often precisely the class that is under-represented
in the data, the disease or potential fault, that the network should detect [10], and it would be intro-
duced in future research. Furthermore, we cannot generalise rules into universal hypotheses that may
determine optimal treatment options for an individual PD patient, so they had been prepared for each
group individually.

We have prepared an automated framework, written in Python and based on the scikit-learn [11],
which was responsible for the evaluation of different supervised learning algorithms and provided the
details of the result of the most accurate algorithm for a given dataset. The challenging task was to
create decision classes, which were comparable with RSES. First of all, some values were missing, so
we applied a strategy of imputation using the statistics (specifically: mean values). Then, to achieve
similarity with the number of classes produced by RSES, we have applied unsupervised learning for
clustering of the training set to obtain normalised classes (considered as different UPDRS ranges).
We have observed that different strategies provide better results when considering different subsets of
patients. Thus, we used two popular clustering approaches. For the DBS and POP patients’ the best
results we have achieved by K-Means [12] parametrised with a number of clusters = 4 and with a ’k-
means++’ method for initialisation including 10 runs and 300 maximum iterations. For BMT patients,
better (closer to results of RSES for the sake of comparison) clustering was achieved by the Mean
Shift [13] with an estimated value of bandwidth used in the RBF kernel based on standard quantile =
0.30.

When training data and labels were prepared for each set, we were able to apply a wide range of
supervised algorithms and choose the best one on the basis of the highest accuracy score (in scikit-
learn estimators have a ’score’ method providing a default evaluation criterion for the problem they are
designed to solve). The framework challenged every two pairs of the training set (e.g. POPW1) against
validation dataset (e.g. BMTW1) and attempted to predict the UPDRS class of every patient. All
scikit-learn classifiers are capable of multiclass classification, so the selection of presented algorithms
has been based on the strategy. We have chosen well-known models that apply: inherently multiclass
behavior (e.g. GradBoost), multiclass as One-Vs-One (e.g. SVC), multiclass as One-Vs-All (e.g.
logit), multilabel support (e.g. Decision Tree), and with multiclass-multioutput support (e.g. Random
Forest). Among others, we have evaluated the algorithms listed below; the selection was made both
empirically and based on previous research [3].

• Logistic Regression (logit) - applied with ’multinomial’ option with the ’lbfgs’ solver and ’bal-
anced’ weights associated with classes,

• Linear Supported Vector Classification (LinearSVC) - with a ’crammer singer’ multi-class strat-
egy;

• Gradient Boosting Classifier (GradBootst) - chosen loss function was ’deviance’ with learning
rate = 0.1;

• Gaussian Naive Bayes (GaussianNB) - used without prior probabilities of the classes;
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• Decision Tree - with Gini impurity metric;

• K-Neighbors Classifier (KNC) - with a number of neighbours to get = 5 and uniform weights
(all points in each neighbourhood were weighted equally);

• Random Forest - applied with 10 trees in the forest and Gini impurity metric;

• C-Support Vector Classification (SVC) - with the ’rbf’ kernel type, ’ovo’ (one-versus-one)
multi-class strategy, penalty parameter C = 1.0 and γ = 0.001.

As the Results section shows, there was no most accurate model and most of them were found to
be optimal only for a specific subset.

3. Results

All 62 PD patients were divided into three groups: BMT patients (medication only), and patients on
medication and with implanted electrodes in the STN (subthalamic nucleus [2, 5]) during our study:
DBS group or before our study: POP group.

In 23 patients of BMT group the mean age was 57.8+/- 13 (SD) years; disease duration was 7.1+/-
3.5 years, UPDRS was 36.1+/-19.2. In 24 patients of DBS group the mean age of 53.7+/- 9.3 years,
disease duration was 10.25+/- 3.9 years (stat. diff. than BMT-group: p < 0.025), UPDRS was 62.1+/-
16.1 (stat. diff. than BMT-group: p < 0.0001). In 15 patients of POP group the mean age was 56.2+/-
11.3 (SD) years and disease duration was 13.5+/- 3.6 years (stat. diff. than DBS-group: p < 0.015),
UPDRS was 59.2+/-24.5 (stat. diff. than BMT-group: p < 0.0001).

These statistical data are related to the data obtained during the first visit for each group: so-called
BMTW1 (visit one), DBSW1 (visit one) and POPW1 (visit one).
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Figure 1: The diagram shows a flow model of the data mining process presented in the article. From 62
PD patients, we distinguished three groups based on treatment (BMT / DBS / POP). Each group was
split further into subgroups based on the session (S) status and visit index (W). We aimed to predict
the UPDRS index in two ways: during single treatment and among different treatments.
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3.1. Comparing longitudinal UPDRS changes

Figure 2: The boxplot shows that the median of UPDRS in different sessions and visits; W1, W2, W3
of the DBS group. There are minimum and maximum values in each session. Since the notches in the
box plot do not overlap, you can conclude, with 95% confidence that the true medians do differ.

The first plot from the right presents UPDRS of DBSW1 group. There are only two sessions as
patients were before the surgery. In the first session (described as Ses1) mean UPDRS was 62.2+/-
16.1, in the second (described as Ses3) was 29.9+/-13.3 strongly (p < 0.0001) different from Ses1 and
it represents the effect of medication. Plot in the middle of Fig. 2 represents DBSW2 after the surgery
and UPDRS in Ses1 is larger than that before the surgery 65.3+/- 17.6 but there are no statistically
significant differences, however UPDRS in Ses1 of DBSW3 is 68.7+/- 17.7 and statistically significant
(p < 0.03) than in W2. Effects of different therapies (session numbers) are significantly different in
W1, W2, and W3, but not different between the same session numbers in different visit (with the
exception of the Ses3 in W1 as after the surgery the dosage of medication is reduced).

In POP-group UPDRS values are similar. There is an increase of the UPDRS Ses1 from W1:
63.1 +/- 18.2 to W2: 68.9+/-20.3 to W3: 74,2+/- 18.4 but there were smaller differences for Ses4
(MedOnDBSOn) W1: 21 +/- 11.3 to W2: 23.3+/-9.5 to W3: 23,8+/- 10.7. Therefore, we have assumed
that groups DBS and POP are similar.

In BMT group UPDRS in Ses1 was W1: 48.3+/-17.9; W2: 57.3+/-16.8 (p < 0.0005 different than
W1); W3: 62.2+/-18.2 (p < 0.05 different than W2). In Ses3 UPDRS was W1: 23.6+/- 10.3; W2:
27.8+/-10.8; W3: 25+/-11.6 (no statisticall difference between visits for Ses3).

3.2. BMT patients disease progression prediction

In these sections we have compared two different approaches: in 3.2.1 we have found RSES rules
describing attributes for the first visit BMTW1 and have predicted on their basis disease progression
in the same patients half (BMTW2) and one year later (BMTW3). In section 3.2.2 we have predicted
disease progression in the same time periods, but using Gaussian Nave Bayes.
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3.2.1. BMT patients: RS rules for the disease progression

The BMT patients (only on medication) were tested in two sessions (session 1: without, and session
3: with medication) three times every half-year.

We have used ML and rough set theory [9] in order to obtain rules determining decision and con-
dition attributed for the first visit BMTW1. We have obtained these rules using Exhaustive algorithm
and additionally rules filter that removes rules with support 1 (a single case rules) [9]. In the most
cases Exhaustive algorithm gave the shortest set of rules and the largest support (for more cases).

On the basis of these rules we have predicted the UPDRS values obtained during the second (half -
year later W2 - BMTW2) and the third (one year later BMTW3) visits. UPDRS was optimally divided
by RSES into 4 ranges: ”(−Inf, 24.0)”, ”(24.0, 36.0)”, ”(36.0, 45.0)”, ”(45.0, Inf)” for both visits
(W2 and W3) the global coverage was 1.0 and the global accuracy was 0.7. Example of rules from
BMTW1:

(Ses = 3)&(PDQ39 = ”(−Inf, 50.5)”)⇒ (UPDRS = ”(−Inf, 33.5)”[12])12 (1)

(dur = ”(−Inf, 5.65)”)&(Ses = 3)&(Epworth = ”(−Inf, 14.0)”)
⇒ (UPDRS = ”(−Inf, 33.5)”[7])7 (2)

(dur = ”(5.65, Inf)”)&(Ses = 3)&(Epworth = ”(14.0, Inf)”)

⇒ (UPDRS = ”(−Inf, 33.5)”[4])4 (3)

In the first rule (1) if the session number 3 and PDQ39 = ”(-Inf, 50.5)” then UPDRS was (-Inf,
33.5) in 12 cases. The second rule (2) was fulfilled in 7 cases and the third one (3) in 4 cases. There
were altogether 70 rules.

3.2.2. BMT patients: ML models for the disease progression

As mentioned above, every ML model was independently trained for every session separately, to
enhance its prediction results.

For session 1, the UPDRS ranges of BMTW1 were optimally divided into four classes with the
middle intervals in points: C0 = 26.0, C1 = 45.5, C2 = 58.67, C3 = 104.0. The scopes of
4 ranges were: ”(0, 35.0)”, ”(36.0, 52.0)”, ”(53.0, 81.0)”, ”(82.0, 114.0)”. On the basis of these
scopes, we have predicted the UPDRS values obtained during the second (half -year later W2 -
BMTW2) and the third (one year later BMTW3) visits. In this session, the Gaussian Naive Bayes
(GaussianNB) achieved the best results. The prediction on BMTW2 set had shown the accuracy of
0.61 with the coverage 1.0. For BMTW3 the accuracy was 0.57 with the coverage = 1.0. For the
session 3, as the basis for learning model, we had chosen BMTW2 to predict classes of UPDRS
in BMTW3. UPDRS was normalised and clustered into new scopes: ”(0.0, 19.0)”, ”(20.0, 28.0)”,
”(29.0, 40.0)”, ”(41, 114.0)” with centroids: C0 = 13.87, C1 = 25.00, C2 = 32.67, C3 = 47.50. On
the basis of those rules, we were able to predict the UPDRS classes of BMTW3 with the accuracy =
0.61 (Table 1).
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Table 1: Confusion matrix for UPDRS of BMTW3 (Session 3) by model obtained from BMTW2
predicted by Decision Tree. TPR: True positive rates for decision classes; ACC: Accuracy for decision
classes: the global coverage was 1 and the global accuracy was 0.61.

Predicted

A
ct

ua
l

”(20.0, 28.0)” ”(0.0, 19.0)” ”(29.0, 40.0)” ”(41.0, 114.0)” ACC
”(20.0, 28.0)” 5 1 1 0 0.71
”(0.0, 19.0)” 1 7 2 0 0.70

”(29.0, 40.0)” 0 1 1 2 0.25
”(41.0, 114.0)” 1 0 0 1 0.50

TPR 0.71 0.78 0.25 0.33

3.3. DBS and POP patients: rules for estimation of disease progression

In these sections we have compared two different approaches: in 3.3.1 we have found RSES rules
describing attributes for the second visit DBSW2 and have predicted on their basis disease progression
in the same patients half year later (DBSW3). We have performed similar predictions for POP patients.
On the basis of the first visit POPW1 we have predicted disease progression in two later visits: POPW2
and POPW3. I section 3.3.2 we have used the Logic Regression algorithm in order to predict disease
progression in POPW3 on the basis of POPW2 group.

3.3.1. DBS patients: RS rules for estimation of disease progression

As DBSW1 had only 2 sessions (before surgery) we could only predict session DBSW3 on the basis
of DBSW2 (half a year earlier) (Tab.2). We have predicted UPDRS for visits POPW2 and POPW3 on
the basis of visit POPW1 with total accuracy: 0.667 and 0.793 with a coverage: 1 and 0.967.

Table 2: Confusion matrix for UPDRS of DBSW3 by rules obtained from DBSW2. TPR: True positive
rates for decision classes; ACC: Accuracy for decision classes: the global coverage was 1 and the
global accuracy was 0.562.

Predicted

A
ct

ua
l

”(46.0, 72.0)” ”(38.0, 46.0)” ”(19.5, 38.0)” ”(72.0, Inf)” ”( -Inf, 19.5)” ACC
”(46.0, 72.0)” 12 5 2 5 1 0.48
”(38.0, 46.0)” 2 5 1 2 2 0.42
”(19.5, 38.0)” 0 4 13 3 7 0.48
”(72.0, Inf)” 4 0 0 12 0 0.75
”(-Inf, 19.5)” 0 0 4 0 12 0.75

TPR 0.67 0.4 0.65 0.55 0.6
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3.3.2. POP patients: ML models for estimation of disease progression

We were only able to predict POPW3 in Session 3 by model obtained from POPW2 with the us-
age of Logistic Regression, which achieved the accuracy of 0.6. UPDRS was normalised and clus-
tered into scopes: ”(0.0, 15.0)”, ”(16.0, 22.0)”, ”(23.0, 32.0)”, ”(33.0, 114.0)” with centroids: C0 =
12.33, C1 = 18.00, C2 = 27.00, C3 = 38.00 (Tab. 3).

Table 3: Confusion matrix for UPDRS of POPW3 (Session 3) by model obtained from POPW2 by Lo-
gistic Regression. TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global coverage was 1 and the global accuracy was 0.60.

Predicted

A
ct

ua
l

”(16.0, 22.0)” ”(34.0, 114.0)” ”(0.0, 15.0)” ”(23.0, 32.0)” ACC
”(16.0, 22.0)” 1 2 1 0 0.25

”(34.0, 114.0)” 2 2 1 0 0.40
”(0.0, 15.0)” 0 0 4 0 1.00

”(23.0, 32.0)” 0 0 0 2 1.00
TPR 0.33 0.50 0.67 1.00

3.4. Disease progression of DBS patients estimated by rules from BMT patients

In these sections we have compared different approaches: in 3.4.1 by using RSES we have found
rules describing attributes for the first visit BMTW1 and have predicted on their basis disease progres-
sion in different patients with different therapy in three visits: DBSW1, DBSW2, and DBSW3. In
session 3.4.2 in order to predictions of DBS patients disease progression in the BMT group we have
used several different algorithms: Gradient Boosting Classifier, C-Support Vector Classification, and
LinearSVC algorithms.

3.4.1. Disease progression of DBS patients estimated by RS rules from BMT patients

As BMT patients had only two sessions (S1 - MedOff, and S3 - MedON) and DBS patients four
sessions (see Methods) we have divided them into two sets: one with StimON set-up and another one
with StimOFF set-up. We were not successful in the prediction of StimOFF sessions as DBS patients
were in a more advanced stage than BMTW1 group. Our UPDRS predictions for DBSW1 had global
accuracy 0.64 (coverage 0.5); for DBSW2 - global accuracy was 0.85 (coverage 0.3); for DBSW3 -
global accuracy was 0.74 (coverage 0.6).

3.4.2. Disease progression of DBS patients estimated by ML models from BMT patients

For S1, we were able to predict the UPDRS of DBSW1 by model obtained from BMTW3 based
on Gradient Boosting Classifier with the accuracy 0.54. C-Support Vector Classification shown the
accuracy of prediction as high as 0.88 for DBSW2 and DBSW3 when it was trained on the basis of
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BMTW3 (coverage 1.0). However, this classification should be treated with caution because there is
a significant difference between UDPRS scores distribution between the classes, and their scopes and
centroids are shifted (for example: the first calculated class of model based on BMTW3 has a range
which is very extensive: ”(0.0, 55.0)” and every UPDRS score from DBSW2 is lower than 51.0).

For S3, the prediction of UPDRS scores in DBSW2 has an accuracy of 0.58 and 0.54 for DBSW3
when trained on BMTW2 by LinearSVC (coverage 1.0). We were unable to predict classes of DBSW1
based on BMT.

3.5. Disease progression of POP patients estimated by rules from DBS patients

In these sections we have compared different approaches: in 3.5.1 we have no success to predict POP
patient disease progression on the basis of DBS patients. In 3.5.2 by using Random Forest algorithm
we could predict POPW1 disease progression from DBSW2 patients.

3.5.1. Disease progression of POP patients estimated by RS rules from DBS patients

We could not predict UPDRS of POP patients from rules obtained from DBS patients probably be-
cause many years of DBS might influence some brain synaptic connections. In case of POP patients
responses to MedON/OFF are not consistent with responses in DBS patients.

3.5.2. Disease progression of POP patients estimated by ML models from DBS patients

Table 4: Confusion matrix for UPDRS of POPW1 (Session 3) by model obtained from DBSW2 by
Random Forest. TPR: True positive rates for decision classes; ACC: Accuracy for decision classes:
the global coverage was 1 and the global accuracy was 0.60.

Predicted

A
ct

ua
l

”(12.0, 18.0)” ”(0.0, 11.0)” ”(27.0, 114.0)” ”(19.0, 26.0)” ACC
”(12.0, 18.0)” 4 1 1 0 0.67
”(0.0, 11.0)” 0 2 0 0 1.00

”(27.0, 114.0)” 3 0 2 0 0.40
”(19.0, 26.0)” 0 0 1 1 0.50

TPR 0.57 0.67 0.50 1.00

However, in this section we are looking for prediction of UPDRS only in one session (MedON).
The UPDRS data in subset of DBSW2 (Session 3 - MedON) was optimally divided with centroids:
C0 = 6.71, C1 = 16.12, C2 = 21.60, C3 = 32.17 and with ranges of: ”(0.0, 11.0)”, ”(12.0, 18.0)”,
”(19.0, 26.0)”, ”(27.0, 114.0)”. On the basis of the model from DBSW2 - session 3, we were able to
predict the UPDRS classes of POPW1 session 3 with the accuracy of 0.60 (Tab.4). It is worth noting
that it was true only for particular datasets: DBSW2 and POPW1 and the particular session - MedON.
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Table 5: Performance comparison among different ML models.

Reference Training Set Test Set RS Accuracy RS Coverage ML Accuracy ML Coverage ML Model
3.2.1 BMTW1S{1,3} BMTW2S{1,3} 0.70 1.00
3.2.1 BMTW1S{1,3} BMTW3S{1,3} 0.70 1.00
3.2.2 BMTW1S1 BMTW2S1 0.61 1.00 Gaussian Naive Bayes
3.2.2 BMTW1S1 BMTW3S1 0.57 1.00 Gaussian Naive Bayes
3.2.2 BMTW2S3 BMTW3S3 0.61 1.00 Decision Tree
3.3.1 DBSW2S{1,3} DBSW3S{1,3} 0.56 1.00
3.3.2 POPW1S{1,3} POPW2S{1,3} 0.67 1.00
3.3.2 POPW1S{1,3} POPW3S{1,3} 0.79 0.97
3.3.3 POPW2S3 POPW3S3 0.60 1.00 Logistic Regression
3.4.1 BMTW{1,2,3}S{1,3} DBSW1S{1,3} 0.64 0.50
3.4.1 BMTW{1,2,3}S{1,3} DBSW2S{1,3} 0.85 0.30
3.4.1 BMTW{1,2,3}S{1,3} DBSW3S{1,3} 0.74 0.60
3.4.2 BMTW3S1 DBSW1S1 0.54 1.00 Gradient Boosting
3.4.2 BMTW3S1 DBSW2S1 0.88 1.00 C-Support Vector
3.4.2 BMTW3S1 DBSW3S1 0.88 1.00 C-Support Vector
3.4.2 BMTW2S3 DBSW2S3 0.58 1.00 LinearSVC
3.4.2 BMTW2S3 DBSW3S3 0.54 1.00 LinearSVC
3.5.2 DBSW2S3 POPW1S3 0.60 1.00 Random Forest

4. Discussion

There are novel technologies and data constantly improving PD patients’ treatments, but there are also
still doubts if the actual procedures are optimal for a particular case. Our long time purpose is to
use data mining and machine learning in order to compare different neurological protocols and their
effectiveness. We believe that the best future approach will be to perform all tests automatically at
home, process them with intelligent algorithms and to submit results to the doctor for his/her decision
(compare with telemedicine based methods [14]). Another, more advanced approach that we were
testing in this work, would be to create standard treatment for each new case on the basis of already
successfully treated patients and correct treatment as symptoms are developing in time (see technology
in PD [15]). We have demonstrated that it is relatively easy to estimate symptoms and their time
development in populations treated in different ways (e.g. only medication treatment) (compare to
motor automaticity [16]). This result may give the basic (locally optimal) follow-up PD symptoms. If
the patient is doing significantly worse than others (rules), their treatment is not optimal and should
be changed. In the next step, we may use rules obtained from different clinics to make them even
more universal and optimal. Our new approach is related not only to longitudinal study but also to
test different patient population with different treatments. Could our results lead to finding optimal
procedures for different cases and diverse cares? It seems to be a good direction, but there are many
particular issues, for example when patients are in different stages of the disease. In our case, the
second group of patients (DBS group) were in a more advanced stage of disease so it was not possible
to get 100% coverage like in the first case. The second group with longitudinal study had a new
treatment (brain stimulation) that started from the second visit. We have tested if the same treatment
in different populations gives similar results. Patients got two treatments: medication (medication
ON and OFF) and electric brain stimulation (ON and OFF). We have analysed these treatments as two
different sets: 1) StimOFF: medication ON and OFF; 2) StimON: medication ON and OFF. As a result,
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it was not possible to obtain sufficient accuracy in the first situation (1) as patients with DBS (DBS
and POP groups) were more advanced in their disease stages and had different UPDRS ranges: mean
UPDRS in BMT group was 36 and in DBS/POP groups was 54/56 respectively (see Results section).
Therefore, we can interpret brain stimulation (DBS) as resetting symptoms in time of disease - patients
with 10 years disease duration have symptoms similar to patients with 7 years disease duration and
we could predict their symptoms with reasonable accuracy.

But this assumption was not exact for patients with long period of brain stimulation (DBS) -
POP group (with over 13 years disease duration). This group was different than the other two as
we did not succeed in forming a good prediction by rules obtained by other groups BMT or DBS.
It might be related to the longer period of brain stimulation (DBS) that has changed some central
mechanisms [17]. It is an important negative result that needs further study. In the near future, we
may look for additional condition attributes in order to improve the global accuracy. In the present
paper in comparison to the previous one [1] we have introduced additional to RS machine learning
(ML) models [10-11].

We have compared intelligent methods based on rough set theory with several different machine
learning algorithms: Gaussian Nave Bayes, Decision Tree, Logistic Regression, Gradient Boosting,
C-Support Vector, LinearSVC, and Random Forest. Generally rough set method gave better accuracy
but not as good coverage as other algorithms (see Table 5).

In most cases these new methods gave similar results to our RS rules. However, in contrast to RS
rules, ML models could predict results of one session (session 3 - MedON) in POPW1 patients on the
basis of DBSW2 session 3 results. It is a very limited case, but showing some common mechanisms
between DBS and POP groups.

Furthermore, as shown in the Table 5, Rough Set-based approach allows creating more general
rules without the necessity of additional data splitting (in this case: into different sessions), which
was required in the ML modelling. The principal conclusion which comes from that comparison is an
observation that RS is much more universal method when considering medical data, which constitutes
a confirmation of the findings from [3].

In summary, we have demonstrated that the DBS (electric STN stimulation) procedure revoked
and improved rules that became similar to rules of early stage Parkinson’s disease patients.

5. Conclusions

This work is a continuation of our previous findings [1, 3], comparing classical approach used by
most neurologists and based on their partly subjective experience and intuitions with the intelligent
data processing (machine learning, data mining) classifications. This paper represents a new tech-
nological and data mining trend in treatments of the neurodegenerative diseases [18, 19, 20]. We
have furthermore demonstrated that such additional attributes as parameters of eye movements and
neuropsychological data are significant in predicting longitudinal symptom developments in different
therapy related groups of PD patients. We have confirmed that a multidisciplinary approach incorpo-
rating neurologists, automatic measurements and intelligent data mining such as granular computing
is an example of open-science, collaborative research that is the future of complex healthcare. In the
near future, we are planning to involve also other clinics in our project as well as other neurodegen-
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erative diseases such as Alzheimer’s disease. Our direction is to increase the number of attributes in
order to find significant attributes not only for each disease or treatment, but also for each individual
patient. It would lead to a patient-centred and patient-oriented intelligent telemedicine.

We have demonstrated that on the basis of the first group of early PD patients (only on medica-
tions), we could predict symptoms of patients in more advanced stages and with different treatments.
It means that our rules have some universal properties, which means that in the future we may suggest
an optimal treatment for each individual patient.
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Abstract. Parkinson’s disease (PD) is a progressive, neurodegenerative disorder
characterized by resting tremor, rigidity, bradykinesia, and postural instability.
The standard measure of the PD progression is Unified Parkinson’s Disease Rat-
ing (UPDRS). Our goal was to predict patients’ UPDRS development based on
the various groups of patients in the different stages of the disease. We used stan-
dard neurological and neuropsychological tests, aligned with eye movements on
a dedicated computer system. For predictions, we have applied various machine
learningmodels with different parameters embedded in our dedicated data science
framework written in Python and based on the Scikit Learn and Pandas libraries.
Models proposed by us reached 75% and 70% of accuracy while predicting sub-
classes of UPDRS for patients in advanced stages of the disease who respond
to treatment, with a global 57% accuracy score for all classes. We have demon-
strated that it is possible to use eye movements as a biomarker for the assessment
of symptom progression in PD.

Keywords: Eye-tracking · Saccades · Parkinson’s Disease · Machine learning

1 Introduction

In Parkinson’s disease, we can distinguish multiple therapies, which could be combined.
The gold-standard treatment for PD is a pharmacological treatment with Levo-dopa
(L-dopa) [1, 2]. Nevertheless, L-dopa associates with long-term disturbances. We can
distinguish hypo-hyperkinetic phenomena and psychosis as examples ofmotor andmood
side effects. [3]. The practical and safe procedure, which is lacking these effects and
remains the preferred surgical treatment for advanced Parkinson’s disease, is Deep Brain
Stimulation of the subthalamic nucleus (STN) [4]. However, there is still a necessity of
the support for the neurologists in the field of optimum treatment parameters, because
due to the huge diversity of cases, even the most experienced doctors could not be sure
how the therapy would influent on the patient.

© Springer Nature Switzerland AG 2020
N. T. Nguyen et al. (Eds.): ACIIDS 2020, LNAI 12034, pp. 537–547, 2020.
https://doi.org/10.1007/978-3-030-42058-1_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42058-1_45&domain=pdf
http://orcid.org/0000-0002-0993-4630
http://orcid.org/0000-0001-6766-6366
http://orcid.org/0000-0001-5728-7266
http://orcid.org/0000-0002-0156-7856
https://doi.org/10.1007/978-3-030-42058-1_45


538 A. Chudzik et al.

2 Methods

2.1 The Subject of the Study

The research group was composed of 62 patients who have Parkinson’s disease and
who are under the supervision of the Warsaw Medical University (Warsaw, Poland)
neurologists. We differentiate the patients into three groups. The first one, we named the
Best Medical Treatment (BMT). In this group, we placed patients who were treated only
by the medication. The second one, the Deep Brain Stimulation (DBS), was a group
where patients, who had implanted electrodes in the STN during our study. The last
group, which was named Post-Operative Patients (POP) aggregates individuals who had
had surgery earlier (before the beginning of our research). Every PD patient had three
visits, which were underdone approximately every six months. Every patient from the
DBS group had his/her visit before surgery.

In order to obtain the countable value of the disease, it is crucial to provide a precise
neurological tool which could objectively measure all of the symptoms and determine
a score. For the metric of Parkinson’s disease advancement, there are two common
neurological standards: the Hoehn and Yahr scale and the Unified Parkinson’s Disease
Rating (UPDRS). The UPD rating scale is the most commonly used in the clinical study
of Parkinson’s disease [5], and we also decided to adopt it in this study. Altogether with
UPDRS, every patients’ diseasemetricwas combinedwith the disease duration, the result
of Parkinson’s Disease Questionnaire PDQ39 (which is a disease-specific health-related
quality-of-life outline), the result of Epworth Sleepiness Scale (which is intended to
measure daytime sleepiness), and the parameters of saccadic eye movements, described
further.

The mean age of patients was 51.1 ± 10.2 (standard deviation) years. The mean
duration of the disease was 11.6 ± 4.3 years. The mean of UPDRS score (for all symp-
toms) was 33.8 ± 19.4. The mean of PDQ39 score was 50.5 ± 26.0, and the mean of
Epworth score was 8.7 ± 4.6.

2.2 Eye Movements

The often diagnosed impairment of automatic behavioral responses accompanies the
slowness of initiation of voluntary movements in individuals with PD [6]. An individual
set of behavioral tasksmayprovide insight into the neural control of response suppression
with the usage of motor impairments analysis based on saccadic eye movements [7, 8].
Saccades are a quick, simultaneous movement of both eyes between two or more phases
of fixation in the same direction, and can be measured quickly and precisely.

We choose this marker because of the considerable understanding of the neural
circuitry controlling the planning and execution of saccadic eye movements [9].

During this study, we have used a head-mounted saccadometer JAZZ-pursuit (ober-
consulting.com), which was able to measure the reflexive saccades (RS) in the high
frequency (1000 Hz). We have chosen this device because it is optimized for easy set-up
and provides minimal intrusiveness while can keep stable 1 kHz frequency of measure-
ment. During the experiment, we created a task of the horizontal reflexive saccades
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analysis. Used hardware allowed us to obtain high accuracy and precision in eye track-
ing and the compensation of possible subjects’ head movements relative to the monitor.
Thus subjects did not need to be positioned in an unnatural chinrest, which has a pos-
itive influence on the ergonomy of the experiment. However, we asked patients to use
a headrest in order to minimize the head motion because they could have a significant
influence on the accuracy of the high-frequency measurements. Each patient was seated
in front of the monitor at a distance of 60–70 cm.

The patients’ task was to fix their eyes on the spot placed in the middle of the
screen (0°). Then, the spot changed color into one of the possible variations and shift
horizontally to one of the possible directions: 10° to the left, or 10° to the right, after
arbitrary time ranging between 0.5–1.5 s. During that task, we measured the fast eye
movements of the patient, according to the spot color transition.

When the transition was from white to green, it was a signal for the execution of RS.
We also prepared an additional protocol for antisaccades (AS)measurement. In this task,
the individual was asked to make a saccade in the direction away from the stimulus. A
signal for that was when the spot changed color from white to red. After that, the central
marker was hidden, and one of the two peripheral targets was shown. The selection was
made randomly, with the same probability.

According to the task, each patient looked at the spots and followed them as they
moved (in the RS task) or made opposite direction eye movement (in the AS task). After
that, the target remained still for 0.1 s before the next experiment initialization.

In each test, the subject had to perform twenty saccades and antisaccades in a row-
twice. The recording of the first session (marked as S1) was with the patient who has
temporarily disabled treatment (without medicine/with the disabled neurostimulator). In
the next session (marked as S3), the patient took medication and had a break for one half
to one hour, and then the same experiments were performed (with L-dopa/with enabled
neurostimulator).

In this experiment, we have investigated only RS data using the following population
parameters averaged for both eyes:mean latency (RSLat±SD),mean amplitude (RSAmp
±SD),meanof themaximumvelocity (RSPVel±SD), andmeandurationof the saccades
(RSDur ± SD).

2.3 Dataset

We implemented a dedicated database for measurements storage that was designed and
maintained by Polish-Japanese Academy of Information Technology (Warsaw, Poland).
For operations described further, we flattened the data, placing every experiment in each
row, with the results and metadata in the separated columns. Therefore it could be rep-
resented by a single table represented by comma-separated-values, which is a universal
format for computational engines. The basic structure of the dataset contains 374 obser-
vations, and each has 13 variables, which are: Duration - the duration of the disease;
UPDRS, PDQ39, Epworth - the score for each test; RSLat, RSDur, RSAmp, RSPVel -
the parameters of recorded saccades; Session, Visit - the indexes of the experiment; and
BMT, DBS, POP - boolean variables which describe the kind of patients’ therapy.
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2.4 Computational Learning Theory

Our data contains a set of N training samples of the form (x1, y1), . . . , (xn, yn) such
that xi is the feature vector of the i − th sample with the class denoted by yi . Thus, it is
possible to use a supervised learning algorithm which seeks for a function g : X → Y ,
where the X is the input space, and the Y is the output space. The g function is an element
of some space of possible functions G, known as the hypothesis space.

The task itself could is a multiclass classification. Our goal is to predict a level of the
disease measured as UPDRS value binned into intervals, for different groups of patients.
For the predictions, we have created a dedicated machine learning framework, written in
Python and based on two libraries: Scikit Learn [11] and Pandas, which are high-quality,
well-documented collection of canonical tools for data processing andmachine learning.
We have chosen well-known models that implement different multiclass strategies, such
as K Neighbors Classifier, Support Vector Classifier, Decision Tree Classifier, Random
Forest Classifier, Gradient Boosting Classifier. The framework allowed us to find an
optimal solution by the examination of multiple algorithms with different parameters.

2.5 Hypothesis

Our goal was to predict Parkinson’s disease progression in the advanced stage, based
on the data obtained from the patients in the different treatment and stage of this dis-
ease. This task is non-trivial because there are significant differences between symptom
developments and the effects of different treatments in individual PD patients.

As a training dataset, we used patients from the BMT group (3rd visit), DBS (3rd
visit), and POP (1st visit). The independent test set consisted of the POP group from the
second visit.

3 Results

Our framework was responsible for every step of data processing in order to evaluate
the best model based on given data. Therefore, we implemented procedures which were
responsible for the creation of the Profiling Report, Correlation Matrices, Missing Data
Imputation, Data Discretization, One-Hot Encoding or Data Normalisation of selected
variables and Machine Learning Algorithms Evaluation for various parameters.

3.1 Profiling

Our dataset consists of 374 observations, where each has 13 variables. First, we gen-
erated a Pearson correlation coefficient matrix, where each cell in the table shows the
correlation between two variables. It is a useful tool that proves if a correlation between
the parameters from measurements and the symptoms suggest that some close relations
exist (Fig. 1).
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Fig. 1. Correlation matrix. The similarity between all paired parameters is correlated with the
color of the cell in the matrix (red shade represents high similarity; blue stands contrariwise).
(Color figure online)

3.2 Pre-processing

In the report, we noticed that some of the values are empty.Epworth column had 5 (1.3%)
zeros; RSAmp, RSDur, and RSLat columns had 6 (1.6%) zeros. Because of the Epworth
scale ranges between 0–24, we decided not to apply data imputation on that column.
Whenwe analyzed records related to a single patient, we noticed, that on an early stage of
the disease (duration about 7± 0.3 years) two of them indeed reported no problems with
the daytime sleepiness, yet visits in the following years revealed a linear increase in the
results. For missing parameters of the saccades, we applied the imputation transformer
for completing missing values which replaced missing values using the mean along each
column.

For neurological and neuropsychological tests results (Fig. 2), we applied k-bins
discretization, which provides a way to partition continuous features into discrete values.
Thus those features are a one-hot encoded allowing the model to be more expressive
while maintaining interpretability.

For neurological and neuropsychological tests results, we applied k-bins discretiza-
tion, which provides a way to partition continuous features into discrete values. Thus
those features are a one-hot encoded allowing the model to be more expressive while
maintaining interpretability.

Epworth = (−∞, 6.00), [6.00, 11.00), [11.00,+∞)
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Fig. 2. A histogram, which is a representation of the distribution of data for every measurable
property in the data set. Y-Axis represents a number of samples. The X-Axis presents a parameter
value.

PDQ39
= (−∞, 25.0), [25.0, 38.0), [38.0, 47.5), [47.5, 58.0), [58.0, 74.0), [74.0,+∞)

Other columns (Duration, RSLat, RSDur, RSAmp, RSPVel) were standardize by
removing the mean and scaling to unit variance to keep the subtle representation of
the eye movement signal. The calculation of the standard score of X sample is defined
by:

z = x − u

s

where u is the mean of the training samples, and s is the standard deviation of the training
samples.

Target value, the UPDRS score was optimally divided into four ranges

U PDRS = (−∞, 19.25), [19.25, 30.50), [30.50, 44.00), [44.00,+∞)

This split ensured approximately the same data set size for each class.
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3.3 Machine Learning

Wedecided to evaluate multiple algorithms in order to determine the best approach in the
meaning of accuracy of the predictions. In the previous research [10], Random Forrest
Classifier achieved the high prediction level, being second to Rough Set. This article
covers the evaluation of a few machine learning models which were not used in the
previous research, such as K Neighbors Classifier, Support Vector Classifier, Decision
Tree Classifier, Random Forest Classifier, Gradient Boosting Classifier. The following
sections present each algorithm with evaluated parameters and scores obtained from our
machine learning framework.

K Neighbors Classifier
Classifier implementing the k-nearest neighbors’ vote with uniform weights achieved
maximum accuracy score (0.50) with a parameter defining the number of neighbors on
the level of 12 and 13 (Fig. 3).

Fig. 3. K Neighbors Classifier accuracy scores for different K values.

Support Vector Classifier
We evaluated the C-Support Vector Classification against different kernels (linear, poly-
nomial, radial-basis, and sigmoid). The “linear” kernel achieved the best accuracy score
(0.40) under the penalty parameter C = 0.3 (Fig. 4).
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Fig. 4. Support Vector Classifier accuracy scores for different kernels.

Decision Tree Classifier
A decision tree classifier could provide different results when we change the number of
features to consider when looking for the best split. Varying them between 1 and the size
of all columns of the learning set, the best accuracy (0.50) was for 6, 14, and 15 features
(Fig. 5).

Fig. 5. Decision Tree Classifier accuracy scores for different number of maximum features.

Gradient Boosting Classifier
Gradient Boosting it allows for the optimization of arbitrary differentiable loss functions.
We challenged a different number of boosting stages to perform. Gradient boosting is
relatively robust to over-fitting, so a large number usually results in better performance.
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The scope was between 10 and 1000 estimators, and the highest score (0.43) reveals in
the 200 boosting stages (Fig. 6).

Fig. 6. Gradient Boosting Classifier accuracy scores for different number of estimators.

Random Forest Classifier
In this classifier, we evaluated a parameter which defines the number of trees in the forest.
We used Gini impurity as a criterion of the quality of a split. Random Forest Classi-
fier achieved the highest overall accuracy score (0.57) among other machine learning
algorithms when the number of estimators exceeded 120 (Table 1, Fig. 7).

Table 1. Confusion matrix based on Random Forest Classifier result.

Predicted label

(−Inf, 19.25) [19.25, 30.5) [30.5, 44.) [44., +Inf) Accuracy

True label (−Inf, 19.25) 6 1 1 0 0.75

[19.25, 30.5) 1 7 2 0 0.70

[30.5, 44.) 3 2 3 0 0.38

[44., +Inf) 1 1 1 1 0.25
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Fig. 7. Random Forest Classifier scores for different number of estimators.

4 Discussion

Examination of the variation of the saccades is a non-invasive method of evaluating
the neural networks involved in the control of eye movements. The examples above
demonstrated that it is possible to use eye movements as a biomarker for the assessment
of symptom progression in PD.

We live in the “age of implementation” of the machine learning models. Commercial
companies are acquiring data on a large scale in order to present the content which is
best-fitted to the end-user, which influences the businesses. However, there is still an
emerging necessity of medical data extension because it is a crucial factor in the context
of machine learning. Paradoxically, we have access to much fewer data of the medical
records (even about ourselves) than most of the managers of the commercial websites
who aggregates about our shopping behavior. The modeled data sample, presented in
this article, is relatively abundant in the neuroscience scale. Based on the examinations
conducted by neurologists, we were able to create predictions based on the different
patient population with different treatments for the most advanced stages of the disease.
This results supported with further extended and in-depth research could lead to a new
approach in the development of a follow-up tool for PD symptoms. As an outcome,
this automated mechanism could provide to a doctor an objective opinion about applied
therapy symptoms. Hence we can conclude that when the patient is doing significantly
worse than others, their treatment is not optimal and should be changed. However, there
is still a large field for the model improvements that should lead to more accurate results.
The proposed protocol allowed us to evaluate multiple machine learning models in a
relatively agile process of data aggregation. Consequently, more complex variations of
saccadic tasks can give insight into higher-order eye movement control [12]. Our work is
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an evaluation of well-known models that implement different multiclass strategies, such
as K Neighbors Classifier, Support Vector Classifier, Decision Tree Classifier, Random
Forest Classifier, Gradient Boosting Classifier in the context of saccades research. In
this trial, Random Forest Classifier achieved the highest overall accuracy score, which
could lead to a direction in further discoveries in the field of bioinformatics.

5 Conclusions

We believe that the multidisciplinary cooperation between neurologists and information
engineering is essential to achieve significant results in the open-science approach. We
attempted to predict the longitudinal symptom developments during different treatments
based on the neuropsychological data alignedwith the parameters of the eyemovements.
As a training dataset, we used patients from the BMT group (3rd visit), DBS (3rd visit),
and POP (1st visit). The independent test set consisted of the POP group from the second
visit. For predictions, we used a machine learning framework, written in Python. The
best classifier - Random Forest - reached 75% and 70% of accuracy while predicting
subclasses of UPDRS for patients in advanced stages of the disease who respond to
treatment, with a global 57% accuracy score for all classes. Thanks to collaborative
research, we have presented a comparison of different machine learning models that
could be useful in the context of bioinformatics. Our direction is to create a new research
ecosystem, that would significantly increase (by a factor of 10) the number of attributes
and measurements in order to implement deep learning methods.
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Abstract: Neurodegenerative diseases (NDs) such as Alzheimer’s Disease (AD) and Parkinson’s
Disease (PD) are devastating conditions that can develop without noticeable symptoms, causing
irreversible damage to neurons before any signs become clinically evident. NDs are a major cause
of disability and mortality worldwide. Currently, there are no cures or treatments to halt their
progression. Therefore, the development of early detection methods is urgently needed to delay
neuronal loss as soon as possible. Despite advancements in Medtech, the early diagnosis of NDs
remains a challenge at the intersection of medical, IT, and regulatory fields. Thus, this review
explores “digital biomarkers” (tools designed for remote neurocognitive data collection and AI
analysis) as a potential solution. The review summarizes that recent studies combining AI with
digital biomarkers suggest the possibility of identifying pre-symptomatic indicators of NDs. For
instance, research utilizing convolutional neural networks for eye tracking has achieved significant
diagnostic accuracies. ROC-AUC scores reached up to 0.88, indicating high model performance in
differentiating between PD patients and healthy controls. Similarly, advancements in facial expression
analysis through tools have demonstrated significant potential in detecting emotional changes in
ND patients, with some models reaching an accuracy of 0.89 and a precision of 0.85. This review
follows a structured approach to article selection, starting with a comprehensive database search
and culminating in a rigorous quality assessment and meaning for NDs of the different methods.
The process is visualized in 10 tables with 54 parameters describing different approaches and their
consequences for understanding various mechanisms in ND changes. However, these methods
also face challenges related to data accuracy and privacy concerns. To address these issues, this
review proposes strategies that emphasize the need for rigorous validation and rapid integration
into clinical practice. Such integration could transform ND diagnostics, making early detection tools
more cost-effective and globally accessible. In conclusion, this review underscores the urgent need to
incorporate validated digital health tools into mainstream medical practice. This integration could
indicate a new era in the early diagnosis of neurodegenerative diseases, potentially altering the
trajectory of these conditions for millions worldwide. Thus, by highlighting specific and statistically
significant findings, this review demonstrates the current progress in this field and the potential
impact of these advancements on the global management of NDs.

Keywords: neurodegenerative diseases; Alzheimer’s disease; Parkinson’s disease; digital endpoints;
online cognitive testing; eye-tracking; machine learning; early detection; digital phenotyping

1. Introduction

Aging is a significant risk factor for neurodegenerative diseases (NDs) such as Alzheimer’s
(AD) and Parkinson’s (PD), despite advancements in technology that have improved our
quality of life and longevity [1–3]. Unfortunately, the complexity of the disease process,
involving various contributing factors, presents a challenge in identifying effective reme-
dies [4].
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The complexity of NDs lies in a spectrum of disorders characterized by a primary loss
of cells, leading to secondary cell loss in other brain regions [5]. Processes correlated with
AD begin over 30 years, whereas cognitive changes begin over about 15–11 years, before
the first AD symptoms [6,7]. Unfortunately, the prevalence of Alzheimer’s Disease-related
dementia is fast increasing due to our aging population [8].

Sadly, the prevalence worldwide is estimated to be as high as 24 million; by 2050, the
AD number could rise to 139 million worldwide [9]. Currently (Q1′24), there is no cure for
AD, as during the first clinical symptoms and neurological diagnosis many parts of the
brain are already affected without the possibility to recover.

The second (after AD) most common neurodegenerative disease is Parkinson’s Disease
(PD). This disease is characterized mainly by motor but also by cognitive disorders [10].
The prevalence of Parkinson’s Disease is expected to increase significantly by 2050, with
estimates suggesting a doubling of the current number of affected individuals. This is due
to a combination of factors, including an aging population, declining smoking rates, and
increasing industrialization [11,12]. The economic burden of the disease is also projected
to rise, with the cost of medical expenses and indirect costs such as reduced employment
expected to increase substantially [11]. These projections highlight the urgent need for
innovative treatments and a coordinated global response to address the growing impact of
Parkinson’s Disease.

It is noteworthy that both Alzheimer’s Disease and Parkinson’s Disease are neurode-
generative diseases characterized by substantial and irreversible neuronal loss, however in
different regions of the brain. Commonly, neurodegeneration begins two to three decades
before observed symptoms. Hence, the best chance to fight NDs is to estimate the beginning
period of the ND-related brain changes [13].

Recent research on the beginnings of NDs has focused on the role of molecular biomark-
ers, such as miRNAs (small gene regulators) and exosomes (tiny cellular messengers). It has
shown promise in detecting neuronal dysfunction in the presymptomatic stage of NDs [14].
These biomarkers, along with other laboratory and biochemical markers, are being explored
for their potential in early diagnosis and disease progression assessment [15]. However,
the use of analog biomarkers in Alzheimer’s Disease diagnosis has limitations, including
the need for biological samples and hospitalization [16].

Despite these challenges, the development of bioassays (sensitive biological detection
tests) and the identification of biological markers in blood, plasma, and serum have shown
promise in overcoming these limitations [17]. However, the validation of the clinical useful-
ness of these biomarkers is still incomplete, and further research is needed to standardize
their readout and evaluate their performance in detecting early disease [18].

Therefore, the search for an ideal biomarker for Alzheimer’s and Parkinson’s Disease
continues, with the goal of achieving a reliable and accurate diagnosis at the earliest clinical
stages. Analog biomarkers, despite their strengths, hold limitations as well. Conversely,
digital technologies, which provide objective, high-frequency data, are being considered as
a solution to the current subjective measures of NDs [19].

These tools, including AI and remote sensing technologies, are promising avenues
for early detection and monitoring of neurodegenerative diseases that can be deployed
non-invasively and potentially at scale [20,21]. Yet, there is an ongoing discussion regarding
the connection between digital and analog biomarkers and their correlation. This is a gap
in the research that still calls for interdisciplinary validation, hence posing a challenge
between the medical, IT, legal, and ethical fields.

For that reason, this review aims to provide an interdisciplinary perspective and
highlight the challenges in the intersection between technology and medicine, based on
recent findings.

2. Biological Definition and Hidden Nature of NDs

Digital biomarkers emerged from analog biomarkers [22]. Hence, to properly interpret
the outcomes of digital tools, it is important to understand first the biological definitions
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of both diseases, their measurement parameters, their relevance to neurodegenerative
diseases, and how AI can enhance the interpretation and application of these biomarkers.

Therefore, we define NDs as a group of diseases that cause the progressive loss
of structure or function of neurons, including death of neurons. Despite the fact that
Alzheimer’s and Parkinson’s are in the same cluster of disorders, they exhibit distinct
biological characteristics [23].

For example, in Parkinson’s Disease, by the time symptoms like bradykinesia or tremor
became apparent, between 30 and 70% of the substantia nigra (SN—an area of the midbrain)
is already irreparably damaged, limiting the actionable time window. The range of 30–70%
is commonly cited, but this can vary based on individual cases and the methods used
for measurement. As a consequence of this damage, we lose SN neurons, the so-called
dopaminergic neurons of the midbrain, which are the main source of dopamine (DA) in
the central nervous system (CNS) [24].

Moreover, the impact of neurodegeneration can be noticeable in eye movements (EMs).
This is because the substantia nigra influences eye movements among its many roles in
movement regulation. The SN helps regulate the action of the superior colliculus (SC) by
providing inhibitory input. The SC initiates reflex orienting by sending control signals to
the gaze centers in the midbrain, and this process is impaired by the loss of neurons in
the SN.

In the context of Alzheimer’s Disease, the main affected part of the brain is a region
responsible for memory and spatial navigation. AD onset is primarily linked to changes in
the hippocampus, which rapidly loses tissue and functional connectivity with other brain
regions, leading to atrophy and cognitive impairment [25]. Changes in the hippocampus,
including altered neurogenesis, are early events in AD and may worsen memory impair-
ment [26]. Spatial disorientation, a common symptom of AD, is linked to changes in the
medial temporal and parietal brain regions [27]. These changes in the hippocampus and
associated brain regions are associated with altered gene expression, synaptic excitability,
and plasticity, which contribute to memory loss in AD [28].

However, thanks to internal compensation mechanisms, the neurodegeneration that
occurs in the meantime is hidden from the outside. This hidden progression of the disease
makes early detection a challenge in research, which can hinder the development of
prevention strategies [29,30].

3. Biological Definition Determines Parameters for Digital Measurements

There are three kinds of symptoms in NDs, related to different structures in the
brain being affected by the disease: cognitive (primarily in AD, secondarily in PD), motor
(primarily in PD, less evident in AD), and emotional (observed in both, but characteristic
for late-onset AD). Sadly, research has identified a range of non-motor symptoms (NMSs)
as well, including cognitive problems, apathy, depression, anxiety, hallucinations, and
psychosis, as well as sleep disorders, fatigue, autonomic dysfunction, sensory problems,
and pain [31]. Importantly, symptoms can occur in the pre-motor phase of the disease and
are not fully addressed by current treatments [32].

To better sense the hidden and ongoing changes in the brain, the intersection of tech-
nology and medicine stands out as a perspective direction, especially with the opportunity
for wide application that can help in prevention strategies. The importance of those detec-
tors, sensitive enough to catch invisible signs of the disease, is repeatedly underlined in the
literature [20,33].

Fortunately, as we present, researchers analyzing NDs have become interested in
changes in emotional, cognitive, and EM patterns, deeply examining their parameters for
building AI models for disease classification.

Given the narrative nature of our review, our aim is to provide a broad overview
rather than a detailed technical analysis. However, recognizing the importance of precision
in terminology, we have reviewed the manuscript to ensure that each mention of AI and
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ML is contextually accurate, clarifying the distinction between the broader field of AI and
the specific application of ML as a subset of AI techniques.

4. Methods

This narrative review synthesizes existing research on the integration of machine learn-
ing and digital biomarkers in the diagnosis and monitoring of neurodegenerative diseases.
We explore the advancements, challenges, and future directions in this interdisciplinary
field, emphasizing the potential of these technologies to support early detection and patient
care. The scope encompasses studies related to eye tracking, facial expression analysis,
cognitive testing, and other digital phenotyping tools in the context of diseases such as
Alzheimer’s and Parkinson’s.

To capture a comprehensive body of literature, we conducted searches in major sci-
entific databases, including Google Scholar, IEEE Xplore, and PubMed. Our search was
supplemented by the use of research tools like Litmaps and Mendeley, which helped in
mapping the literature connections and identifying key contributions.

We utilized a combination of keywords and phrases such as “eye tracking”, “facial
expressions”, “cognitive testing”, “machine learning,” “digital biomarkers,” “digital pheno-
typing,” “neurodegenerative diseases,” “Alzheimer’s Disease,” and “Parkinson’s Disease.”
Boolean operators (AND, OR) were used to refine the search, ensuring a focused retrieval
of relevant studies.

Our selection process included a diverse range of studies that provide insight into the
development and application of digital biomarkers and machine learning in the context of
neurodegenerative diseases. We cite articles published between 1937 and 2023, written in
English, and focusing on original research. The selection was guided by the relevance of
each article to the review’s themes, the innovative use of technology in neurodegenerative
disease diagnostics, and the potential impact on clinical practices and patient outcomes.

The literature was synthesized to highlight key findings, identify thematic trends, and
discuss the implications of integrating digital biomarkers with machine learning for neu-
rodegenerative disease diagnostics. We analyzed the selected studies in the context of their
contribution to advancing technology, addressing challenges such as data accuracy, privacy
concerns, and the need for validation, as well as their potential for clinical application. This
thematic analysis allowed us to draw insights into the current state of the field, identify
gaps in the literature, and propose directions for future research.

The review integrates findings from the selected literature into a cohesive narrative
assessment, discussing the evolution of digital biomarkers and machine learning in the
medical field, with a particular focus on neurodegenerative diseases. By examining the
studies through a thematic lens, it provides a comprehensive overview of the landscape,
including the technological advancements, methodological challenges, and the ethical
considerations of implementing these technologies in clinical settings.

5. Remote Oculomotor and Facial Expression Analysis Indicate Progression of NDs

Eye tracking, an established technique for measuring eye movements, plays a crucial
role in understanding neurodegenerative diseases. This technique is employed to record
the paths of eye movements, often under controlled conditions such as the “follow the green
dot on the screen” task. Camera-based eye trackers are the most common form, but other
methods like electrooculography (EOG) are available as well [34]. Eye movement disorders
offer a window into early changes in brain computation, especially as they are affected
early in neurodegenerative diseases [35]. By studying these movements, researchers can
gain insights into how these diseases impact the brain’s functionality.

Additionally, when combined with facial expression analysis, eye tracking becomes
even more powerful [36]. These methodologies are being studied in various contexts of
neurodegenerative diseases to identify early signs and progression markers. The combi-
nation of eye tracking and facial expression analysis offers a comprehensive approach to
studying NDs, providing a more nuanced understanding of the diseases.
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6. Eye Tracking Helps to Determine the Disease Probability

Eye tracking technology has been utilized to differentiate between Parkinson’s Disease
patients and healthy controls, with promising results. For example, in a recent (2023)
study, Brien et al. collected video-based eye tracking data on an interleaved pro/anti-
saccade task of 104 PD patients and 106 healthy controls [37]. They used features of
saccades, pupil, and blink behavior to predict confidence scores for PD/PD-MCI/PDD
diagnosis with the Linear Mixed Model to determine the disease probability by different eye
tracking biomarkers. This classifier reached a sensitivity of 0.83 and a specificity of 0.78 and
the Receiver Operator Characteristic Area Under the Curve (ROC-AUC) of the classifier
was 0.88. The predicted confidence scores were indicative of PD motor and cognitive
performance scores. The study’s findings demonstrate that eye tracking biomarkers can
reliably indicate PD motor and cognitive performance scores, offering a non-invasive
method for early disease detection.

Similarly, other studies have explored eye tracking for disease detection. Bejani et al.
(2022) also utilized video-based eye tracking to analyze smooth pursuit eye movements
in PD patients and controls [38]. A collection of parameters was obtained, including
complexity measures based on entropy/regularity, describing the system’s dynamic and
features for assessing self-similarity. The Support Vector Machine (SVM) was used for
classification and for the PD and control groups an accuracy of 0.74 was obtained (sensitivity
0.73, specificity 0.74). This research further supports the idea that eye tracking can provide
valuable data in distinguishing PD patients from healthy individuals, emphasizing the role
of dynamic system features in diagnosis.

Continuing this trend, additional studies have used similar methodologies with high
accuracy. Prashanth et al. (2016) used SVM on a dataset from the Parkinson Progression
Markers Initiative. This method applies data mining techniques to attributes considered to
be early symptoms of PD, such as cognitive disorders, rapid eye movements, sleep behavior
disorders, and cerebrospinal fluid measurements [39]. Researchers achieved 0.96 accuracy,
0.97 sensitivity, and 0.95 specificity in distinguishing early PD patients from a control group.
This high level of accuracy underlines the effectiveness of data mining techniques in early
PD detection, providing a strong case for the use of eye tracking in clinical assessments.

Beyond PD, eye tracking has shown promise in other neurodegenerative conditions
as well. In another research study by Vodrahalli et al. (2022), infrared oculography was
used with visuo-motor tasks involving rapid reading of 40 single-digit numbers [40]. They
used convolutional neural networks (CNNs) as a classifier with widow-based analysis of
recording which includes fixations and saccades. The results were discriminated among
diseases impacting EM (like PD), diseases associated with vision loss, and healthy controls
(81% accuracy compared with the baseline of 33%). This approach showcases further the
versatility of eye-tracking technology in diagnosing a range of conditions, highlighting its
diagnostic potential.

Similarly, recent research has focused on combining eye tracking with other diagnostic
methods. Belan et al. (2023) investigated the effectiveness of an eye-tracking-assisted visual
inference language task in differentiating individuals with mild cognitive impairment
(MCI) or Alzheimer’s Disease dementia from cognitively unimpaired older adults [41].
The research involved 95 participants, including 49 with MCI, 18 with mild AD dementia,
and 28 controls. The authors used a non-parametric repeated measures ANOVA model for
verbal answers and a linear mixed model (LMM) or its generalized version for the analysis
of eye tracking variables. The results showed significant differences in verbal answers
across all diagnostic groups, and eye-tracking parameters successfully discriminated AD
from MCI and controls. Analyzing oculomotor behavior alongside language assessments
demonstrated increased sensitivity for detecting subtle deficits in the MCI-AD continuum,
making it a valuable diagnostic tool. These findings collectively indicate the growing
importance of eye tracking in diagnosing NDs, offering a more nuanced and sensitive
approach to identifying early stages of diseases like PD and AD (Table 1).
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Table 1. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Video-based eye
tracking

Saccades, pupil,
blink behavior PD detection

Sensitivity: 0.83,
Specificity: 0.78,
ROC-AUC: 0.88

[37]

Video-based eye
tracking

Smooth pursuit eye
movements,

entropy/regularity,
self-similarity

PD detection
Accuracy: 0.74,
Sensitivity: 0.73,
Specificity: 0.74

[38]

Video-based eye
tracking

Cognitive disorders,
rapid eye

movements, sleep
behavior disorders,
cerebrospinal fluid

measurements

Early PD
detection

Accuracy: 0.96,
Sensitivity: 0.97,
Specificity: 0.95

[39]

Infrared
oculography Fixations, saccades

Distinguishing
neurodegenera-

tive diseases

Accuracy: 81%
(compared to 33%

baseline)
[40]

Eye tracking
with visual
inference

language task

Oculomotor
behavior, verbal
answer analysis

Differentiating
MCI/AD

dementia from
controls

Significant
discrimination

between AD, MCI,
and controls

[41]

However, eye-tracking has traditionally been considered an expensive research method
due to the high cost of commercial eye tracking systems [42]. Fortunately, as presented in
the next section, recent advancements have made it possible to develop low-cost remote
eye tracking systems that maintain clinically significant parameters.

7. Convoluted Neural Networks Allow Cost Optimization of Eye Tracking

The development of a model for classification using disease biomarkers, such as
those obtained from eye tracking, is a crucial step in neurodegenerative disease research.
Embedding these models into practical environments, particularly through web-based
eye-tracking measurements, facilitates their use in healthcare settings.

Interestingly, while web-based eye-tracking has shown effectiveness, it typically ex-
hibits marginally reduced accuracy and increased data variance compared to laboratory-
based devices. This limitation highlights the necessity for model enhancement and method-
ological refinement to ensure practical applicability and accuracy in real-world settings.
Addressing this need, recent research has turned to convolutional neural networks (CNNs)
for enhancing eye-tracking methods. Thus, the integration of CNNs in eye tracking technol-
ogy represents a significant advancement, aiming to improve the precision and reliability
of these diagnostic tools, thus making them more suitable for clinical applications in
neurodegenerative disease diagnostics.

For example, CNNs have been used to enhance the accuracy of gaze estimation on
mobile devices by focusing on facial features. Akinyelu et al. (2022) utilized the face
component, gaze features were extracted from the eyes, and the shape and location of the
eyes were encoded into the network through a 39-point facial landmark component and a
Visual Geometry Group (VGG) convolutional neural network [43]. Different experiments
were performed, and the experimental result revealed that 39-point facial landmarks can be
used to improve the performance of CNN-based gaze estimation models. The researchers
achieved the highest eye tracking accuracy of 0.96 and Mean Square Error (MSE) of 0.01.
This approach demonstrates the potential of using facial landmarks to refine CNN-based
gaze estimation models, significantly improving performance.

Similarly, another study explored the use of CNNs with webcams for eye tracking.
Meng et al. (2017) presented a paper where CNNs were employed in conjunction with
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webcams for an eye-tracking approach that relies on the detection of key eye features,
including the inner and outer corners, the center of the upper and lower eyelids, and
the center of the iris [44]. These feature points were then used to construct six types of
original time-varying eye movement signals, reducing reliance on the iris center, especially
in low-quality videos. The final step involved training a Behaviors-CNN using these
signals to recognize diverse eye movement patterns. This strategy helped to mitigate
errors stemming from basic eye movement-type detection and artificial eye movement
feature construction. The researchers conducted experiments with their application across
various activities and, to assess performance, a visual activity dataset was created using a
webcam, comprising nearly 0.5 million frames gathered from 38 subjects. They achieved
the highest results in the “reading” category, with a precision of 0.87 and a recall of 0.89.
By training a Behaviors-CNN with these signals, the study mitigated errors from basic eye
movement-type detection and feature construction, showcasing the adaptability of CNNs
in different settings.

Continuing the trend of CNN integration, Gunawardena et al. (2022) have also
compared various CNN models for mobile eye tracking. They compared four modern
lightweight CNN models (LeNet-5, AlexNet, MobileNet, and ShuffleNet) in search of opti-
mal performance in real-time eye tracking based on video oculometry [45]. The researchers
used four lightweight CNN models (LeNet-5, AlexNet, MobileNet, and ShuffleNet) to
assess the performance of gaze estimation on mobile devices using the Gaze Capture
dataset. To analyze the feasibility of various inference modes—on-device, edge-based, and
cloud-based—they conducted an empirical measurement study, quantifying inference time,
communication time, and resource consumption. The MobileNet-V3 in this study outper-
formed in terms of model accuracy with the lowest training MSE after 60 epochs, which
was 0.5 ± 0.01, and also providing the lowest response inference time, 17.4 milliseconds,
of all evaluated network architectures. The findings also revealed that while cloud-based
inference yields faster predictions, the communication time introduces significant latency,
eliminating real-time eye tracking based on cloud hosting. On the other hand, the re-
searchers point out that on-device inference is limited by energy and memory consumption,
leaving edge-based solutions as the best solution with reasonable response time, memory
usage, and energy consumption for eye-tracking applications on mobile devices.

Finally, Rakhmatulin and Duchowski (2020) provide an in-depth analysis of contem-
porary techniques for webcam-based gaze tracking, offering practical implementations
of popular methods [46]. The focus is on exploring various deep neural network models
for online gaze monitoring. A novel eye-tracking approach is introduced, enhancing the
effectiveness of deep learning methods. The system employs a dual-coordinate system, de-
termining the position of the face relative to the computer through infrared LED detection
and the gaze position is obtained through a CNN and a method involving three objects (left,
right, and center) for accurate gaze tracking. The implementation demonstrates practical
applications by enabling computer interaction control based on gaze.

These findings highlight the effectiveness of edge solutions by balancing response
time, memory utilization, and power consumption in eye tracking applications on mobile
devices, representing a significant step in optimizing eye tracking technologies using
CNNs (Table 2). Hence, we note that the development of digital diagnostic applications in
real-time environments is crucial, especially in telemedicine.

Importantly, the nuances introduced by different digital environments can signifi-
cantly impact diagnostic reliability. Moreover, the approach of not storing registration
data enhances privacy and reduces data management requirements, aligning with the
expectations of medical experts and patients for efficient and secure medical services.

Therefore, it is vital to consider these digital environments when developing and
implementing digital diagnostic tools. The immediate results are not only a convenience but
a necessity in telemedicine, underlining the importance of real-time processing capabilities.
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Table 2. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Facial features
and gaze

estimation

Facial landmarks,
gaze features

Eye tracking
accuracy

enhancement

Highest accuracy:
0.96, MSE: 0.01 [43]

Webcam-based
eye tracking

Key eye features
(corners, eyelids, iris

center), eye
movement signals

Eye movement
pattern

recognition

Precision: 0.87,
Recall: 0.89 [44]

Mobile eye
tracking

Lightweight CNN
models (LeNet-5,

AlexNet, MobileNet,
ShuffleNet)

Gaze estimation
on mobile

devices

Best model accuracy
(MobileNet-V3):
Training MSE:

0.5 ± 0.01, Response
time: 17.4 ms

[45]

Webcam-based
gaze tracking

Dual-coordinate
system, deep neural

network models

Online gaze
monitoring

Enhanced accuracy
and practicality for

computer
interaction control

[46]

8. Digital Environments Impact Diagnostics Speed and Reliability

Immediate results from automated diagnostic processes are expected by both medical
experts and patients. This aspect is obviously important in telemedicine. When using
automated diagnostic processes, both medical experts and patients expect immediate
results. Additionally, thanks to this approach, there can be no need to store the data of
the registration itself. Moreover, there is growing interest in non-invasive predictors of
Alzheimer’s and Parkinson’s Disease, as seen in the use of webcam-based eye-tracking
data for classification.

Therefore, experiments with web-based applications were conducted to demonstrate
the feasibility of client-side solutions. For example, Yang et al. in 2021 developed the
“WebGazer”, a web-based eye-tracking application that was integrated into a widely used
JavaScript library (jsPsych) for behavioral research [47]. The procedure and code were mod-
ified to minimize calibration/validation efforts and enhance temporal resolution. Testing
this approach with a decision-making study on Amazon MTurk, the researchers success-
fully replicated in-lab findings on the connection between gaze and choice. Notably, there
was minimal degradation in spatial or temporal resolution, demonstrating the feasibility of
online web-based eye-tracking in behavioral research.

Śledzianowski et al. (2023) experimented with disconnecting the software from the
hardware capabilities to compensate for the lack of professional equipment in the patient’s
household [48,49]. The methodology was executed in an online system utilizing readily
available home-grade equipment, yielding results comparable to those obtained with an
infrared 60 Hz eye-tracker but with fewer artifacts. The findings indicated that the disparity
in EM latency, a crucial parameter for distinguishing patients with Parkinson’s Disease,
was 16 ms when compared to a laboratory-grade 1000 Hz eye-tracker. It is expected that
this approach will play a role in advancing analytic tools for NDs (especially for PD)
within computational health, consequently expediting the development of new preventive
measures for such conditions.

A similar off-eye-tracker approach is presented by Harisinghani et al. (2023) [50]. The
study addresses the growing interest in non-invasive predictors of Alzheimer’s Disease
by exploring the use of webcam-based eye-tracking data for classification. Their previous
successful attempts utilized high-end eye trackers during picture narration and reading
tasks. In contrast, this study employs a deep-learning approach to build classifiers using
eye-tracking data collected with a webcam. While the webcam gaze classifier does not
match the performance of the high-end eye-tracking classifier, it outperforms the majority-
class baseline classifier in terms of the AU-ROC. The findings suggest that predictive signals
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can be extracted from webcam gaze tracking, offering a promising proof of concept for the
potential use of this technology as an affordable alternative to high-end eye trackers in AD
detection, despite the need for further exploration.

Moreover, eye tracking in Virtual Reality (VR) technology is being actively explored
for remote diagnosis of neurodegenerative diseases [51]. For example, Orlosky et al.
(2017) deliberate the need to conduct research in a laboratory environment [52]. This
research addresses the challenges in early and accurate diagnosis of neurodegenerative
conditions, particularly Parkinson’s Disease, stating that current evaluation methods are
time consuming, require travel to specialized centers, and may lead to misdiagnosis. The
authors present a cost-effective Virtual Reality interface designed for the evaluation and
diagnosis of neurodegenerative diseases. Utilizing a VR display with an integrated infrared
camera, they created a 3D virtual environment mimicking tasks used in patient evaluations.
The virtual tasks were designed to elicit eye movements associated with neurodegenerative
diseases. The study involved nine Parkinson’s Disease patients and seven healthy controls,
testing the system’s ability to emulate clinical tasks. Eye tracking algorithms and image
enhancement were applied to the recorded eye movements, and evaluation by physicians
confirmed three out of four abnormalities. The VR interface demonstrated potential for
clinical diagnosis, with physicians rating visualizations as potentially useful.

Beyond VR, there is also a focus on using pupil and oculomotor measures as biomark-
ers in neurodegeneration. O’Callaghan et al. (2022) focus on using pupil and oculomotor
measures as biomarkers to detect changes in the locus coeruleus (LC) [53]. The LC role is
synthesizing norepinephrine (noradrenaline) and it is involved in physiological responses
to stress and panic. It is also involved in various neural processes including attention,
memory, and cognitive functions. The LC’s degeneration or dysfunction is associated
with several neurodegenerative diseases, including Alzheimer’s and Parkinson’s. Hence,
the study involved Parkinson’s Disease patients who underwent a pharmacological chal-
lenge with the noradrenergic reuptake inhibitor atomoxetine. Ultra-high field 7T MRI
characterized the locus coeruleus, and patients were tested on and off atomoxetine using
oculomotor eye-tracking tasks and a learning task with pupillometry. The results indicate
that atomoxetine improves cognitive performance and saccadic reaction times, with larger
pupil responses correlated with locus coeruleus integrity.

Hence, the findings suggest that pupil and eye tracking measures serve as effective
biomarkers for this system and are sensitive to pharmacological interventions, offering
potential implications for the early detection and monitoring of subcortical changes in
Alzheimer’s Disease (Table 3).

Table 3. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Web-based eye
tracking

(WebGazer)

Spatial/temporal
resolution

Behavioral
research

Minimal degradation
in resolution,

replication of in-lab
findings

[47]

Online system
with

home-grade
equipment

EM latency
Parkinson’s

Disease
diagnostics

Comparable results to
infrared eye-tracker
with less artifacts,

latency disparity: 16
ms

[48,49]

Webcam-based
eye tracking AU-ROC

Alzheimer’s
Disease

classification

Outperforms
majority-class baseline

classifier, indicates
potential for AD

detection

[50]



Sensors 2024, 24, 1572 10 of 31

Table 3. Cont.

Sensor Metrics Sense—Domain Results Reference

VR with
integrated eye

tracking

Eye movement
analysis

Evaluation of
neurodegenera-

tive diseases

Emulates clinical
tasks, confirmed

abnormalities,
potential for clinical

diagnosis

[52]

Pupillometry
and oculomotor

tasks

Locus coeruleus
integrity,
cognitive

performance

Biomarkers for
neurodegenera-

tion

Improved cognitive
performance and
saccadic reaction

times with
atomoxetine

[53]

Eye movement measurement offers valuable insights. But it is not the only key to
understanding neurodegenerative diseases. Here we can expand our perspective to include
facial expressions. This aspect, often affected in NDs, plays a key role in interpreting
patients’ emotional states, correlates strongly with eye movements, and allows tracking the
disease progression.

9. Emotional States Estimations by Facial Expressions Can Indicate Hypomimia

An interesting extension of the EM approach is the analysis of the patient’s emotions.
The analysis of emotional states in PD with ML methods is not yet common. However, the
current findings emphasize a gap in real-world implementations. Emotions can change
during neurodegeneration, creating a clear trace of the disease visible, for example in
different facial expressions. Here, scientists often mix bio-signals coming from different
sources, for example, they study the relationships between the properties of eye movements
in various emotional states expressed by facial expressions.

Various studies have explored this multifaceted approach, offering insights into the
diagnostic potential of these methods. Importantly, mature open-source projects like
OpenFace provide state-of-the-art results for selected facial action unit (AU) recognition [54].
OpenFace utilizes the Facial Action Coding System (FACS), which objectively measures
and categorizes facial expressions by breaking them down into distinct movements known
as Action Units [55]. It provides two machine learning models: one for determining the
presence of an AU and another for describing its intensity on a 5-point scale. This system
allows for a detailed analysis of facial expressions, such as identifying the combination
of AUs that comprise the expression of “happiness” or “sadness”, providing meaningful
support for research. The contribution of open-source projects like OpenFace is invaluable
in research on neurodegenerative diseases.

Using this tool, Śledzianowski et al. (2021) studied facial emotions (FEs) through the
muscle activity model (FACS) and chaos parameters in EMs [56]. The research revealed that
parameters associated with chaos exhibited a strong positive correlation with happiness,
while linear and noise components were mostly negatively correlated with this emotion.
The model proposed simultaneous emotion recognition based on facial landmarks and
EMs, providing a significant modification in emotion estimation models. Many nonlinear
models have been tested, with the best results achieved by using the K-Nearest Neighbors
algorithm with an accuracy of 0.89 with an ROC-AUC score of 0.88, F1 score of 0.89,
Precision of 0.85, Sensitivity/Recall of 0.93, and Specificity of 0.82. This study highlights the
nuanced relationship between facial expressions and EMs in emotional states, providing a
significant modification in emotion estimation models.

Interestingly, further validation was conducted using the Affectiva-MIT Facial Expres-
sion Dataset (AM-FED) which included both human and algorithmic classifications [57]. It
confirmed that EM chaos emerged as a biomarker of happiness, and it can play a more cru-
cial role than the intensity of specific muscle activity (AU12). It means that true happiness
can be detected even in situations when the lower part of a face is covered, which often
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happened, e.g., during the COVID pandemic. The model is suggested as an extension for
estimating happiness based on facial muscle activity, with potential applications in medical
analysis of diseases like PD where facial expressions may be affected by hypomimia. This
approach demonstrates the potential of using facial tracking for diagnostic purposes in
neurodegenerative diseases.

Others also examined the relationship between facial expressions and PD symptoms.
Pegolo et al. (2022), addressing hypomimia in PD, aimed to create a quantitative index,
termed the Face Mobility Index (FMI), utilizing a face tracking algorithm based on the Facial
Action Coding System [58]. The researchers used OpenFace to detect facial landmarks’
positions and extract features. The software considers distances between pairs of facial
features to distinguish between healthy individuals and those with PD. The index was also
evaluated for emotion classification. The results indicated that FMI effectively quantifies
impairment in PD, showing statistically significant differences for all emotions when
distances between features are considered and for happiness and anger when FMI is
applied. kNN was found to be the optimal technique in the classification with FMI and the
results based on the AUC yielded values ranging between 88.9 and 88.4 and F1 scores were
between 70.1 and 73. This research contributes to understanding the quantitative aspects of
facial impairment in PD, offering new avenues for clinical evaluation.

Moreover, Almutiry et al. (2016) suggest the potential for the automated measurement
of day-to-day variations in PD symptoms based on FEs. The research introduces a method
to assess facial expressivity for enhancing PD clinical evaluations [59]. Given controversial
evidence about PD-related facial impairment, the research aims to explore discriminative
and quantitative measures of PD through facial expression analysis. Video clips of eight
subjects (four healthy controls, and four PD patients) were recorded over several weeks,
focusing on emotion variation. A statistical shape model tracked facial expressions, mea-
suring the amount of expressivity for each subject. The results indicated that movement
measures during happiness, disgust, and anger expressions were the most discriminative,
with PD patients exhibiting less movement than controls, indeed confirming hypomimia in
PD patients.

The impact of hypomimia on social interaction and quality of life has also been
addressed in clinical studies. A comprehensive review examined the role of computational
analysis techniques in measuring emotional facial expressions in PD patients [60]. Clinical
studies often use the Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS), with item 3.2 assessing facial expression. Traditional observer-based scales
can be time consuming, prompting the exploration of computational analysis techniques
for facial expressions. The paper provides a comprehensive review of these techniques
for measuring emotional facial expression in people with PD, emphasizing their clinical
applications. Additionally, a pilot experimental work on masked face detection in PD is
presented, utilizing a deep learning-based model trained on an NVIDIA GeForce 920M
GPU, achieving 85% accuracy on testing images. These findings further emphasize the
importance of innovative approaches in detecting and understanding the nuances of facial
expressions in PD.

In another study, the authors identified a correlation between impaired facial emotion
recognition, detectable through online tools, and neuroanatomical changes that neces-
sitate laboratory examinations [61]. The study is focusing on structural changes in the
orbitofrontal cortex (OFC) and the amygdala. Using the Iowa Gambling Task (IGT) and
Ekman 60 faces test, 24 early PD patients and 24 controls were assessed. Voxel-based mor-
phometry (VBM) analysis of high-resolution structural magnetic resonance images revealed
significant gray matter loss in the right amygdala and bilaterally in the OFC in PD patients.
Volumetric analyses did not yield significant differences. Correlations between OFC gray
matter volume and test performance suggest that OFC and amygdala degeneration are
associated with neuropsychological deficits in early-stage PD. This correlation highlights
the importance of structural brain changes in understanding the neuropsychological deficits
in early-stage PD.
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Notably, the recognition of emotions in speech and graphic representation has also
been explored. Lu et al. (2022) investigated the recognition of emotions in speech and
the graphic representation of expressions gathered during the learning process [62]. They
employed an unsupervised Adversarial Autoencoder for feature extraction and utilized
convolution neural networks with Bi-directional Long Short-Term Memory (CNN-BiLSTM),
achieving an accuracy of 0.99 in emotion classifications. This approach underlines the
potential of advanced machine learning techniques in classifying emotions, offering insights
into neurodegenerative disease progression.

Moreover, research on EEG features in cross-subject emotion recognition highlights
the significance of various EEG parameters in understanding emotions. Li et al. (2018)
examined the significance of 18 types of linear and non-linear EEG features in cross-
subject emotion recognition, encompassing various channels, brain regions, rhythms,
and feature types [63]. Employing SVM with automatic feature selection methods, they
verified the potential of exploring robust EEG features in cross-subject emotion. For the
dataset containing physiological signals, they attained a mean recognition accuracy of 0.83
(AUC = 0.9). This research demonstrates the potential of EEG features in providing robust
biomarkers for emotional states in neurodegenerative diseases.

An interesting direction of research is also the analysis of emotions based on text
(sentiment), which in the case of neurodegenerative diseases rather concerns the early phase
of the disease or tests before the medical diagnosis of the disease. Such an example is the
study presented in “Deep learning approach to text analysis for human emotion detection
from big data”, where the authors introduced a Deep Learning-Assisted Semantic Text
Analysis (DLSTA) for identifying human emotions in text documents using big data [64].
This method involved an RNN/CNN on text content to generate word embeddings, extract
feature vectors, and perform final classification with SVM. For different emotions, they
achieved a mean accuracy for prediction of 0.83 and detection between 0.92, with a mean
recall of 0.85 and an F-Measure of 0.92. This method’s success in detecting emotions from
text highlights the potential for early diagnosis and monitoring of neurodegenerative
diseases through linguistic analysis.

The research leveraging machine learning and facial expression analysis, including
tools like OpenFace and datasets such as AM-FED, demonstrates significant potential in
diagnosing and monitoring neurodegenerative diseases by identifying emotional states
and facial mobility impairments (Table 4). This leads us to another important area: digital
tools that help to spot signs of early changes in the brain.

Table 4. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

OpenFace Facial Action Coding
System (FACS)

Facial expressions
analysis

State-of-the-art results for facial
action unit recognition. Provides
machine learning models for AU

presence and intensity.

[54,55]

Facial Landmarks
and EM

Chaos parameters,
k-Nearest Neighbors

(KNN) algorithm

Emotion estimation
models

Strong correlation of chaos
parameters with happiness.

High accuracy (0.89) and
ROC-AUC score (0.88) for

emotion recognition.

[56]

AM-FED Dataset Machine learning,
chaos as a biomarker Happiness estimation

Confirmed EM chaos as a
biomarker for happiness, crucial

even when the lower face
is covered.

[57]
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Table 4. Cont.

Sensor Metrics Sense—Domain Results Reference

Face Mobility Index
(FMI) Face tracking, kNN Facial impairment

in PD

Statistically significant
differences in facial impairment
between healthy individuals and

PD patients. AUC values
between 88.9 and 88.4, F1 scores

between 70.1 and 73.

[58]

Video Clips Statistical shape model Day-to-day variations
in PD symptoms

Highlighted hypomimia in PD
patients through decreased
movement in expressions of

happiness, disgust, and anger.

[59]

Computational
Analysis

Movement Disorder
Society’s Unified

Parkinson’s Disease
Rating Scale

(MDS-UPDRS)

Emotional facial
expressions in PD

Reviewed computational
techniques for measuring

emotional facial expressions,
with a deep learning model
achieving 85% accuracy in

masked face detection.

[60]

Iowa Gambling Task
and Ekman 60

Faces Test

Voxel-based
morphometry (VBM)

Neuropsychological
deficits in PD

Correlation of OFC and
amygdala degeneration with
neuropsychological deficits in

PD patients.

[61]

Adversarial
Autoencoder and

CNN-BiLSTM

Emotion recognition in
speech and graphic

representations
Emotion recognition

Achieved an accuracy of 0.99 in
emotion classifications,

demonstrating the effectiveness
of advanced machine learning

techniques.

[62]

EEG Features SVM with automatic
feature selection

Cross-subject
emotion recognition

Mean recognition accuracy of
0.83 (AUC = 0.9), highlighting

the potential of EEG features in
emotional state biomarkers.

[63]

Text Analysis (DLSTA)
Deep

Learning-Assisted
Semantic Text Analysis

Emotion detection
from text

Mean accuracy for emotion
prediction of 0.83, with detection

accuracy up to 0.92 and mean
recall of 0.85.

[64]

10. Digital Tools Allow Cognitive Decline Detection

New evidence shows that AI and digital tools are good ways to find signs of brain
diseases early. They might help slow down the diseases [65,66]. These tools can spot
diseases that cause dementia long before people start showing clear signs of memory or
thinking problems. They can help guide changes in how people live and decide who should
join medical studies [65,67]. Furthermore, these tools might even help find these diseases
before any symptoms show up, and this could lead to new ways to treat the diseases [68].

In mild cognitive impairment, AI and virtual reality can be used to create predictive
models based on digital biomarkers, enabling early detection and interventions [69,70].
Moreover, AI shows the potential to assist with the detection of early-stage dementia,
offering cost-effective and objective methods [71]. Furthermore, an increasing array of
Medtech tools are being developed to monitor daily routines and behaviors, capturing
early cognitive changes indicative of NDs [72].

However, it became evident that the field introduced multiple viewpoints of digital
biomarkers that might appear unrelated to or inconsistent with each other, obscuring the
clear picture of research perspectives. This critique follows Motahari-Nezhad (2022), who
emphasizes the need for high-quality studies and the consideration of methodological
criteria and evidence quality [73].
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As well, Sobolev (2021) highlights the potential of digital biomarkers in predicting and
influencing health conditions but also underscores the need for technological integration
and the challenges in this area [74]. Similarly, Babrak (2019) discusses the basic differences
and similarities between traditional and digital biomarkers and points out the necessity
for synchronization and unique feature definition claiming, therefore, that the unclear
definition of digital biomarkers, population groups, and their intersection with traditional
biomarkers hinders their discovery and validation [22]. Finally, and recently, Alonso et al.
(2023) even concluded that there is no consensus about what this emerging term means [75].

Additionally, it’s interesting to note that the approach to diagnosing Alzheimer’s
Disease has evolved over the years. Previously, AD was diagnosed when the patient
exhibited both cognitive changes and symptoms related to dementia. However, the US
National Institute on Aging and the Alzheimer’s Association (NIA-AA) now defines AD
as a diagnosis based solely on biological biomarkers, even if clinical symptoms are not
present yet. This means that AD can be diagnosed much earlier than before. The FDA
has developed a staging system for AD, which ranges from stage 1 (normal cognition and
biomarker evidence of AD) to stages 4–6 (mild, moderate, and severe dementia).

Importantly, these findings collectively underscore the necessity for a coherent def-
inition of those approaches, at least, to reveal the potential of digital biomarkers and AI
methods in Medtech applications.

Hence, to characterize the tandem of digital biomarkers and AI tools, the literature
suggests using the term “digital phenotyping”, where the assumption is that an individual’s
health experience is reflected in the digital traces that they leave behind [76]. These traces are
further translated as data collected from everyday interactions with technology like smart-
phones and wearable devices. This approach is notably transforming the way we understand
and detect NDs, leveraging everyday technology to gather valuable health data [77].

However, the effectiveness of these digital tools as reliable screening mechanisms
remains underdeveloped despite their potential and advancements in the AI field. Those
challenges were presented in several studies and projects that explored the use of digital
technology in detecting and monitoring neurodegenerative diseases, though with varying
degrees of success [78]. Here, we must emphasize the importance of good user experience
(UX) in cognitive screening tools, not only for engagement but also for the accuracy and
reliability of the collected data.

11. User Experience Impacts Data Reliability

The necessity of a good user experience in cognitive screening tools is crucial, not only
for user engagement but also for the accuracy and reliability of the data collected. One
notable project in this domain is the Altoida initiative, which focuses on identifying digital
biomarkers for mild cognitive impairment [79].

The Altoida model, based on app data, demonstrated high accuracy (AUC = 0.92) in
predicting the transition from MCI to dementia [80]. This accuracy was further validated
in subjects with MCI due to AD, corroborated by positive beta-amyloid and imaging
biomarkers [81]. This high level of accuracy is significant as it showcases the potential of
mobile-based applications in the pre-symptomatic detection of NDs. Altoida’s recognition
by regulatory bodies like the FDA and CE further highlights its clinical relevance [82].

Similarly, another study focused on the Smart Aging Serious Game (SASG) demon-
strated the effectiveness of digital platforms in cognitive health assessment [83,84]. The
project included a virtual reality platform designed for the ecological assessment of mild
neurocognitive disorders. With a focus on mild cognitive impairment and vascular cogni-
tive impairment (VCI), conditions associated with a heightened risk of developing dementia,
the research aimed to validate SASG’s diagnostic capabilities [84].

Importantly, the SASG was successful in identifying the distinct cognitive profiles
associated with MCI and VCI, aligning with traditional neuropsychological assessments.
An ROC analysis indicated that SASG and MoCA both demonstrated high diagnostic
sensitivity and specificity (AUC values greater than 0.80) for identifying VCI versus HC
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and MCI versus HC. The classification accuracy for distinguishing these groups was high,
with RF and LR analyses showing between 75% and 91% accuracy [84]. Hence, the SASG
proved to be an effective digital phenotyping tool that aligns with traditional neuropsy-
chological evaluations, capable of early and potentially self-administered assessment of
cognitive impairments.

What is noteworthy in that context is a study by Illiadou et al. (2021) which was
conducted with the administration of a self-administered test in a VR (the “Virtual Su-
permarket Test (VST)”) environment combined with a cheap and commercially available
wearable EEG. It is possible to register elevated EEG rhythms in the MCI group when
solving tasks in virtual reality, which therefore may be associated with an overall cognitive
decline [85].

Interestingly, the SASG example further supports the necessity of a good user experi-
ence in cognitive screening tools. Here, usability is crucial, not only for user engagement
but also for the accuracy and reliability of the data collected. A recent study (2022) by
Zygouris et al. evaluated the usability of the Virtual Supermarket Test [86]. Twenty-four
older adults with subjective cognitive decline and thirty-three patients with MCI completed
the VST and subsequently assessed its usability using the System Usability Scale (SUS). The
results were notable, with an average SUS score of 83.11 out of 100 points (SD = 14.6), indi-
cating a high level of user-friendliness. This score is particularly significant as it remained
consistent regardless of the participant’s age, educational background, familiarity with
touch devices, or MCI diagnosis. Furthermore, there was a notable correlation between the
SUS score and VST performance (r = −0.496, p = 0.000), suggesting that better usability is
associated with more accurate cognitive assessment [86].

Therefore, the development of cognitive screening tools like the VST must prioritize
UX design [87,88]. Good UX not only facilitates broader accessibility and usability among
diverse user groups but also ensures the integrity and validity of the data gathered, which
is essential for accurate diagnosis and effective monitoring of conditions like MCI.

Hence, but not surprisingly, user-centered design and evaluation are crucial in clar-
ifying and adjusting the level of detail in web-based decision aids for individuals with
MCI [89]. This is important because usability studies have shown that users with MCI
require more time and help to complete tasks and that the speed of audio help can signifi-
cantly impact performance [90].

However, these findings have further implications for tools that can detect (with sub-
millisecond precision) slowness of reaction time, serving as potential biomarkers for bradyki-
nesia (slowness of movement). Thus, while it is important to make web-based tools easy for
people with MCI to use, these tools can also detect slow reaction times (Table 5). This slowness
is a key sign of bradykinesia, which is often seen in neurodegenerative diseases.

Table 5. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Altoida App Digital biomarkers
Mild cognitive

impairment (MCI)
detection

AUC = 0.92 [79–81]

VR (Smart Aging
Serious Game-SASG)

Cognitive health
assessment

MCI and Vascular
Cognitive Impairment

(VCI) diagnosis

Diagnostic sensitivity and
specificity (AUC > 0.80),

Accuracy: 75–91%
[83,84]

VR (Virtual
Supermarket Test) and

Wearable EEG
EEG rhythms Cognitive decline in

MCI

Elevated EEG rhythms
associated with cognitive tasks

in VR
[85]

VR (Virtual
Supermarket Test) and

System Usability
Scale (SUS)

Usability assessment Usability and cognitive
assessment accuracy

SUS score: 83.11/100,
Correlation between SUS score

and VST performance:
r = −0.496

[86]
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12. Digital Tools Can Detect Slowness of Reaction Time

Interestingly, slower task completion by users with mild cognitive impairment is not
just a challenge but somehow obviously an important feature that can be leveraged for
early detection.

These findings align with the study by Donoghue et al. (2012), which showed an
association between functional mobility, as measured by the Timed Up-and-Go (TUG) test,
and various cognitive functions. Their analysis revealed that slower TUG performance is
independently associated with poorer global cognition, executive function, memory, and
slower processing speed [91].

Importantly, simple reaction time (SRT) decline is visible not only in advanced stages
of AD or PD but also in individuals with MCI (a risk factor for PD and AD), therefore being
possible early digital biomarkers of those diseases. This is supported by a meta-analysis
by Andriuta (2019), who analyzed seven selected studies with a total of 327 participants
with MCI and 468 healthy controls (HCs); the mean SRT was significantly (p = 0.0217)
longer in the MCI group (by 11%) than in the HC group [92]. This observation is crucial
because slower response times, often consistent with cognitive impairment, can be precisely
captured on web platforms.

Web platforms can measure reaction times and task completion speeds in milliseconds,
turning into a part of digital phenotype. This finding is further supported by our recent
study (2023) that involved collecting cognitive and behavioral data from PD patients and
healthy controls [93]. Here, an online platform helped to collect the time between the screen
appearing and the participant’s first option selection (instrumental reaction time—IRT) and
the time it takes for the participant to click the submit button (time to submit—TTS). The
key finding was that IRT and TTS were significantly slower (p < 0.001) in the PD group
compared to healthy controls, especially in tests like the MoCA and Epworth Sleepiness
Scale and beyond the healthy age-related decline of the reaction time [93].

Moreover, research in the literature highlights the significant potential of online plat-
forms and mobile devices in measuring reaction times and task completion speeds, key
indicators of cognitive and behavioral changes. Already in 2011, Cinaz et al. explored
wearable devices as tools for measuring reaction times, particularly in the context of ev-
eryday cognitive functioning, and concluded that they are feasible to measure changes in
reaction times [94]. That is supported by Burke (2017), who demonstrated that devices like
the Apple iPad and iTouch can accurately measure reaction times [95]. Bonnechère (2022)
extended this work by using cognitive mobile games to assess the evolution of reaction
times across different tasks [96]. These studies collectively underscore the versatility and
practicality of digital devices in cognitive monitoring.

This finding aligns with the research by Roos J. Jutten et al. (2022), which investigated
fluctuations in reaction time (RT) performance as a marker of early amyloid-related neu-
rodegeneration in preclinical Alzheimer’s Disease. Their study employed computerized
cognitive testing to measure intraindividual variability in RT (IIV-RT) over some months,
using tasks of varying complexity. They found that greater IIV-RT, especially in com-
plex RT tasks, was associated with steeper cognitive decline in individuals with elevated
AD biomarkers [97]. Therefore, incorporating these metrics into clinical assessments can
provide valuable insights into the early stages of neurodegenerative diseases, enhancing
diagnostic strategies and patient care.

However, Schatz (2015) emphasized the need for careful validation and calibration of
these digital tools, particularly tablet-based devices, to ensure accurate reaction time assess-
ments [98]. This highlights an essential consideration in the development and application
of these technologies. Nevertheless, when introduced properly, even the casual card game
Klondike Solitaire may measure time-related values (like time spent on thinking of a move)
that can be useful in distinguishing games played by older people with MCI from their
healthy peers (AUC > 0.877), as presented by Gielis (2021) [99].

Therefore, the slower performance seen in PD patients is not a drawback but a useful
clue about the disease’s progress, helping build a ‘digital phenotype’ that improves early di-
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agnosis. In line with this, digital versions of tests like the MoCA, Epworth, or TMT can add
time-related measurements, making digital tools like user-friendly mobile apps valuable
for spotting early signs of diseases like PD or AD (Table 6). Moving to a broader context,
web and mobile technologies stand out as affordable options for checking cognitive health.

Table 6. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Timed
Up-and-Go
(TUG) test

Functional
mobility, global

cognition,
executive function,

memory,
processing speed

Cognitive
impairment

detection

Slower TUG
performance

associated with poorer
cognitive functions

[91]

Web Platforms Simple reaction
time (SRT)

Early detection
of cognitive

decline

MCI group showed
11% longer SRT than

healthy controls
(p = 0.0217)

[92]

Online
Platforms

Instrumental
reaction time (IRT),

time to submit
(TTS)

Parkinson’s
Disease

cognitive and
behavioral data

IRT and TTS
significantly slower in
PD group (p < 0.001)

[93]

Wearable
Devices and

Mobile Devices

Reaction times in
daily cognitive

functioning

Cognitive
monitoring

Wearables and devices
like iPad/iTouch

feasible for measuring
reaction times

[94,95]

Cognitive
Mobile Games

Evolution of
reaction times

across tasks

Cognitive health
monitoring

Mobile games used to
assess and monitor

reaction time changes
[96]

Computerized
Cognitive

Testing

Intraindividual
variability in
reaction time

(IIV-RT)

Early
amyloid-related
neurodegenera-

tion

Greater IIV-RT
associated with steeper

cognitive decline in
preclinical AD

[97]

Tablet-based
Devices

Reaction time
assessment

Validation and
calibration of
digital tools

Need for careful
validation to ensure
accurate assessments

[98]

Digital Card
Game

(Klondike
Solitaire)

Time spent on
thinking of a move

Differentiating
cognitive

impairment

Can distinguish MCI
from healthy peers

(AUC > 0.877)
[99]

13. Web and Mobile Technology Are Affordable Tools for Screening Cognitive Deficits

Recent findings suggest that in the context of the early detection of cognitive decline,
the potential of mobile applications is substantial. As Thabtah (2020) noted, some of these
apps employ advanced techniques like machine learning and AI to enhance diagnostic accu-
racy [100]. This approach expands access to early cognitive health assessments, benefiting
a broader population segment, including those in underserved areas.

Consequently, digital applications (utilizing smartphones and wearables) hold signifi-
cant promise as accessible, affordable, and equitable tools for screening cognitive deficits.
Chinner (2018) and Naslund (2017) highlight how these tools, by leveraging widely avail-
able technology, become practical even in resource-limited settings and offer an affordable
alternative to traditional diagnostic methods [101,102]. These methods are particularly
effective in supporting clinical care and promoting treatment adherence, especially in low-
and middle-income countries.

Moreover, the web-based cognitive testing approach presented in “cCOG: A web-based
cognitive test tool for detecting neurodegenerative disorders” explores the effectiveness
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of a web-based cognitive tool in detecting mild cognitive impairment and dementia for
standardized screening in neurodegenerative disorders [103]. The computerized test battery
was based on the three classical cognitive tasks: a modification of the wordlist test, a simple
reaction task, and the Trail Making Test. It was divided into seven tasks to complete in
approximately 20 min to complete with a keyboard and mouse or a touchscreen. Analyzing
clinical data from three European cohorts, including 306 cognitively normal, 120 MCI, and
69 dementia subjects, the study compared the global cognitive scores derived from standard
neuropsychological tests. The tool demonstrates accuracies (ROC-AUC) ranging from 0.71
to 0.84 for MCI and 0.86 to 0.94 for dementia when administered both at the clinic and in the
home environment. Hence, the results indicate this tool as a promising and cost-effective
tool for MCI and dementia detection through home-based cognitive assessments.

Web and mobile technologies, through the use of machine learning and AI in apps
and web-based tools, offer affordable, accessible screening options for cognitive deficits,
showing promise in the early detection of neurodegenerative disorders with demonstrated
effectiveness even in resource-limited settings (Table 7). Understandably, the growing use
of mental health applications also brings to the fore challenges concerning evidence-based
guidelines and transparency.

Table 7. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Mobile
applications

Machine
learning and AI

techniques

Early detection
of cognitive

decline

Enhances diagnostic
accuracy, expands

access
[100]

Smartphones
and wearables

Accessibility and
affordability

Screening
cognitive deficits

Practical in
resource-limited

settings, supports
clinical care

[101,102]

Web-based
cognitive testing

(cCOG)

Wordlist test,
simple reaction

task, Trail
Making Test

Detecting MCI
and dementia

ROC-AUC: 0.71–0.84
for MCI, 0.86–0.94 for

dementia
[103]

14. Quality of Digital Health Can Be Enhanced through Standardization

The issue regarding guidelines and transparency is highlighted by Torous (2017),
who emphasizes the need for transparency and trust in the evaluation and use of these
applications, given the concerns about their proliferation and the lack of established guide-
lines [104]. That statement was further supported by de Francisco Carvalho (2019), who
pointed out the necessity of clear ethical guidelines on how information can and should
be used [105]. Thus, while digital applications offer immense potential in the early detec-
tion and diagnosis of cognitive deficits, ensuring their effective and ethical implementa-
tion requires addressing challenges such as evidence-based validation, transparency, and
user trust.

These challenges also include the crucial aspects of data privacy and user engagement.
Ensuring data privacy is vital for patient trust and legal compliance, while maintaining
user engagement is essential for consistent and reliable data collection. Beyond these
practical considerations, ethical implications present additional tension. As Ford, Milne,
and Curlewis (2023) discuss, deploying digital biomarkers and AI at scale raises concerns
regarding accuracy, bias, and equitable access [106]. This is important because to leverage
digital tools effectively in clinical settings, those challenges need to be addressed urgently.

These concerns are critical, as they directly impact the validity and fairness of the
diagnostic process. Hence, while digital applications offer immense possibilities in the
early detection and monitoring of cognitive health, their successful implementation centers
on addressing these multifaceted challenges, ensuring they can be effectively integrated
into healthcare practice.
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In response, recent studies suggest that a consensus on standards in digital health
research could markedly improve the quality of these studies. The lack of consensus
on digital outcome measures and their integration into clinical practice and research has
been noted by other experts, prompting various proposals for standardization. This is
underlined by Bejani et al. (2023), who, moreover, offer strategic insights for the inclusion
of patient-centered digital measures in research [38].

Furthermore, the main critique by Jha et al. (2023), termed the “Single Digital
Biomarker Hypothesis,” revolves around the tendency of current digital measures to
simplify the complexity of PD into a single severity score [107]. The authors argue that PD
is a multi-dimensional, multi-etiologic syndrome that cannot be adequately represented by
a single number. The nuances of individual patient experiences, which can vary widely in
symptoms and progression, are likely to be overlooked by such a reductive approach.

Moreover, Espay et al. (2016) discuss the challenges and opportunities in utilizing
technology for PD diagnosis and treatment [108]. This is an outcome of the vast amount
of data collected and its limited clinical application. Additionally, challenges include the
incompatibility of technology platforms, the need for widespread deployment among
elderly patients, and the complexity of translating big data into clinically relevant insights.
As a solution, Espay et al. (2019) formed The International Parkinson and Movement
Disorders Society Task Force on Technology, which aims to address these issues by promot-
ing the development of open-source and open-hardware platforms for multichannel data
capture [109]. The goal is to create adaptable systems for individualized treatment delivery,
encouraging early detection, tailored therapy, and subgroup targeting for testing disease-
modifying treatments and identifying objective biomarkers for improved longitudinal
tracking of PD.

Still, Assunção (2022) argues for the adoption of a more comprehensive framework.
This framework would assess and communicate the benefits of early interventions, crucially
bridging the gap between the development of disease-modifying therapies (DMTs) and
their practical, clinical applications [30].

An additional critical observation within the literature echoed in practical applications
is the disappearing patient interest in digital solutions over time. It is hypothesized that
such tools may overly focus on the disease rather than the patient, leading to a perceived
lack of value and progressing disengagement. As articulated by Bloem et al. (2020), the
patient centricity of digital tools is imperative for sustained patient engagement [110].

Hence, while standardized, patient-centric approaches in digital health tools enhance
interventions and improve outcomes in neurodegenerative diseases, this might be a good
moment to take a step back and reconsider the algorithms we use. To further refine these
tools, we should delve deeper into the brain’s underlying mechanisms, drawing inspiration
from how our minds work, which, as Turing’s theories and recent psychophysical experi-
ments suggest, might be more about simple rules and pattern recognition than complex,
computational-heavy, AI-driven ‘black box’ methods.

15. Machine Learning Models Support Diagnosis and Monitoring of NDs

It is interesting to note that the brain’s functioning is often compared to that of a
digital computer or a Universal Turing Machine, which processes symbols [111]. However,
psychophysical experiments and our ability to recognize complex objects, such as faces,
in various contexts and lighting conditions suggest otherwise. This argues against sym-
bolic representation and instead supports the idea that concept representation based on
similarities may be a more appropriate model for how the brain works.

Hence, we propose to direct our eyes to Turning’s lesser-known contribution to the
field of developmental biology. Turing proposed that natural patterns like stripes, spots,
and spirals can arise naturally from the interaction of two or more chemical substances,
which he called “morphogens” (that is, the movement of “chemicals” between cells that
causes cells to transform/morph into the next “state”) [112]. This research explores how
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complicated patterns, like those seen in zebra stripes, can emerge from relatively elementary
biochemical processes.

Applying this concept to brain development, Turing’s theory suggests that complex
structures and patterns in the brain could emerge from simple, preprogrammed rules at the
cellular level. This perspective contrasts with the view of the brain as a Universal Turing
Machine, which implies a more fixed, predetermined computational process. Importantly,
the shift from viewing the brain as a rigid, symbol-processing Universal Turing Machine to
a more fluid, self-organizing system, as suggested by Turing’s morphogenetic principles,
allows for a more nuanced understanding of cognitive processes.

Interestingly, this approach resonates with the research of Levin et al. (2021) who
created the first living robots, known as xenobots [113]. Levin’s research explores how cells
can self-organize into complex structures and forms using basic rules. Using xenobots, he
presents how individual cells self-organize into complex tissues and morphologies. This is
important in the context of NDs, because changes in cellular patterns and processes could
be detectable before clinical symptoms arise, enabling earlier intervention and potentially
more effective treatment. Additionally, understanding how cells communicate and organize
themselves to regenerate tissue can inform strategies to promote neural regeneration in
neurodegenerative diseases.

Therefore, we suggest that the idea of using logical rules for object classification
resonates with Turing’s reaction-diffusion theory and Levin’s work on morphogenesis.
Both emphasize the emergence of complex patterns and structures from simpler rules and
interactions. In the brain, these ‘simpler rules’ could be the logical rules used in Rough-Set
Theory for visual processing.

16. Rough Rules Can Implement Visual System Principia

Interestingly, the anatomical and neurophysiological basis of object shape classification
and the computational properties of the brain can be described by Rough-Set Theory (RST).
Introduced by Pawlak (1982), the RST offers a framework for understanding how the brain
processes complex visual information, despite the imprecise nature of concepts representing
objects’ physical properties [114,115]. This suggests that concept representation based
on similarities rather than symbols may be a more accurate model for how the brain
works [116].

The application of the RST in visual classification involves specific neural interactions.
The visual classification model is based on the receptive field properties of neurons in
different visual areas and uses both feedforward and feedback interactions between them.

• The feedforward pathways use “driver logical rules” to combine properties extracted
in each area into hypotheses related to possible objects.

• The feedback pathways use “modulator logical rules” to help change weak concepts
of objects’ physical properties into crisp classifications in psychophysical space [117].

Hence, this process approximates how the brain utilizes logical rules to transform
blurred object concepts into clear categorizations, mirroring the principles of the RST
(Figure 1).

In higher visual brain areas, the described processes utilize Granular Computing (GrC)
to identify upper and lower approximations of the retinal image. These approximations
are then compared with different objects’ models (images) stored in the visual cortex. As
object recognition or classification progresses, the lower visual areas are tuned to extract
the properties of the selected model (modulator logical rules), and the gap between the
upper and lower approximations narrows. If the border set becomes empty, the object is
successfully recognized. Hence, this approach can be applied to propose various models
that approximate the actual (future) cognitive state of tested subjects.
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Figure 1. The receptive field properties of neurons fed into both feedforward and feedback path-
ways. Feedforward pathways use “driver logical rules” to create hypotheses of possible objects,
while feedback pathways employ “modulator logical rules” to refine these hypotheses into crisp
classifications. Higher visual brain areas then utilize Granular Computing (GrC) to compare upper
and lower approximations of retinal images with stored object models, leading to object recognition
as the gap between these approximations narrows.

Importantly, this theory is further supported by research on macaques. Przybyszewski
et al. (2000) investigated the back-projection pathways from the striate cortex (V1) to the
lateral geniculate nucleus (LGN) [118]. These are connections that go from one part of the
brain back to an area that supplies input to it. Research shows that these back connections
make neuron responses stronger, depending on the contrast of what is seen. These findings
revealed that the way neurons in the LGN react to visual stimuli is greatly increased by
these back-projection pathways. This happens especially when the contrast in the visuals is
high. Hence, it shows that the connections from the striate cortex to the LGN play a big
part in how well neurons respond to different levels of contrast and colors in what we see.

Therefore, these new insights fit well with the Rough-Set Theory-based models of
visual processing. These predictive models, developed based on clinical studies, reveal
various patterns of neurodegenerative diseases, analogous to the visual representation of
complex objects in higher visual cortical areas.

However, given the variability in symptoms among patients, it is necessary to have
adaptive mechanisms that can accommodate the approximate and flexible nature of these
variations. Hence, a critical question remains: how can these mechanisms identify objects
or their elements in new conditions, especially in the context of identifying diseases with
unseen preliminary indications?

To address this challenge, a novel approach has been proposed, which extends the
classical definition of the receptive field (RF) to a fuzzy detector. The properties of the
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RF are further defined by the computational attributes of the bottom-up and top-down
pathways, which compare the stimulus against multiple predictions.

17. Fuzzy Detectors as Possible Predictive Models of NDs

By using this new approach, it is possible to detect and recognize objects in different
conditions, including those that are unseen. This approach can also be used to identify the
presence of neurodegenerative diseases in patients, even when the symptoms vary between
individuals. Hence, a fuzzy detector is a promising tool for developing more accurate and
effective predictive models for neurodegenerative diseases, which can help to improve
diagnosis and treatment.

That is an insightful observation because the utilization of AI methods to generalize
and intellectualize patients’ symptoms could be a game-changer in detecting preclinical
indications of neurodegenerative diseases such as PD and AD. By creating models based
on granular computing approaches, AI can use these models as references to classify
potential preclinical indications of ND. This approach could open new possibilities for
preventing or curing neurodegenerative brain pathologies, potentially leading to more
effective treatments for these devastating conditions.

The aim is to utilize the insights of movement disorder specialists to identify significant
attributes of NDs for AI-based classification. Therefore, a project by Przybyszewski et al.
(2021) employing a combination of Theory of Mind (ToM) and supervised learning, based
on granular computing (GrC) and Rough-Set Theory, seeks to emulate the expertise of
movement disorder specialists. This system is based on a computing approach that uses
Rough-Set Theory and abstract granules to represent the ToM of many movement disorder
experts. It identifies similarities between granules obtained from one group of more
advanced PD patients to estimate the disease progression of other patients. While it was
found that the accuracy of prediction increased with disease progression, it is noted that
divergent sets of granules characteristic of different parts of the brain might degenerate
in different ways with disease progression [117]. The exploration of various AI methods
further underscores this field’s potential.

To challenge this method, researchers have compared different AI methods, including
GrC as implemented in Rough-Set Theory (RST) and fuzzy Rough-Set Theory (FRST) [119].
These methods were compared with other classical machine learning techniques for predict-
ing PD progression, including Nearest Neighbors, Decision Tree, Random Forest, Support
Vector Classification, and Gradient Boosting. Dutta and Skowron (2021) have used complex
granules (c-granules) to model longitudinal disease development, finding that the RST
provides the best estimations of disease progression [120]. The study found that the RST
gave the best estimations of disease progressions measured as accuracies, while the FRST
gave smaller values of accuracies but better global coverage. Other AI methods gave simi-
lar results but only when looking for the disease progression without or with medication
separately, indicating their limitations in looking for longitudinal PD progressions [121].

It is fascinating to see the potential of machine learning models, including Rough Sets,
in predicting the optimal treatment for NDs. A further example is a study by Przybyszewski
et al. (2020) analyzing patients under different treatments, which achieved varying degrees
of accuracy, suggesting the potential to discover universal rules for PD progression [122].
The research presents an overall accuracy of 70% for medication visits, 56% for DBS (deep
brain stimulation), and 67% and 79% for post-op second and third visits, respectively. This
exploration highlights the exciting possibilities of AI and machine learning in advancing
our understanding and management of neurodegenerative diseases, potentially leading to
more tailored and effective treatments (Table 8).
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Table 8. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Theory of Mind
(ToM) and
Granular

Computing
(GrC)

Granules
representing

expertise

PD progression
prediction

Accuracy increases
with disease

progression; identifies
granule differences in

brain degeneration

[117]

AI Methods
Comparison

(GrC, RST, FRST)

Disease
progression
modeling

PD progression
prediction

RST showed best
accuracy; FRST

provided better global
coverage; limitations

in longitudinal
progression with other

AI methods

[120]

Machine
Learning Models

Treatment
outcome

prediction

Optimal
treatment for

NDs

Accuracies: 70% for
medication, 56% for

DBS, 67% and 79% for
post-op visits

[122]

18. Intelligent Granular Computing (IGrC) Can Predict Cognitive Patterns

Cognitive symptoms are more dominant in Alzheimer’s Disease, whereas motor
symptoms are more pronounced in Parkinson’s Disease. A study using an IGrC approach
examined the relationship between cognitive and motor symptoms in PD, revealing that
cognitive changes are independent of motor symptom development [123].

The study involved 47 Parkinson’s Disease patients who underwent eye movement,
neurological, and neuropsychological tests in two sessions: S#1—without medications
(MedOFF) and S#2 after taking medications (MedON). The patients were divided into
two groups: Gr1 (less advanced) and Gr2 (more advanced). By applying different sets of
rules to different visits, the researchers found that cognitive changes are independent of
the motor symptoms’ development.

It is interesting to note that there seems to be a link between depressive symptoms
and neurodegenerative diseases. In the case of Parkinson’s Disease, for example, there is
a reduction in the level of the reward hormone dopamine, which can lead to a decrease
in positive emotional experiences and an increase in depression. On the other hand, in
older individuals (over 65 years of age) who experience depression, there is a higher risk
of developing late-onset Alzheimer’s Disease (LOAD). The research aims to evaluate this
relationship’s strength.

AI and machine learning, including Rough-Set Theory, have been employed to classify
patients’ symptoms in PD. The study involved testing 24 patients with Parkinson’s Disease
(PD) who were only receiving medical treatment (BMT-group) and 23 patients with PD
who were receiving both medical treatment and deep brain stimulation (DBS-group), as
well as 15 older patients who had been receiving DBS treatment for one and a half years
(POP-group). The patients were tested every six months (W1, W2, W3) using a range of
neurological (disease duration, Unified Parkinson’s Disease Rating Scale), neuropsycho-
logical (depression-Beck test, PDQ39, Epworth), and eye movement (reflexive saccadic)
tests. Using RST, the researchers were able to identify rules from the BMTW1 data (patients
receiving only medical treatment during their first visit) that allowed them to predict
UPDRS scores for BMTW2 and BMTW3 with accuracies of 0.765 (0.7 without Beck test of
depression result) and 0.8 (0.7 without Beck result), respectively [123].

They were also able to use these rules to predict disease progression (UPDRS) in a
group of patients in the DBSW1 group with an accuracy of 0.765. Using the rules generated
from the DBSW2 data, the researchers were able to predict UPDRS scores for the DBSW3
(acc. = 0.625), POPW1 (acc. = 0.77), POPW2 (acc. = 0.5), and POPW3 (acc. = 0.33)
groups [124]. By adding the depression attribute and using GrC, the researchers were able
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to make more accurate predictions about disease progression in a range of patient groups
compared to predictions made without this attribute (Table 9).

Table 9. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

IGrC Approach Cognitive and
motor symptoms

PD symptom
classification

Cognitive changes
independent of motor

symptoms development
[123]

AI and Machine
Learning (RST)

Neurological,
neuropsycholog-

ical, eye
movement tests

PD symptom
classification

and depression’s
impact

UPDRS prediction
accuracies:

BMTW2 = 0.765,
BMTW3 = 0.8,

DBSW1 = 0.765,
DBSW3 = 0.625,
POPW1 = 0.77,
POPW2 = 0.5,
POPW3 = 0.33

(improved with
depression attribute)

[123]

19. AI and Machine Learning Can Predict Symptoms and Progression of NDs

Recent findings suggest that AI methods predict cognitive patterns in normal subjects,
indicating pre-dementia stages. For example, Przybyszewski et al. (2022) used granular
computing rules to classify cognitive data from the BIOCARD study, which has been
ongoing for over 20 years with 354 normal subjects. The study’s findings suggest that AI
methods can predict patterns in cognitive attributes of normal subjects that might indicate
their pre-dementia stage, something that may not be visible to neuropsychologists [125].

Another study based on Biocard data provides a significant advancement in the
detection and prediction of Alzheimer’s Disease, utilizing AI methods to identify early
cognitive changes. Over 20 years, subjects were evaluated annually to determine their
cognitive status—normal, mild cognitive impairment, or dementia. The study used the
Clinical Dementia Rating Sum of Boxes (CDRSUM) as a quantitative index for assessing
mild dementia and developed rough set rules (RSR) for classification. Researchers classified
patients of AD, MCI, and normal, based on their CDRSUM scores. They discovered that
some subjects showed signs of potential cognitive impairment or mild dementia that were
not evident to neuropsychologists. These findings highlight the capacity of AI methods to
detect subtle cognitive changes that might indicate a pre-dementia stage [126].

This approach is a critical step forward in the early detection of AD. By identify-
ing patterns in cognitive attributes among normal subjects, AI methods can reveal early
signs of dementia, offering a window for intervention before the condition becomes
clinically apparent.

Another BIOCARD study utilizes multi-granular computing to refine the process of
classifying cognitive data related to Alzheimer’s Disease, aiming for early detection [127].
Researchers modified the number of attributes used in the BIOCARD study, increasing
the variety of granules from five to seven attributes, compared to the constant fourteen
attributes used previously. This allowed for a more nuanced comparison of classification
results. The focus was also on the interpretability of the rules obtained from different
granular levels. By creating rules with varying granularity and algorithms, the researchers
aimed to identify classifications that are both complete and consistent across different rule
sets. The goal is to develop a more accurate and reliable system for early diagnosis, which
is critical for effective intervention. Researchers are testing various models to determine
the most effective ones for identifying different stages of diseases like Alzheimer’s and
Parkinson’s, and they seek classifications that remain consistent irrespective of the algo-
rithms used [127]. Therefore, the overarching aim is to develop a more precise and reliable
diagnostic system for early intervention.
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Overall, the above studies highlight the potential of digital biomarkers and AI in
detecting the early stages of neurodegenerative diseases like Alzheimer’s and Parkinson’s
(Table 10). The integration of digital tools into clinical practice could revolutionize the way
we diagnose and treat these conditions, ultimately improving the quality of life for millions
of people worldwide.

Table 10. List of sensors and their respective domains and metrics.

Sensor Metrics Sense—Domain Results Reference

Granular
Computing

Rules

Cognitive data
classification

Pre-dementia
stage detection

AI methods predicted
pre-dementia stages in
normal subjects from

BIOCARD study

[125]

Clinical
Dementia Rating

Sum of Boxes
(CDRSUM) and
rough set rules

(RSR)

Early cognitive
changes

Alzheimer’s
Disease

detection

Identified subjects
with potential

cognitive impairment
not evident to

neuropsychologists

[126]

Multi-Granular
Computing

Cognitive data
related to

Alzheimer’s
Disease

Early detection
of Alzheimer’s

Disease

Developed more
accurate and reliable

system for early
diagnosis with

varying granularity

[127]

20. Conclusions

AI and digital tools promise to facilitate the early detection of neurodegenerative
diseases, potentially leading to earlier interventions that could slow disease progression.
Studies are being conducted to validate the efficacy of digital biomarkers and AI-based pre-
dictive models in identifying early-stage neurodegenerative diseases. These technologies
could lead to more personalized treatment plans based on individual data patterns.

This review covers the use of digital phenotyping technologies to capture behavioral
information relevant to neurological diseases. Digital endpoints could enhance the precision
of clinical trials, aiding in patient stratification and the detection of treatment effects.
However, the review also points out the need for a standardized approach to study design
to allow for meaningful interpretation of the data collected from various studies.

This standardization would help in comparing results across studies and improving
the understanding of neurodegenerative disease trajectories. Interestingly, despite reported
advancements in healthcare solutions, it was found that the current digital and mobile
health (mHealth) applications are in urgent need of improved functionalities to assist in
both patient care management and early diagnosis of NDs.

Nevertheless, the findings presented in this paper support the idea that telemedicine
solutions could lead to earlier identification of at-risk individuals and may be more sensitive
to disease progression, which is beneficial for discovering disease-modifying treatments.
Within this framework, sensors emerge as a fundamental component, highlighting the
effectiveness of digital phenotyping in enhancing disease characterization and monitoring.
The integration of clinical scales, imaging, biosamples, and digital tools is suggested as the
most effective approach for characterizing and monitoring disease [33].

However, the role of digital tools in improving care, research, and outcomes for
patients with movement disorders suggests that their full potential is yet to be realized.
The care model is perceived as being reactive rather than proactive, with an inadequate
response to complex issues due to a lack of disease-specific expertise and underutilization
of non-pharmacological treatments.

Moreover, treatment plans are usually more disease centric rather than patient cen-
tric, not fully considering the needs and preferences of the individuals affected by these
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conditions. Consequently, patients may find themselves excluded from the clinical decision-
making process, leaving a gap that must be addressed urgently to bring truly meaningful
research outcomes.

Author Contributions: Conceptualization: A.W.P., A.C. and A.Ś.; methodology: A.C. and A.W.P.;
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Abstract. Early detection of Parkinson’s disease (PD) is critical for
effective management and treatment. In our recent study, we collected
data on brain computations in individuals with PD and healthy controls
using an online platform and multiple neuropsychological tests. Using
logistic regression, we achieved an accuracy rate of 91.1% in differenti-
ating PD patients and healthy controls. However, two PD patients were
classified as healthy subjects, and two healthy individuals were misclas-
sified as PD patients. We also utilized multinomial logistic regression to
predict the UPDRS3 group of patients and healthy individuals, achiev-
ing the same high accuracy. Our findings suggest that cognitive and
behavioral tests can detect early changes in brain computations, poten-
tially indicating the onset of PD before clinical symptoms appear. This
has significant implications for early detection and intervention of neu-
rological disorders, improving outcomes and quality of life for affected
individuals. Overall, our study provides new insights into the utility of
neuropsychological tests and statistical methods for detecting and mon-
itoring PD.

Keywords: Parkinson’s disease · Brain computations · Online testing

1 Introduction

This study focuses on the test that detects early neurological symptoms of major
public health problems related to neurodegenerative diseases (ND). NDs are
incurable and debilitating conditions that result in progressive degeneration and
death of nerve cells. The process starts with an asymptomatic stage when the
person feels fine and shows no signs of neurodegenerative disease, and clinical
examination also will show no abnormalities. During the asymptomatic stage of
neurodegenerative disease, individuals may not exhibit any symptoms and may
not seek medical attention, leading to a lack of abnormalities detected during
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clinical examination. All NDs are progressing relentlessly over the years and have
proved to be stubbornly incurable. Thus, we believe that it is crucial to find a
way to detect the early onset of NDs.

1.1 Alzheimer’s and Parkinson’s Disease

The most common neurodegenerative disorders are Alzheimer’s disease (AD)
and Parkinson’s disease (PD) [4], and they are in our area of interest because of
their partial similarities in symptoms. First, it is necessary to provide a compre-
hensive explanation of Parkinson’s disease as our patients are afflicted with this
condition. Parkinson’s disease is a progressive neurodegenerative disorder that
begins to develop approximately 20 years prior to the appearance of symptoms,
during which a significant portion of the brain is already affected. It is char-
acterized by the progressive loss of dopaminergic neurons in the brain, leading
to a range of motor and non-motor symptoms, including tremors, rigidity, and
cognitive impairment. Early detection of Parkinson’s disease is crucial for the
effective management and treatment of the condition. PD affects three funda-
mental systems: motor, cognitive, and emotional. The disease typically starts
with motor impairments such as bradykinesia. In contrast, Alzheimer’s disease
initially affects cognitive abilities like mild cognitive impairment (MCI), which
not all PD patients have. Although MCI is not a typical symptom of Parkin-
son’s disease, it can occur during the disease progression as an early stage where
symptoms are not severe but are detectable. As the disease advances, individ-
uals may experience late-stage complications, including advanced cognitive and
motor symptoms. It is important to note that preclinical symptoms may vary
between Alzheimer’s disease and Parkinson’s disease, the presentation and pro-
gression of symptoms can vary widely between individuals, and no two cases
of PD are exactly alike. In summary, both AD and PD characteristics may
include the following common manifestation [3,14,18].

– Mild cognitive impairment (MCI), such as language or visuospatial perception
and memory impairment (mainly in AD, not always in PD);

– affected rote memory and frontotemporal executive functions;
– depression;
– sleep problems;
– automatic response inhibition decay;
– difficulty with emotion recognition;
– motor slowness symptoms (predominantly with PD, but also associated with

preclinical AD).

1.2 Digital Biomarkers

In this study, we place emphasis on the use of digital biomarkers, which are measur-
able and quantifiable medical signs collected through digital devices or platforms,
to gain insights into brain computations. Reaction time (RT) is a widely studied
digital biomarker that plays a crucial role in measuring neurological function, par-
ticularly in individuals with PD. Previous research, including our own studies [14],
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has demonstrated that measures such as saccadic delay and movement-related
potentials can serve as reliable indicators of the state of PD. Others [10] have
employed movement-related potentials in a choice reaction time task to explore
the underlying causes of reaction time delay in Parkinson’s disease. Movement-
related potentials showed that motor processes required more time for Parkinson’s
disease patients making complex responses. The study also found that one or more
premotor processes were slowed in Parkinson’s disease patients based on delayed
onset of movement-related potentials. These findings suggest that reaction time
may be a valuable measure for tracking the progression of Parkinson’s disease and
the effectiveness of treatment. It is worth noting that reaction time is just one mea-
sure of neurological function that can be used with other measures. It may also help
evaluate the impact of Parkinson’s disease on the nervous system.

1.3 Digital Screening

We utilized an online platform to administer neuropsychological tests, which are
widely used as the gold standard for assessing cognitive function. Our aim was to
detect early changes in brain computations in individuals with PD, which could
indicate the onset of the disease before the appearance of clinical symptoms.
In addition to the participants’ responses, we also collected additional temporal
measures, including Instrumental Reaction Time (IRT) and Time-to-Submit -
TTS. IRT measures the time between the screen appearing and the participant’s
first option selection, while TTS measures the time it takes for the participant to
click the submit button. In the following text, TTS is also referred to as “response
time”. It is well recognized that neuropsychological testing has great diagnostic
and screening power, but it requires proper training, tools, and time. Our goal is
to evaluate if a single online tool can support these operations, and thus provide a
cross-sectional set of neuropsychological examinations that will contribute to the
overall understanding of the patient’s psychophysical state. To ensure the validity
of our results, we recruited both a group of individuals diagnosed with PD and a
group of healthy controls for evaluation. While it is well-established that reaction
time generally decreases with age, with previous studies estimating an average
decrease of 4-10 ms per year [2,17], our observations of instrumental reaction
times in our study were higher than expected based on age-related decline alone.
Despite an average age difference of approximately 47 years between the groups,
as detailed in the “Results” section, our findings suggest that factors beyond
age-related decline may have contributed to the observed differences in reaction
time between the PD and healthy control groups.

2 Methods

We intended to create an online method of neuropsychological assessment. The
implementation in the form of a computer test started with the requirements
gathering and prototype. First, we asked trained psychologists and neurologists
to create a general overview of the battery of tests used in their practice, being a
gold standard. We decided to use a multi-tiered approach to assessment, includ-
ing the tests described below.
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2.1 GDS-15

Geriatric Depression Scale - is a short version (15 questions) of the test developed
in ’86 by Sheikh and Yesavage [16]. The short version contains 15 of the 30 ques-
tions from the extended version that showed the most significant correlation with
signs of depression. Out of 15 items, 10 indicate the presence of depression when
given a positive answer, while the remaining items (questions 1, 5, 7, 11, 13)
indicate depression when given a negative answer. Scores 0–4 are considered
“normal” depending on age and education; 5–8 indicate mild depression; 9–11
indicate moderate depression and 12–15 indicate severe depression. The GDS
has 92% sensitivity and 89% specificity as assessed by diagnostic criteria [8].
A validation study comparing long and short GDS forms to self-assessment of
depressive symptoms successfully distinguished adults with depression from non-
depressed people with a high correlation (r = 0.84, p < 0.001) [16]. The online
implementation of the study in our version consists of 15 questions, displayed
individually, with a single choice option between “yes” or “no”. The sample
question from this set is: “Have you dropped many of your activities and inter-
ests?” Every question is consistent with the official translation of the test in a
selected language version. The test in its standard form consists of questions and
answers printed on a single A4 sheet, and therefore it is possible to resolve it non-
linearly. Our version shows each question separately, which allows us to measure
both reaction (instrumental reaction time - IRT) and response (time-to-submit
- TTS) time.

2.2 TMT A&B

Trail Making Test - is a neuropsychological test for visual attention and task
switching, developed in ’55 by Reitan [15]. It consists of two parts. In both,
instruction to the subject is to connect a set of dots as quickly as possible while
maintaining accuracy. The test can provide information on visual search speed,
scanning, processing speed, mental flexibility, and executive functioning. The
TMT A and B results are as high as the number of seconds to complete the
task; higher scores follow the level of impairment. In part A with 25 dots - a
healthy person can finish it on average in 29 s, and a patient with deficiencies in
more than 78 s. In part B with 25 dots - a healthy person can finish it on average
in 75 s, and a patient with deficiencies in more than 273 s. The standard form
test asks to combine tracks 1-2-3- (version A) or 1-A-2-B- (version B) on the
paper with a pen on the paper tray. We ask patients to select circles in a given
order three times in the online version. First test: version A relies on 15 circles,
and this part focuses mainly on examining cognitive processing speed. Second:
version B (short) consists of 10 circles (5 with letters and 5 with numbers),
and version B (long) is 20 circles (10 for both letters and numbers). These
versions assess executive functioning. Each time we allocate circles randomly
with uniform distribution on the screen. It is worth mentioning that there is no
record of the error rate in the pen and paper version of the test. Because the
online version is self-assessed, we had to implement this feature and notify the
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user of making a mistake by marking the circle in red and the correct connection
displayed as a green circle. This mechanism gives the users feedback to get on
the right path themselves. The completion, however, might be longer than in the
standard version since there is no supervisor. Here, we record the error rate for
each part of that task, IRT and TTS.

2.3 CDT and CCT

The Clock Drawing Test - is used to screen cognitive disorders in clinical practice.
The origins of this test are not clear, but the probable precursor was Sir Henry
Head [5,6]. There are many ways to conduct this test, but a common task is to
draw a clock with a face, all numbers, and hands showing a given time. One way
is to draw two lines perpendicular to each other, obtaining four quadrants of the
clock’s face. Then, we can count the number of digits in each quadrant, and if
the quadrant is correct while it contains three numbers (error score is between 0
and 3 for each quadrant). The standard score is below 4 points. In the original
study, a score over 4 revealed a sensitivity of 87% and a specificity of 82% for
identifying dementia. Another test related to drawing tasks might be CCT - the
Cube Copying test, valid (yet limited) for routine clinical dementia screening.
As presented in Maeshima et al. [11], quantitatively scored cube copying can
estimate cognitive dysfunction in dementia patients. The execution of both tasks
in the digital form relied on the area of the screen divided by opaque lines,
mimicking a standard notebook. Participants drew a figure with a cursor or a
finger on mobile devices. We were concerned about the performance of older
patients who were not fluent with computer technology because drawing on
the computer screen introduces a novelty factor. Also, this interface lacks the
naturalness of the pen-and-paper method. However, most users completed both
assignments. Those tasks were not time-restricted. Nevertheless, we recorded
IRT and TTS as well as the paintings.

2.4 MoCA

Montreal Cognitive Assessment - is a screening test developed in ’05 by Nasred-
dine et al. [12] is a cognitive test to detect MCI. The test checks language, mem-
ory, visual and spatial thinking, reasoning, and orientation. MoCA scores range
from 0 to 30, and 26 or more is considered normal. In the original study, people
without cognitive impairment scored 27.4 (average); subjects with mild cognitive
impairment (MCI) scored 22.1 (average); people with Alzheimer’s disease scored
16.2 (average). The test has a 90.0–93.0% sensitivity and a specificity of 87.0%
in the MCI assessment. MoCA implements three earlier tasks: TMT B, CCT,
and CDT. The following tasks are related to language fluency. First: “Name
this animal”. We depict a cow, horse, and a lion, and we ask the participant to
type the name of the presented animal into the text field. Additionally, our task
depicts the lion with the incorrect number of legs because this disturbance seems
to be a response time delay factor in a patient who suffers from AD. The second
task from this series is a repetition of two syntactically complex sentences: “I
only know that John is the one to help today”. and “The cat always hid under
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the couch when dogs were in the room”. We asked patients to replicate both
sentences in a written form, disabling the copy-paste option. The third language
fluency task was to write as many English words as possible that start with the
letter F. The patient had 60 s for execution. Considering that older participants
are less fluent in typing, we introduced two mechanisms that could align their
chances. First, we delayed the countdown by the number of seconds calculated as
(number of words in the task * 60/average reading speed per minute), assuming
that the lower boundary of the average reading speed is 200 words per minute.
Next, each keystroke stopped the countdown, allowing writing the whole word
even at a slow pace. Lack of the keystroke during the next consequent 3 s was
starting the countdown again. The next group of tasks focuses on attention and
concentration. First, we display one letter per second, and a person has to click
the button each time the letter “A” shows on the screen; next, we ask about
the serial subtraction starting at 100. Likewise, we present two sets of numbers;
each time, the subject must repeat them by writing in the forward or backward
order to evaluate the working memory. We measure the error rate and average
response time for all tasks. Also, we assess the abstract reasoning by a describe-
the-similarity task. We ask about what two pairs of words have in common (in
a single word): watch + ruler and train + bike, and we evaluate answers along-
side limited dictionaries of means of transportation, traveling, measuring, and
instruments. Here also we measure the error rate, IRT, and TTS. The next part
focuses on short-term memory. We involved two learning trials of five nouns and
delayed recall after approximately five minutes. For the first trial, the patient
must write words and receive visual cues if they are correct. If not, it is possible
to rewind and see them again. If this operation fails more than twice, we save
this fact into the database, skipping into the next question. We display this task
again at the end of the MoCA part. Each time, we count the error rate, IRT, and
TTS. Finally, we evaluate the spatio-temporal orientation by asking the subject
for the date and where the test occurs. We validate the provided year, month,
exact date, and day of the week with the system clock, counting the number of
errors. The place is scored manually after the test. For each part, we measure the
instrumental reaction time and Time-to-Submit. We are aware of an essential,
fundamental difference in switching from a verbal task (hears -> speaks) to a
written form (sees -> writes), especially when taking into consideration motor
problems (writing), leading to a field of uncertainty that we must treat with
utmost meticulousness.

2.5 Epworth

Epworth Sleepiness Scale - is an eight questions test that focuses on daytime
sleepiness, created in ’91 by Johns [7]. On a 4-point scale (0-3), subjects are
asked to rate the likelihood of falling asleep during eight different activities
throughout the day. The Epworth score (sum of 8 responses, each scored on a
0-3 scale) can range from 0 to 24. The higher the Epworth score, the higher
the average tendency to “daytime sleepiness”. The test showed 93.5% sensitivity
and 100% specificity in the narcolepsy diagnosis study [9]. In our online version
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of this test, we ask participants to determine the likelihood of falling asleep in
multiple situations, such as “Sitting and reading” or “Watching TV”. Possible
answers are: “zero probability of falling asleep”, “unlikely to fall asleep”, “aver-
age probability of falling asleep”, and “high probability of falling asleep”. Each
answer has 0-3 points accordingly. Here, we display each question with possible
answers separately, each time measuring IRT and TTS.

2.6 FER

Facial Emotion Recognition - is a set of tests dedicated to recognizing emo-
tions conveyed through different channels, where one of them is to match a label
with a given emotional expression. Multiple studies suggest that the results of
patients with PD are performing significantly worse than that of healthy con-
trols [1]. The link between facial expression and FER impairment reveals since
the earliest studies on FER in recall embodied simulation theory, suggesting
that disturbed motor processing can lead to deficiency in emotion recognition.
We decided to implement this task with six faces expressing particular emo-
tions, alongside six radio buttons with emotions’ names. We presented each
face separately and obtained all of them from the “Warsaw set of emotional
facial expression pictures” (WSEFEP) [13]. Each face presented anger, disgust,
fear, happiness, sadness, or surprise. We selected those pictures with the high-
est recognition marks (e.g., accuracy with intended display) from independent
judges. The test evaluates the correctness of the answer, IRT, and TTS for each
displayed expression.

2.7 Online Study

To conclude, we distinguished 66 questions requiring various forms of responses,
and we implemented them as web application components. Computer assessment
allowed us to extend classical metrics: each question could hold a precise IRT
and TTS along with the answer. Measuring time on the client-side is crucial for
assessing the performance of participants. One widely used method for measur-
ing these metrics is the JavaScript method performance.now(), which provides
a high-resolution timestamp in milliseconds. Unlike other methods that rely on
the system clock, performance.now() is not affected by changes to the system
clock and provides a more accurate representation of the time it takes for code
to execute. performance.now() returns a DOMHighResTimeStamp value that
represents the number of milliseconds elapsed since the performance timing ori-
gin, which is typically the time the page was loaded or refreshed. This method is
often used in conjunction with other JavaScript functions, such as setTimeout()
and requestAnimationFrame(), to measure the time it takes for code to execute
and to optimize performance. In our study, we utilized this method to measure
the time to first selection (IRT), and Time-to-Submit (TTS). The user interface
of the application was implemented using the React JavaScript library, which is
widely used for building modern, scalable, and interactive web applications.
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3 Results

The present study aimed to investigate the effects of Parkinson’s Disease (PD) on
brain computations using an online platform. Temporal values (IRT and TTS)
were recorded in milliseconds, but for improved legibility and comprehension,
the results are presented in seconds. Both IRT and TTS are averages (calculated
without outliers) based on partial measurements of single questions. To deter-
mine the statistical significance of group differences, p-values were calculated
and comparisons were considered statistically significant if the p-value was less
than 0.05. Statistical analyses were conducted using SPSS 29.

3.1 Comparison of Cognitive and Sleep-Related Measures

A total of 45 participants were recruited for this study, with 15 PD patients (8
females, 7 males) with a mean age of 70.8 years (standard deviation [SD] = 5.93)
and 30 healthy controls (3 females, 27 males) with a mean age of 24 years. The
selection of participants was based on the availability of individuals who met the
criteria for each group. While the age difference between the PD and healthy con-
trol groups was noticeable, it is important to note that age was not utilized as a
variable in themachine learning analysis,making it less relevant to the study objec-
tives. The severity of motor symptoms in patients with Parkinson’s disease was
assessed using the Movement Disorder Society-Unified Parkinson’s Disease Rat-
ing Scale (UPDRS) Part III. Patients were grouped into five categories based on
their UPDRS3 scores: Group 0 (score 0–9) n = 0, Group 1 (10–19) n = 5, Group 2
(20–29) n = 3, Group 3 (30–39) n = 3, Group 4 (40+) n = 4. All healthy controls
were classified into Group 0 (n = 30). First, we found that the PD patients had a
slightly lowermeanMOCAscore (24.67, SD = 3.519) than healthy controls (26.27,
SD = 1.202), but the difference was not significant (p = 0.107).

Similarly, the PD patients had a slightly higher mean Epworth score (5.13,
SD = 1.685) than healthy controls (4.13, SD = 1.776), but the difference was still
not significant (p = 0.077). Also, we found that the mean GDS15 score for PD
patients (5.60, SD = 1.056) was slightly lower than that of healthy controls (6.43,
SD = 1.305), but again the difference was not significant (p = 0.38). Finally, the
mean FER score for both groups was also not significantly different (PD patients:
6.87, SD = 0.352; healthy controls: 6.77, SD = 0.626) (p = 0.57). These findings
suggest that there was no significant impairment in facial expression recognition
in the PD group compared to the healthy control group. We found, however,
that there are significant differences between the scores of TMT B (PD patients:
4.54, SD = 7.70; healthy controls: 0.67, SD = 1.20) (p = 0.043).

3.2 Temporal Results in Cognitive Tests

We also measured the participants’ IRT and TTS for each cognitive tests’
question. In the MoCA test, the mean instrumental reaction time for the
healthy group was significantly faster (3.62 s) than the clinical group (5.90 s)
(p < 0.001). Similarly, the healthy group also had a significantly faster Time-to-
Submit (8.00 s) compared to the clinical group (13.67 s) (p < 0.001). The same
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pattern was observed in the Epworth Sleepiness Scale test, where the healthy
group had a significantly faster mean instrumental reaction time (4.70 s) and
TTS (6.45 s) compared to the clinical group (8.57 s and 10.45 s, respectively) (p
< 0.001).

In contrast, there was no significant difference between the healthy and clin-
ical groups in instrumental reaction time and response time in the Geriatric
Depression Scale (GDS-15) test. The mean instrumental reaction time for the
healthy group was 4.57 s, and for the clinical group, it was 5.82 s. The Time-to-
Submit for the healthy group was 6.58 s, and for the clinical group, it was 7.18 s.
We also measured the participants’ IRT and TTS in the Facial Expression Recog-
nition (FER) task. The mean instrumental reaction time for the healthy group
was significantly faster (3.49 s) than the clinical group (5.23 s) (p < 0.001). How-
ever, there was no significant difference between the healthy and clinical groups
in the TTS (6.06 s for the healthy group and 6.74 s for the clinical group).

3.3 Predicting Health Status with Cognitive and Emotional
Measures

In our study, logistic regression was employed as the statistical method to pre-
dict the binary outcome of a patient’s health status based on cognitive and
emotional measures. Logistic regression models the probability of the binary
outcome by applying a logistic function, which transforms a linear combination
of the predictor variables. It is a widely used method in machine learning and
particularly suitable when the dependent variable is categorical. The logistic
regression model in our study utilized default parameter values, including the
probabilities of inclusion (PIN = 0.05) and exclusion (POUT = 0.10), as well
as a tolerance value (TOLERANCE = 0.0001) to assess multicollinearity. The
PIN represents the probability that a variable will be included in the model,
while the POUT represents the probability of excluding a variable. The toler-
ance value indicates the degree of multicollinearity, with a lower value indicating
a higher degree of correlation among predictor variables, which can affect the
interpretation of regression coefficients.

The results of our experiment showed promising findings in terms of differ-
entiating PD patients and healthy controls based on cognitive and behavioral
tests. Our initial attempt to detect healthy controls using only the MOCA score
resulted in a 77.8% accuracy rate. However, when we included additional tests
such as the Epworth Sleepiness Scale, and Geriatric Depression Scale, the accu-
racy dropped to 73.3%. Moreover, adding FER score parameter had no impact
on this value. It is noteworthy that the inclusion of instrumental reaction time
measurements in the MOCA test resulted in a significant increase in accuracy
rate to 84.4%, indicating their potential in PD detection. Additionally, combin-
ing the results of all tests with IRT for MoCA resulted in a high accuracy rate
of 91.1% with a sensitivity of 86.67% and a specificity of 93.33%, underscoring
the significance of employing a combination of cognitive and behavioral tests
in conjunction with IRT to enhance accuracy and establish a possible digital
biomarker for early detection of the disease.
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Table 1. Classification Results of Multinomial Logistic Regression using TMT B, IRT,
and TTS Measures.

Observed Predicted

G0 G1 G2 G3 G4 % Correct

G0 30 0 0 0 0 100.0

G1 1 4 0 0 0 80.0

G2 1 1 1 0 0 33.3

G3 0 0 0 3 0 100.0

G4 1 0 0 0 3 75.0

Overall Percentage 73.3 11.1 2.2 6.7 6.7 91.1

3.4 Predicting Parkinson’s Disease Severity with TMT B
and Temporal Measures

We utilized multinomial logistic regression to predict the UPDRS3 group of both
PD patients and healthy controls based on their TMT B scores, IRT, and TTS
measures. Multinomial logistic regression is a statistical method used to predict
categorical outcomes with more than two categories. In our case, patients were
grouped into five categories based on their UPDRS3 scores, with healthy controls
classified as Group 0. The model was implemented with maximum iterations
set to 100, maximum step halving set to 5, and log-likelihood and parameter
convergence set to 0. Our analysis showed that using only TMT B score and IRT,
we achieved an accuracy of 82.2% in predicting the UPDRS3 group. However,
when TTS was added to the model, the overall accuracy increased to 91.1%
(Table 1). These results suggest that TMT B error rate, IRT, and TTS might be
reliable measures for predicting the UPDRS3 group of patients with PD.

4 Discussion

The primary goal of our research group is to investigate new and innovative ways
to detect and diagnose neurodegenerative diseases, such as Parkinson’s Disease
and Alzheimer’s Disease, as early as possible. Early detection is essential because
it allows for timely interventions, potentially leading to improved outcomes and
quality of life for affected individuals.

In our latest study, we investigated the effects of PD on brain computations
using an online platform. We collected cognitive and behavioral data from PD
patients and healthy controls, measuring IRT and TTSs, as well as performance
on a battery of cognitive tests. Our findings suggest that cognitive and behav-
ioral tests can be used to detect early changes in brain computations, potentially
indicating the onset of PD before clinical symptoms appear. There was no signif-
icant difference in the mean Montreal Cognitive Assessment score between the
PD patients and the healthy controls. The mean Epworth Sleepiness Scale score
was slightly higher in the PD group than in the healthy group, although the
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difference was not significant. Our study also revealed that the mean Geriatric
Depression Scale (GDS-15) score in the PD group was only marginally lower
than in the healthy group, and the difference was not significant. Moreover, we
measured the participants’ IRT and TTS for each cognitive tests’ question. It is
worth noting that the PD patients in our study were undergoing treatment with
medications which have positive impact on brain computations. Our findings
suggest that IRT and TTSs were significantly slower in the PD group compared
to the healthy group, particularly in the MoCA and Epworth tests. Interest-
ingly, we found no significant difference between the groups in IRT and TTSs in
the GDS-15 test. In the next step we performed a logistic regression analysis to
evaluate the effectiveness of our cognitive and behavioral tests in differentiating
PD patients and healthy controls, being a first step for early disease detection
based on online testing approach. The initial attempt to detect healthy controls
using only the MoCA score resulted in a 77.8% accuracy rate. However, when
additional tests such as the Epworth Sleepiness Scale and Facial Expression
Recognition task were included, together only with MoCA IRT, the accuracy
rate increased to 91.1%. This result suggests that a combination of cognitive
and behavioral tests may be more effective in identifying early changes in brain
computations associated with PD. As a next part of analysis, we performed a
multinomial logistic regression analysis to evaluate the effectiveness of our cogni-
tive and behavioral tests in differentiating PD patients and healthy controls. Our
decision to focus on the TMT B test was based on its widespread use as a neu-
ropsychological test that has demonstrated high sensitivity in detecting cogni-
tive impairments in PD patients, particularly in attention and executive function
domains. The first experiment included only the TMT B score and IRT, result-
ing in an accuracy rate of 82.2%. We then added TTS to the model, resulting in
an increased accuracy rate of 91.1%. These results suggest that adding temporal
measures such as IRT and TTS to cognitive tests such as TMT B can improve
the accuracy of predicting UPDRS3 group classification. Of course, as with any
study, there are limitations to our research. One limitation is the small sample
size, which could impact the generalizability of our findings. Furthermore, we
only included a limited set of cognitive and behavioral tests in our study. Future
research should explore the use of additional tests to improve the accuracy of
early detection of PD. Despite these limitations, our study provides evidence
that cognitive and behavioral tests can be used to detect early changes in brain
computations associated with PD. In extrapolating the results of our study, it
is plausible to apply the findings to other neurodegenerative diseases, such as
Alzheimer’s disease. Similar to PD, early detection of AD is crucial for timely
interventions and improved outcomes. Cognitive and behavioral tests, along with
measures such as IRT and TTS, can potentially serve as digital biomarkers to
detect early changes in brain computations associated with AD. However, fur-
ther research is necessary to validate the effectiveness of these tests specifically
for AD and explore the potential integration of cognitive and behavioral tests
with innovative technologies like chatbots to enhance the assessment process.
By leveraging digital biomarkers and innovative approaches, we can advance
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early detection and diagnostic strategies for various neurodegenerative diseases,
ultimately improving patient outcomes and quality of life.
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14. Przybyszewski, A.W., Śledzianowski, A., Chudzik, A., Szlufik, S., Koziorowski, D.:
Machine learning and eye movements give insights into neurodegenerative disease
mechanisms. Sensors 23(4), 2145 (2023)

15. Reitan, R.M.: The relation of the trail making test to organic brain damage. J.
Consult. Psychol. 19(5), 393 (1955)

16. Sheikh, J.I., Yesavage, J.A.: Geriatric depression scale (GDS): recent evidence and
development of a shorter version. Clin. Gerontol. J. Aging Mental Health (1986)

17. Thompson, J.J., Blair, M.R., Henrey, A.J.: Over the hill at 24: persistent age-
related cognitive-motor decline in reaction times in an ecologically valid video
game task begins in early adulthood. PLoS ONE 9(4), e94215 (2014)

18. Zokaei, N., Husain, M.: Working memory in Alzheimer’s disease and Parkinson’s
disease. In: Processes of Visuospatial Attention and Working Memory, pp. 325–344
(2019)

https://doi.org/10.1093/brain/awf206


Citation: Chudzik, A.; Przybyszewski,

A.W. Classification of Parkinson’s

Disease Using Machine Learning with

MoCA Response Dynamics. Appl. Sci.

2024, 14, 2979. https://doi.org/

10.3390/app14072979

Academic Editor: Alexander

N. Pisarchik

Received: 24 February 2024

Revised: 25 March 2024

Accepted: 28 March 2024

Published: 1 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Classification of Parkinson’s Disease Using Machine Learning
with MoCA Response Dynamics
Artur Chudzik 1 and Andrzej W. Przybyszewski 1,2,*

1 Polish-Japanese Academy of Information Technology, Faculty of Computer Science, 86 Koszykowa Street,
02-008 Warsaw, Poland; artur.chudzik@pjwstk.edu.pl

2 Department of Neurology, UMass Chan Medical School, 65 Lake Avenue, Worcester, MA 01655, USA
* Correspondence: andrzej.przybyszewski@umassmed.edu

Abstract: Neurodegenerative diseases (NDs), including Parkinson’s and Alzheimer’s disease, pose a
significant challenge to global health, and early detection tools are crucial for effective intervention.
The adaptation of online screening forms and machine learning methods can lead to better and
wider diagnosis, potentially altering the progression of NDs. Therefore, this study examines the
diagnostic efficiency of machine learning models using Montreal Cognitive Assessment test results
(MoCA) to classify scores of people with Parkinson’s disease (PD) and healthy subjects. For data
analysis, we implemented both rule-based modeling using rough set theory (RST) and classic machine
learning (ML) techniques such as logistic regression, support vector machines, and random forests.
Importantly, the diagnostic accuracy of the best performing model (RST) increased from 80.0% to
93.4% and diagnostic specificity increased from 57.2% to 93.4% when the MoCA score was combined
with temporal metrics such as IRT—instrumental reaction time and TTS—submission time. This
highlights that online platforms are able to detect subtle signs of bradykinesia (a hallmark symptom
of Parkinson’s disease) and use this as a biomarker to provide more precise and specific diagnosis.
Despite the constrained number of participants (15 Parkinson’s disease patients and 16 healthy
controls), the results suggest that incorporating time-based metrics into cognitive screening algorithms
may significantly improve their diagnostic capabilities. Therefore, these findings recommend the
inclusion of temporal dynamics in MoCA assessments, which may potentially improve the early
detection of NDs.

Keywords: machine learning (ML); Montreal Cognitive Assessment (MoCA); diagnostic accuracy;
Parkinson’s disease (PD); rough set theory (RST); time-based measurements; web-based cognitive
testing; IRT; TTS

1. Introduction

Neurodegenerative disorders (NDs) are conditions characterized by the progres-
sive loss of specific neuron populations. The most common of these disorders include
Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Huntington’s
disease. These diseases are a significant challenge for clinicians due to their diverse clinical
presentations and shared molecular pathology [1].

Despite significant progress in understanding the NDs, particularly in the areas of
pathology and pharmacology, the translation of preclinical innovations into effective clinical
therapies has been challenging [2].

This study focuses on Parkinson’s disease. PD primarily affects older individuals and
is associated with a range of motor and nonmotor symptoms [3]. This is a neurodegen-
erative disorder characterized by the loss of dopaminergic neurons, particularly in the
substantia nigra (a small region in the middle of the brain) [4]. In neurological terms, in
Parkinson’s disease, there is a specific pattern of neuronal loss; the dopaminergic neurons
of the midbrain that project to the striatum are selectively and primarily destroyed [5,6].
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The result of this neuronal damage is the manifestation of neurological symptoms.
Neurological symptoms of Parkinson’s disease primarily include tremors, muscle stiffness,
slowed movement (bradykinesia), and impaired balance and coordination. Cognitive
changes, such as difficulties with memory and problem solving, can also occur as the
disease progresses.

Despite the fact that this damage is significant, it often goes unnoticed at first. This is
partly because the brain has mechanisms to compensate for the damage. Keeping in mind
that neuronal degeneration is a normal part of aging, in NDs, this process occurs much more
rapidly and is initially masked by the brain’s compensatory responses. That makes it difficult
to identify specific biomarkers for early detection, diagnosis, and disease progression [7].

Therefore, the lack of a cure for Parkinson’s disease can be attributed to several factors
and challenges in hidden manifestations across various domains (including genetic, clinical,
and pathophysiological).

1.1. The Intersection of PD and AD

The most common neurodegenerative condition is Alzheimer’s disease (AD). In this dis-
ease, another small and specific area of the brain is damaged. Research suggests that the early
stages of Alzheimer’s disease are characterized by changes in the entorhinal–hippocampal
system, particularly in the entorhinal cortex (EC) and the hippocampus [8].

The hippocampus is essential for the formation of new memories. It helps in consol-
idating short-term memory to long-term memory, a process that involves making these
memories stable and stored efficiently for later retrieval. The entorhinal cortex, particularly
its medial aspect, contains grid cells, which are critical for spatial navigation and mapping
environments. This region suffers the most severe neuronal loss among the affected areas
in this disease.

The outcome of the neurodegeneration in different brain regions is that patients with
Alzheimer’s primarily exhibit memory loss, while those with Parkinson’s are more likely
to suffer from movement disorders. Unfortunately, there can be an overlap in symptoms
between these two neurodegenerative diseases. However, the mechanisms underlying the
disease, including the role of misfolded proteins and the interaction between dopamine
and acetylcholine, remain unclear [9,10].

1.2. The Hidden Progression of the Disease

This complexity and hidden progression make NDs one of the major causes of neu-
rological disability and mortality worldwide. Despite technological advancements, we
still pessimistically estimate the number of people with dementia is expected to increase
from 57 million cases globally in 2019 to 152 million cases globally in 2050, notably with a
three-fold increase projected in China [11,12]. Therefore, we urgently need to address the
gap in understanding of these diseases, particularly in terms of the complex interplay of
factors that contribute to these conditions.

To bridge this gap, there is a need for more effective screening and diagnostic methods.
These should not only facilitate widespread diagnosis but also accurately identify indi-
viduals at risk of these diseases. With this objective, we selected the Montreal Cognitive
Assessment (MoCA, a pen-and-paper test considered as the gold standard for cognitive
evaluation), and we transformed it into an online version. Here, we present the results of
applied machine learning algorithms to determine the reliability of this approach.

1.3. The Cognitive Assessment

The Montreal Cognitive Assessment (MoCA) is a brief test used by doctors to find
early signs of problems with thinking and memory, which can be linked to Parkinson’s dis-
ease. MoCA is a one-page 30-point test that includes tasks such as visuospatial/executive
functions, naming, memory, attention, language, abstraction, delayed recall, and orienta-
tion. It is designed to quickly assess cognitive functioning and screen for mild cognitive
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impairment. This test is usually carried out face-to-face in a clinical setup and takes around
15 min to complete.

Despite this, checkups of cognitive state are rare exceptions, as they generate addi-
tional workload to the budget of healthcare systems. This leads to the underdiagnosis of
neurodegenerative conditions. Because of this challenge, it makes sense to use the web and
machine learning models to support the process diagnosis. This removes the geographical
and economical constraints, making it possible to screen wider populations, providing
valuable data.

However, transitioning to an online environment poses its own set of challenges,
especially for elderly users who may struggle with digital tasks that differ from their paper-
based counterparts, such as drawing. Difficulty with the technology might result in lower
test scores that inaccurately reflect a person’s cognitive abilities rather than their familiarity
with computers.

Therefore, while the prospects are promising, there are challenges to consider, includ-
ing ensuring the privacy and security of sensitive medical data, addressing digital literacy
and accessibility issues among older populations, and validating the efficacy of machine
learning models across diverse populations. Thus, further research is needed to ensure
their reliability, accuracy, and integrate them into clinical practice.

Hence, to evaluate available methods, we created an online platform in which partici-
pants can solve a self-administered version of the MoCA test. The platform is accessible via
web browsers, ensuring ease of access for users from the comfort of their homes. It features a
simple, intuitive interface that guides users through the screening or diagnostic process step
by step. Given the sensitivity of medical data, the platform adheres to privacy and security
standards, such as data encryption, secure data storage, and anonymization techniques.

Then, we analyzed the results, we used machine learning models to classify our
participants according to their health status, and we compared our findings with the
existing literature.

2. Methods

Taking these challenges into account, we created the online version of the MoCA test.
Then, we compared multiple machine learning methods in the task of classification of
healthy subjects and patients with Parkinson’s disease. Each experiment measured the
effectiveness and reliability of selected machine learning algorithms in detecting signs of
the disease.

2.1. The Montreal Cognitive Assessment

MoCA is a cognitive health evaluation tool, primarily used for detecting mild cognitive
impairment [13]. This test covers a range of cognitive domains, including short-term mem-
ory recall, visuospatial abilities, and executive functions. This ability to evaluate various
cognitive aspects in a short (around 15 min) time makes it a practical and comprehensive
screening tool.

MoCA has proven to be more effective than some other cognitive tests, such as the Mini-
Mental State Examination (MMSE), especially in the context of Parkinson’s disease [14,15].
Here, research indicates that MoCA is more sensitive in detecting cognitive impairments in
PD patients.

Furthermore, it is helpful in predicting cognitive decline in the early stages of PD, with
scores of 26 or lower marking a significant risk for progressive cognitive deterioration [16].
This sensitivity to early-stage cognitive issues in PD highlights MoCA’s clinical importance.

Additionally, MoCA’s adaptability for remote administration is particularly beneficial
for patients with movement disorders [17]. This enhances its accessibility in varied clinical
settings. MoCA’s effectiveness extends to reflecting cognitive reserve, with emphasis on
the influence of education and work activity [18].

It is important to acknowledge reported limitations, as for example, cultural and
educational biases present a significant challenge. The MoCA’s performance can vary across
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diverse cultural and educational backgrounds, potentially leading to misinterpretation of
results. Moreover, individuals with lower education levels may score lower on the MoCA,
not necessarily due to cognitive impairment but due to the test’s design, which might favor
those with higher educational and cultural backgrounds [19]. However, Gagnon (2013)
cautioned that adjusting the MoCA for education could decrease its sensitivity, leading to
an increased number of false negatives [20].

Another noteworthy concern is its susceptibility to practice effects, especially between
the first and second administrations. This could potentially skew results and requires
consideration in clinical interpretation [21].

In summary, while the MoCA is a valuable tool for detecting cognitive impairment,
it is essential to be aware of its limitations. These include cultural and educational biases,
the potential for overdiagnosis, difficulty in distinguishing between different cognitive
disorders, language barriers, and time constraints in clinical administration. Awareness
and consideration of these factors are crucial for ensuring appropriate use of the MoCA in
nuanced contexts.

2.2. Development of the Online Platform

The development of an online Parkinson’s disease screening platform is guided by
earlier research demonstrating the effectiveness of online tools in neurological assessment.
For example, Youngmann (2019) presented a machine learning algorithm specifically
designed for Parkinson’s screening through a web platform, showing the feasibility and
effectiveness of online tools in diagnosing PD [22]. Furthermore, Kim (2020) developed
a more advanced point-of-care platform, which is geared towards the early diagnosis of
Parkinson’s disease [23]. These studies highlighted the growing trend and potential of
using web platforms for various aspects of Parkinson’s research, including data collection,
patient monitoring, and early diagnostic procedures.

To conduct remote experiments and confirm this method’s feasibility and performance,
we created a controlled web environment. This validation is important in understanding
and improving cognitive assessment tools. We developed the platform using open-source
components of React 16.14.0 and Bootstrap 4.5.2, PHP8 API, and MySQL database. This
choice allowed us to develop a user-friendly interface with adjustable fonts and contrasts,
enhancing accessibility and ensuring the quality of data. This is an important component
for participants with cognitive challenges.

The test begins with a supervisor registering a participant. The participant receives a
unique URL, including a unique token, to start the test. During the test, we present screens
with instructions that the participant should follow. Each of their responses was stored in
the database. The test automatically scores simpler MoCA tasks. However, complex tasks
like the clock drawing test were evaluated manually, according to established standards.

2.3. Inclusion Criteria for Patients and Healthy Subjects

To evaluate data aggregated by this platform, we invited two groups of people.
Our approach is targeted to establish a distinction between individuals with varying

stages of PD and a generally healthy population. This method allowed us to explore and
identify patterns related to PD’s impact on health status.

(1) The first group included people with Parkinson’s disease. All of them had a confirmed
Parkinson’s disease diagnosis, and they were receiving treatment and advice from
neurologists at UMass Chan Medical School. Eight participants had UPDRS III scores
between 10 and 29 (indicative of mild symptoms of PD), and seven participants had
UPDRS III scores above 30 (indicative of advanced symptoms of PD).

(2) For reference, we selected students from the Polish Japanese Academy of Information
Technology. This approach was based on the lower likelihood of young people having
PD. These individuals did not undergo neurological examination to confirm the
absence of PD.
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In this study, we applied disease-specific criteria for the patient group and combined
convenience, demographic, and health status criteria for selecting healthy subjects. The
sample size (n = 31) allows for preliminary comparisons and insights into the differences
between patient and reference groups. We plan a study with a larger group to confirm
these findings and explore other variables that may influence the results.

Before the study, the plan was reviewed and approved by two groups: the Institutional
Review Board at UMass Chan Medical School (protocol code: IRB H0008962) and the Ethics
Committee at the Polish Japanese Academy of Information Technology (protocol code:
OKE-02-06-2022) to ensure compliance with the Declaration of Helsinki.

2.4. Implementation of Time-Based Measures

Currently, there is a debate in Parkinson’s disease research whether digital methods
can yield more detailed and precise data than traditional assessment methods, especially in
detecting invisible cognitive and motor changes [24,25].

Interestingly, eye-tracking studies in Parkinson’s disease confirmed that it is possible
to capture these subtle changes with digital technologies [26,27]. In these studies, we can
detect if patients show increased saccadic and antisaccadic delays compared to healthy
controls. This suggests that certain subtle motor impairments in PD, such as delays in eye
movements, can be measured using digital tools.

For this, we included two types of time measurements in the online MoCA test:
Instrumental Reaction Time (IRT) and Time to Submit (TTS). Specifically, we measured the
time taken to interact with the interface (IRT) and to complete and submit answers (TTS)
for each MoCA test question.

IRT and TTS were tracked for each question, presented individually. IRT measures
the time from the presentation of a stimulus to the initiation of a response, capturing the
cognitive processing period, and TTS records the total time from stimulus presentation to
the completion and submission of a response. By design, both measures reflect cognitive
decision-making and motor execution abilities.

IRT and TTS are measured in the front-end layer (closest to the user). Both values
are on a millisecond scale, captured without network delays using a JavaScript method
performance.now. These measures were integrated into the digital platform, tracking the
response times of each participant as they interacted with the MoCA test.

2.5. Statistical Analysis

To analyze aggregated data, we used the IBM SPSS 29 software. We examined variables
such as age, gender, UPDRS group scores, and MoCA scores. We compared these variables
between healthy individuals and patients with Parkinson’s disease, with a p-value below
0.05 marked as significant.

2.6. Rough Set Theory

For data modeling, we used a method called rough set theory (RST). This is because
earlier research shows that RST can be better than other machine learning methods for
classifying diseases [28].

Rough set theory (RST), introduced by Zdzisław Pawlak in the 1980s, is a mathematical
approach to data analysis that deals with vagueness and uncertainty [29,30]. RST is
particularly effective in identifying patterns within imprecise or incomplete information. It
operates on the principle of approximating sets by a pair of lower and upper bounds, which
represent the crisp sets of all definitely and possibly belonging elements, respectively.

The fundamental operations of RST are based on the concepts of lower and upper
approximations. Given a set X within the universe U, the lower approximation (Lx) is the
set of elements that are certainly in X based on the available information, while the upper
approximation (Ux) includes elements that could possibly belong to X.

(Lx) = {x ∈ U : [x]R ⊆ X}
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(Ux) = {x ∈ U : [x]R ∩ X ̸= ∅}

where [x]R denotes the equivalence class of x under the equivalence relation R, exposing
indiscernibility between objects in the context of available attributes.

Decision rules generated from RST analysis are in the form:

IF(condition) THEN (decision)

Decision rules derived from lower approximation sets (Lx) represent certain conclu-
sions, and decision rules derived from upper approximation sets (Ux) represent uncertain
conclusions. These rules can be directly interpreted, providing insights into the data’s
underlying structure and decision-making logic.

Interestingly, RST is like the way primates, like humans, visually understand complex
objects they have not seen before [31]. When we see something new, our brain uses what it
knows about other objects to guess what this object might be. Sometimes the new object
may have features that do not match our existing knowledge, yet our brain gradually
recognizes it using rule-based processes similar to RST. Likewise, RST-like mechanisms
enable our brains to sort and interpret confusing or conflicting information, gradually
narrowing down the gap between concepts of objects to their crisp images.

Intriguingly, this approach often yields better results than other classical machine
learning approaches. An added value of RST is that the generated rules, unlike those from
classical ML methods, can be easily interpreted by humans. Here, we used Rough Set
Exploration System (RSES) 2.2.2 [32]. In this software, we used a 3-fold cross-validation
method to test 10 objects per iteration. This means that the data were split into three parts,
where a classifier is built on the basis of the training set (random 21 objects) and evaluated
on 10 independent and unseen objects.

2.7. Machine Learning Approach

To challenge the Rough Set Exploration System results, we implemented three classic
machine learning models in Python using the scikit-learn (sklearn) library, which facilitates a
range of machine learning tools. Additionally, we utilized complementary Python libraries
for data manipulation and visualization, including pandas, seaborn, and matplotlib [33–36].

Here, we employed a train_test_split approach, allocating 30% of the data for testing
before modelling. This split was performed randomly to ensure that 21 subjects were used
for training and 10 independent subjects for testing.

We note that a small dataset generates a higher risk of overfitting, where the model
learns the noise and specific details of the training data too well and performs poorly
on new, unseen data. Therefore, to mitigate the risk of overfitting, we also implemented
cross-validation techniques during the model training phase. This approach allowed us
to assess the model’s performance more accurately and ensure its generalizability to new,
unseen data.

Moreover, due to the risk of overfitting, we avoided more complex solutions like deep
neural networks. Thus, we considered simpler models with regularization (e.g., L2). Specifi-
cally, we selected Logistic Regression, Support Vector Machine (SVM), and Random Forest
models. The application of L2 regularization indirectly influences feature selection by shrink-
ing the less important feature’s coefficients closer to zero, which helps in identifying more
significant predictors. However, L2 regularization does not perform explicit feature elimina-
tion but rather adjusts the scale of contribution of each feature.

Each of these models has its strengths and weaknesses, and their performance can
vary based on the specific characteristics of the dataset. Therefore, for a better overview of
the performance, we analyzed and compared them side by side.

To address the consideration of hyperparameter tuning, we used GridSearchCV with
cross-validation, and we limited the range and number of hyperparameters. We used a
Stratified K-Fold cross-validation method that ensured the same proportion of classes in
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each fold. The dataset was balanced, meaning there was no need for synthetic oversampling
techniques like SMOTE.

3. Results

The study involved a total of 31 participants, who were divided into two groups: the
Parkinson’s disease (PD) group and the healthy subjects (HS) group.

3.1. Statistical Analysis

The PD group contained fifteen patients (eight females and seven males), with an
average age of 70.8 years (standard deviation [SD] = 5.931). The reference group contained
sixteen healthy subjects: four females and twelve males, with a mean age of 23.26 years
(SD = 0.964).

The PD group had a slightly higher percentage of females, representing 53% of the
participants. However, males were the majority of the reference group (75%) (Table 1).

Table 1. Comparison of the characteristics of patients and healthy subjects.

Variable PD Patients (n = 15) Healthy Subjects (n = 16) p-Value

Age 70.80 ± 5.931 23.26 ± 0.964 <0.001

Gender (0 = M, 1 = F) 0.53 ± 0.516 0.25 ± 0.447 0.115

UPDRS Group (0 = HS, 1 = MILD, 2 = ADV) 1.47 ± 0.516 0 ± 0 <0.001

Web MoCA Score (total) 24.13 ± 3.543 26.69 ± 1.302 0.017

Web MoCA IRT (avg, ms) 5896.27 ± 1514.26 2894.25 ± 646.974 <0.001

Web MoCA TTS (avg, ms) 13,667.00 ± 3445.42 6881.37 ± 1589.145 <0.001

3.2. Data Profiling

The dataset includes thirty-one observations, and each observation has six variables.
Categorical features were managed during preprocessing and modeling stages:

(1) The ‘gender’ variable was encoded as a binary categorical feature, with 0 representing
male (M) and 1 representing female (F). This encoding was straightforward, given the
binary nature of the aggregated data, and was directly utilized in machine learning
models without further transformation.

(2) The ‘is_healthy’ variable was also a binary categorical feature indicating the health
status of the subjects (0 for patients with Parkinson’s disease and 1 for healthy subjects).
This binary encoding was chosen to enable clear distinction and modeling of health
status as a response variable in predictive analyses.

(3) Although the ‘UPDRS Group’ variable was included in our dataset for a general
overview, it was not used during the training of our models. The decision to exclude
this variable from training was made because the UPDRS Group is related to the
diagnosis and severity of Parkinson’s disease, which could introduce bias into the
model when predicting the health status based on broader, non-diagnostic features.
Its primary role was to provide context and depth to the clinical profile of the PD
patients for the readers and was not intended as a feature for prediction.

To suggest potential connections between variables, we used a matrix of Pearson
correlation coefficients, showing that age is strongly negatively correlated with the healthy
status and positively with IRT and TTS (Figure 1).

There was a notable age gap among participants, with a strong correlation between
age and health status. Preliminary analyses indicated that using age as a predictor would
lead to a model that essentially segregates the data into two clusters based solely on age.

Finally, we conducted three experiments on the dataset. The goal was to calculate how
distinguishable the web test results of PD patients and healthy subjects are. Surprisingly,
unsupervised PD participants performed significantly better than we expected. Their
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average MoCA score was higher than noted in the literature, oscillating around 24 points,
creating a challenge for classification methods.
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3.3. Experiment I/III: Predict Health Status Based Solely on MoCA Score

The first experiment targeted the prediction of whether a participant is healthy based
only on the total MoCA score. In predicting PD patients (0) using the MoCA score alone,
the RSES model demonstrated effectiveness with total accuracy of 80% across all cases it
evaluated, presenting its capability to classify individuals accurately (Table 2 and Figure 2).
Specifically, the model’s performance when identifying healthy subjects (1) was perfect,
with a 100% accuracy rate, showing its strength in recognizing individuals without PD.
However, the specificity, or the model’s ability to correctly identify healthy individuals as
healthy, was calculated as 57.13%.

Table 2. Confusion matrix for predicting participant status (is_healthy = 0/1) based on the MoCA
score using the RSES model, detailing the total number of tested objects (10), total accuracy (0.8), and
coverage (1.0).

Predicted

0 1 No. of Obj. Accuracy Coverage

Actual
0 2.67 2.00 4.67 0.607 1.000

1 0 5.33 5.33 1.000 1.000

True positive rate 1.00 0.72

To validate, we used hyperparameter-tuned and cross-validated ML models, including
Logistic Regression, Support Vector Machine (SVM), and Random Forest. Interestingly,
all three models reported a 60% accuracy, which is 20% lower than the RSES model,
showing a lesser ability to generalize the prediction of health status based on MoCA scores
alone. When predicting health status using only the MoCA score, all ML models achieved
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a precision of 50%. This indicates that half of the positive predictions were incorrect,
misclassifying healthy individuals as PD patients.
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The recall of 100% across models suggests that all PD cases were correctly identified,
echoing the RSES’s true positive rate but contrasting with its overall accuracy. The consis-
tent confusion matrix results (2 TN, 4 FP, 0 FN, 4 TP) demonstrate the models’ tendency to
misclassify healthy controls as PD patients, thus presenting specificity issues. The speci-
ficity for the Logistic Regression, Support Vector Machine, and Random Forest models
in Experiment I/III is all 33.3%. This indicates that each model correctly identified 33.3%
of the actual negatives (healthy subjects) as being healthy. This highlights a challenge in
distinguishing between PD patients and healthy controls based solely on the MoCA score
in this experimental setup.

In summary, the RSES model outperformed traditional ML methods in terms of
accuracy in this specific experiment, presenting a potential in handling the predictive
task with a limited set of features (MoCA score alone) (Table 3). High recall across all
methods highlights a common strength in identifying PD cases but also underscores a
shared weakness in specificity, particularly evident in the ML methods where false positives
were a significant issue.

Table 3. Comparison of model performance in Experiment I/III.

Model Name and Hyper Tuned Parameters Accuracy Precision Sensitivity Specificity

RSES 0.8 0.727 0.86 0.572

Logistic Regression {‘C’: 1} 0.6 0.500 1.00 0.333

SVM {‘C’: 0.1, ‘gamma’: 0.01} 0.6 0.500 1.00 0.333

Random Forest {‘n_estimators’: 4} 0.6 0.500 1.00 0.333

3.4. Experiment II/III: Predict Health Status Based on MoCA Score and Gender

The second experiment targeted the prediction of whether a participant is healthy
based on both the (a) MoCA score and (b) gender. This experiment examined whether
the addition of gender as a predictive variable would enhance the model’s performance
compared to using the MoCA score alone.
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By focusing on gender, we wanted to develop models that could potentially identify
health status indicators across more diverse and inclusive demographic profiles. This
approach allows for the exploration of health determinants in settings where age may not
be the primary factor of interest or where age information is not available.

Interestingly, the RSES analysis with the inclusion of gender showed a decrease in ac-
curacy compared to the first experiment (80% to 70%). The detailed results indicate a mixed
accuracy for different classes, with a significant true positive rate (the ability to correctly
identify healthy individuals) but a lower accuracy for classifying PD patients (Table 4). The
specificity for the RSES model in Experiment II/III is approximately 0.875. This indicates
that the RSES model correctly identified 87.5% of the actual healthy individuals as being
healthy, demonstrating a better performance in distinguishing between PD patients and
healthy controls than the model based solely on MoCA scores.

Table 4. Confusion matrix for predicting participant status (is_healthy = 0/1) based on the MoCA
score and gender using the RSES model, detailing the total number of tested objects (10), total
accuracy (0.7), and coverage (1.0).

Predicted

0 1 No. of Obj. Accuracy Coverage

Actual
0 2.33 2.33 4.67 0.389 1.000

1 0.67 4.67 5.33 0.917 1.000

True positive rate 0.67 0.66

Surprisingly, the addition of gender as a predictive variable in Experiment II did not
enhance the classical model’s performance as well. The Logistic Regression model, despite a
high sensitivity (75%), showed a decrease in overall accuracy (50%) and precision (42.86%)
when including gender, compared to its performance in the first experiment. SVM maintained
its sensitivity at 100% but did not show an improvement in overall accuracy (60%) or precision
(50%) with the inclusion of gender. Random Forest showed a significant decrease in perfor-
mance across all metrics (accuracy = 40%, precision = 33.33%, sensitivity = 50%) compared to
the first experiment. The specificity for the Logistic Regression, Support Vector Machine,
and Random Forest models in Experiment II is 0.333, or 33.3%. This indicates that each
model correctly identified 33.3% of the actual healthy individuals (label 1) as being healthy,
highlighting a challenge across all models in this experimental setup (Table 5 and Figure 3).

Table 5. Comparison of model performance in Experiment II/III.

Model Name and Hyper Tuned Parameters Accuracy Precision Sensitivity Specificity

RSES 0.7 0.667 0.500 0.875

Logistic Regression {‘C’: 1} 0.5 0.429 0.750 0.333

SVM {‘C’: 0.1, ‘gamma’: 0.01} 0.6 0.500 1.000 0.333

Random Forest {‘n_estimators’: 5} 0.4 0.333 0.500 0.333

The results highlight the challenge in selecting features for predictive modeling, es-
pecially in small datasets. The inclusion of additional variables does not always lead to
improved performance and may sometimes detract from the model’s accuracy due to
overfitting or the introduction of noise.

To conclude, the addition of gender as a feature alongside MoCA scores does not seem
to significantly improve the models’ performance, especially in the case of Random Forest,
where accuracy decreases. However, the RSES model demonstrates a better balance in
sensitivity when predicting between PD patients and healthy individuals compared to
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the individual ML models, although with a slight drop in overall accuracy compared to
Experiment I/III.
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3.5. Experiment III/III: Predict Health Status Based on MoCA Score and IRT + TTS

The third experiment targeted the prediction of whether a participant is healthy based
the (a) MoCA score, (b) IRT, and (c) TTS. This experiment examined whether the addition
of temporal measures as a predictive variable would enhance the model’s performance
compared to using the MoCA score alone.

Importantly, the RSES analysis with the inclusion of temporal values showed an
increase in accuracy compared to the first experiment (80% to 93%). The detailed results
indicate a high accuracy for different classes, with a significant true positive rate and
higher accuracy for classifying PD patients (Table 6). The specificity for the RSES model
in Experiment III/III is approximately 0.934. This indicates that the RSES model correctly
identified 93.4% of the actual healthy individuals as being healthy, demonstrating a better
performance in distinguishing between PD patients and healthy controls than based solely
on MoCA scores, or MoCA scores together with gender.

Table 6. Confusion matrix for predicting participant status (is_healthy = 0/1) based on the
MoCA score, IRT, and TTS using the RSES model, detailing the total number of tested objects
(10), total accuracy (0.93), and coverage (1.0).

Predicted

0 1 No. of Obj. Accuracy Coverage

Actual
0 4.67 0.33 5 0.933 1.000

1 0.33 4.67 5 0.933 1.000

True positive rate 0.93 0.93

The addition of temporal measures as a predictive variable in Experiment III enhanced
the classical model’s performance as well. The Logistic Regression model achieved perfect
sensitivity (100%) and showed an increase in overall accuracy (93%) and precision (80%).
SVM maintained its sensitivity at 100% and showed an improvement in overall accuracy
(90%) and precision (80%) with the inclusion of IRT and TTS. Random Forest showed a
significant increase in performance across all metrics (accuracy = 90%, precision = 100%,
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sensitivity = 75%) compared to the first and second experiments. The specificity for all
ML models also increased. For the Logistic Regression and Support Vector Machine, this
value increased to 83.3%, and Random Forest achieved a perfect (100%) specificity score.

In summary, Experiment III analyzed the impact of adding Instrumental Reaction
Time and Time to Submit to MoCA scores for prediction of health status. The RSES model
achieved a 93% accuracy and sensitivity rate. Machine learning models like Logistic Re-
gression, Support Vector Machine, and Random Forest also showed marked improvements
in their predictive capabilities (Table 7 and Figure 4). Specifically, Random Forest demon-
strated perfect specificity, suggesting that temporal measures significantly enhance the
model’s ability to correctly identify healthy individuals.

Table 7. Comparison of model performance in Experiment III/III.

Model Name and Hyper Tuned Parameters Accuracy Precision Sensitivity Specificity

RSES 0.933 0.934 0.93 0.934

Logistic Regression {‘C’: 0.01} 0.900 0.800 1.00 0.833

SVM {‘C’: 0.01, ‘gamma’: 0.01} 0.900 0.800 1.00 0.833

Random Forest {‘n_estimators’: 2} 0.900 1.000 0.75 1.000
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Figure 4. Enhanced ROC curves for Logistic Regression, Support Vector Machine, and Random Forest
models predicting health status using MoCA scores, IRT, and TTS. The Logistic Regression curve is
covered by the Support Version Machine curve. The Logistic Regression curve (blue line) is covered
by the Support Version Machine curve. The purple dashed line represents the baseline performance
of a random classifier (random chance line).

The results from Experiment III seem very promising. The AUC values provided
for the models in the ROC curves suggest near-perfect or perfect classification ability.
Understandably, to confirm the model’s predictive accuracy, additional validation using an
independent dataset or through a longitudinal prospective study is recommended. We plan
future studies with larger samples to confirm these findings and explore other variables
that may influence the results.

4. Discussion

We examined the predictive accuracy of health status based on MoCA scores. Exper-
iment I focused solely on MoCA scores, Experiment II added gender as a variable, and
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Experiment III included IRT and TTS, alongside MoCA scores. The inclusion of temporal
variables, as presented in Experiment III, highlighted how behavioral and temporal data
can significantly refine the models’ predictive capabilities.

Initially, experiments revealed surprising specificity issues, especially when models
were relying solely on MoCA scores. Interestingly, this aligns with the findings about
the specificity issues of the Montreal Cognitive Assessment. The literature specifically
mentions that while MoCA is good at detecting dementia (high sensitivity), it also produces
a high number of false positives (low specificity). This means it often incorrectly identifies
people as having dementia when they do not.

This issue was particularly raised by Davis et al. (2021), in their systematic review.
They analyzed the accuracy of the MoCA test in detecting dementia across seven studies
involving 9422 participants [37]. Their findings highlighted a significant concern; over
40% of non-demented individuals were falsely identified as having dementia at the MoCA
cut-off of less than 26 points. These findings are in line with the trends we saw in this study.

Furthermore, Rosenblum et al. (2020) highlight the challenges in accurately identifying
mild cognitive impairment in Parkinson’s disease (PD-MCI) using MoCA [38]. They
emphasize that factors such as age, gender, and education significantly influence the test’s
accuracy, complicating the early-stage diagnosis of PD-MCI. This reinforces the notion that
MoCA, while useful, has limitations in distinguishing between PD-MCI and normal aging
or other conditions, especially when demographic variables are significant.

Collectively, insights from the literature validate the patterns we observed in this study
and suggest a potential limitation of MoCA’s effectiveness, particularly in diverse settings
and populations, including the described web-based approach.

Hence, this research advocates for the integration of additional assessment tools
or parameters alongside MoCA to enhance diagnostic accuracy. This is significant in
advancing the field of cognitive assessment, encouraging a more comprehensive approach
that accounts for individual differences.

The findings are particularly crucial for PD-MCI identification, and they show the need
for a nuanced approach that considers demographic and behavioral factors. Accordingly,
this research suggests that relying solely on MoCA may lead to misdiagnoses or overlooked
cases in PD patients.

Importantly, the insights gained from this study can extend to other cognitive as-
sessment tools. They prompt a re-evaluation of current practices and encourage the de-
velopment of more inclusive and accurate assessment strategies, particularly in digital
health platforms.

Furthermore, this study underscores the limitations of MoCA in accurately diagnosing
cognitive impairment across different age groups and in web-based settings. This is
significant because it challenges the one-size-fits-all approach to cognitive assessment and
calls for more personalized or adaptable testing methods.

It is important to acknowledge the limitations of this study. These include the small
size of the research groups, potentially limiting the generalizability of these findings.
The demographic diversity of the described sample may not fully represent the broader
population, particularly in terms of age, gender, ethnicity, and education. The use of a web-
based platform for MoCA assessment has its constraints and may not accurately replicate
the nuances of an in-person testing environment.

The study’s focus on a single tool, MoCA, may not encompass the multifaceted nature
of cognitive impairments. The absence of longitudinal data prevents us from observing
changes over time. External variables that could affect cognitive performance were not fully
controlled. Finally, interpreting interactions in a web-based format poses unique challenges
in understanding the complete cognitive assessment scenario.

Therefore, research should aim to address these limitations by including larger, more
diverse study groups, employing a combination of cognitive assessment tools, and poten-
tially incorporating longitudinal designs to track cognitive changes over time. Further, more
detailed research is crucial for progress in the prevention of neurodegenerative diseases.



Appl. Sci. 2024, 14, 2979 14 of 16

5. Conclusions

The advancement of this field of research can be achieved with the integration of
time-based measurements and rough set theory. These methods significantly enhance the
precision of the Montreal Cognitive Assessment in differentiating between individuals with
Parkinson’s disease and healthy subjects. This enhancement is shown by an improvement
in diagnostic accuracy (80.0% to 93.4%) and precision (57.2% to 93.4%). The use of RST
allowed for the development of rule-based models that are more adaptable and sensitive to
the nuances in cognitive assessment.

An important insight from this research is the role of movement slowness associated
with PD in cognitive assessment. This suggests that cognitive assessments, particularly for
conditions like PD, should not be isolated from other symptom dimensions.

In conclusion, the results of this study advocate for a more integrative approach
in cognitive assessments, where temporal dynamics and other symptomatic features are
considered alongside traditional cognitive measures. Future research should explore similar
integrative approaches in other neurodegenerative conditions and different assessment
settings, including more extensive web-based platforms.
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Abstract. Neurodegenerative diseases (NDs), including Parkinson's (PD) and Alz-

heimer's (AD) disease are devastating conditions that affect millions worldwide, with 

the number of cases expected to rise significantly in the coming years. Despite con-

siderable advancements in understanding their pathophysiology, etiology, and treat-

ment, there is still a lack of effective disease-modifying interventions. Currently, no 

cure exists and there is an urgent need for modern tools that allow precise detection 

and objective severity scoring for the development of new therapeutic targets and 

approaches. Therefore, this study evaluates the effectiveness of an online version of 

the Trail Making Test Part A and B (TMT A and TMT B), incorporating time-based 

measures, to recognize cognitive and motor manifestations of Parkinson's disease 

severity. For validation, this research was conducted with 15 Parkinson’s patients 

under care at UMass Chan Medical School. This study applied the TMT sensitivity to 

executive function impairments by measuring response and reaction times, to corre-

late these with stages of PD severity. Machine learning models (Naïve Bayes, Lo-

gistic Regression, Support Vector Machine, and Random Forest) were used to predict 

the disease severity based on TMT performance. Among these, Random Forest was 

the most effective, achieving scores with an Area Under the Curve (AUC) of 0.92 

(80% accuracy), indicating good performance in distinguishing between mild and 

advanced stages of PD. Although limited by a small sample size, this preliminary 

study highlights the role of digital tools in enhancing PD diagnostics and monitoring. 

Future research with larger cohorts and longitudinal designs is essential to validate 

these preliminary findings and further develop digital diagnostics as crucial in the 

fight against neurodegenerative diseases. 

Keywords: Machine Learning (ML); Trail Making Test (TMT); Diagnostic Accuracy; Parkin-

son’s Disease (PD); Time-Based Measurements; Web-Based Cognitive Testing; IRT; TTS. 

1 Introduction 

Parkinson’s Disease (PD) is a neurodegenerative condition that affects millions glob-

ally and it poses challenges in early detection and severity assessment. Traditional 
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methods for detection and monitoring PD, despite their strengths, hold many limita-

tions, such as invasiveness, high cost, or lack of accessibility [1, 2]. Recent advance-

ments in digital biomarkers and machine learning present promising potential in 

bridging these gaps [3, 4].  

However, research on online cognitive tests for Parkinson's disease (PD) has 

shown that current tools are underdeveloped and there is still an underexplored gap in 

using online cognitive tests and analyzing response dynamics for PD.  

For example, Sousa (2022) emphasizes the lack of a common cognitive assessment 

battery for late-stage PD, and the need for tests that are quick, easy to use, and cover 

all relevant cognitive domains [5]. Here, authors recommend a cognitive assessment 

toolkit that considers the complex characteristics of PD, including being quick and 

easy to use, with minimized motor demands, and covering all relevant cognitive do-

mains. Among the recommended instruments, the Trail Making Test corresponds well 

with these requirements [5]. 

The Trail Making Test Part A (TMT A) is a neuropsychological assessment tool 

primarily sensitive to processing speed and visual attention. It measures an individu-

al's ability to rapidly connect a sequence of numbered circles in ascending order. 

TMT A focuses on basic scanning, attention, and motor speed.  

The Trail Making Test Part B (TMT B) is a cognitive test known for its sensitivity 

to executive functions (involving attention, memory, visual search, motor function, 

and sequencing abilities). Trail B is generally more sensitive to executive functioning 

than TMT A since it requires multiple abilities to complete it.  

But as Park et al. (2022) noted, the equivalency of paper-based and computerized 

tests cannot be assumed [6]. However, their findings support the comparability of 

TMT in computerized assessments and suggest this tool as a starting point for an early 

diagnostic tool. This conclusion is further supported by Mishra et al. (2022), who 

demonstrated that the digitized version of the TMT can determine cognitive-motor 

abilities and distinguish individuals with mild cognitive impairment and PD from 

healthy controls[7]. In their study, they observed correlations between TMT comple-

tion time and gait speed measured by a wearable accelerometer (r = −0.4, p = 0.011) 

and the Montreal Cognitive Assessment (MoCA) score (r = −0.56, p < 0.01). 

Moreover, a study by Templeton et al. (2022) used fourteen tablet-based neu-

rocognitive functional tests and machine learning model (decision trees)[7]. It allowed 

for the discrimination of PD from healthy controls (92.6% accuracy), and early and 

advanced stages of PD (73.7% accuracy). These results compare with current gold 

standard tools, such as standardized health questionnaires like the Unified Parkinson's 

Disease Rating Scale (UPDRS) with 78.3% accuracy and functional movement as-

sessments with 70% accuracy.  

Collectively, these findings underscore that a digital approach is feasible and al-

lows for a comprehensive view of these conditions and their progression. 

Therefore, this study explores the potential of the online version of Trail Making 

and machine learning models in identifying patterns indicative of Parkinson’s Disease 

severity. By doing so, this research provides insights into quick, non-invasive, cost-

effective, and accessible means of PD assessment and monitoring, potentially facili-

tating adapted interventions and earlier diagnosis. 



2 Methods 

We created an online version of Trail Making Test A and B [Figure 1][Figure 2]. 

Then, we invited people with Parkinson’s disease to solve this test. Our goal was to 

score their disease severity level (MILD or ADVANCED). The test took participants 

around two minutes to solve.  

 

 

Fig. 1. The image presents an interactive cognitive task screen where the user is asked to pick 

points in a specific sequence. In TMT A, there are circles labeled with numbers. 

 

Fig. 2. The image presents an interactive cognitive task screen where the user is asked to pick 

points in a specific sequence. In TMT B, there are circles labeled with numbers together with 

letters. 

In addition to the (a) number of mistakes, and (b) total time taken [TTS- time to 

submit, a standard measure in this test], we also recorded (c) instrumental reaction 
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time [IRT- time to first selection] [8, 9]. That allowed us to assess the psychomotor 

speed and executive functions in two approaches.  

In both approaches, reaction time was subtracted from the response time, to extract 

a pure psychometric component. In the first approach, we subtracted the time to com-

plete TMT A from TMT B (TMT B − TMT A), that is a standard method in the clini-

cal setup [10]. However, in the clinical context, the distinction between reaction and 

response times is not traditionally emphasized, and it’s introduced as a novel method 

for this test. 

Furthermore, in the second approach, we added the pure response times together 

(TMT A + TMT B) in order to evaluate machine learning models’ performance using 

this variable and compare the results. In both approaches, longer times represented 

worse cognitive function.  

All participants had confirmed Parkinson’s disease diagnosis, and they were re-

ceiving treatment and advice from neurologists at UMass Chan Medical School. Eight 

participants had UPDRS III scores between 10 and 29 (indicative of mild symptoms 

of PD), and seven participants with UPDRS III scores above 30 (indicative of ad-

vanced symptoms of PD). The sample size (n=15) size makes available only prelimi-

nary comparisons and insights. However, we plan a study with a larger group to con-

firm these findings and explore other variables that may influence the results. 

We analyzed aggregated data using IBM SPSS 29 software. We compared varia-

bles between patients with mild and advanced Parkinson's disease, with p-value sig-

nificant below 0.05.  

Finally, we evaluated  multiple ML models in a task of disease severity prediction. 

We implemented four machine learning models in Python using the library scikit-

learn for modeling and metrics, together with pandas for data processing, and seaborn 

with matplotlib for visualizations [11–14]. 

The size of a dataset (n=15) produced a risk of overfitting. To mitigate this risk, we 

considered simpler models rather than deep neural networks. Specifically, we selected 

Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), and Random 

Forest. Moreover, before training, we extracted features importance to apply only the 

most relevant ones using Random Forest classifier. 

Furthermore, we note that models’ performance can vary based on the specific 

characteristics of the dataset. Therefore, for a better overview of the performance, we 

analyzed and compared them alongside. 

To address the consideration of hyperparameter tuning, we used GridSearchCV 

with cross-validation, and we limited the range and number of hyperparameters. We 

used Stratified K-Fold cross-validation method that ensured the same proportion of 

classes in each fold. The dataset was balanced. Models were trained on  random 10 

samples from the dataset and validated on 5 independent samples (train_test_split, 

allocating 1
3⁄   of the data for testing before modeling). The test data was separated 

before applying k-fold CV.  

The flowchart of applied methodology is presented in Figure 3. This report pre-

sents outcomes, statistics, and ML models of this preliminary research. 



 

Fig. 3. Flowchart of applied methodology. 

2.1 Features selection  

In this study, the goal was to predict whether a participant belongs to MILD or 

ADVANCED group. However, with a small dataset, having too many features can 

lead to overfitting, where the model learns the noise in the training data instead of the 

actual signal.  

Here, the introduction of a new composite variable can provide additional insights, 

especially when dealing with medical data sets and when optimizing for machine 

learning models. Therefore we experimented with two new composite variables 

(tmt_ba_medical_response_ms and tmt_ba_artificial_response_ms), that are designed 

to capture different aspects of TMT performance and narrow down the number of 

parameters. 

Variable tmt_ba_medical_response_ms is calculated as the difference between the 

TMT B response time and reaction time, minus the difference between the TMT A 

response time and reaction time (Equation 1).  

Equation 1. TMT_BA_MEDICAL_RESPONSE_MS = (TMT_B_RESPONSE_MS - 

TMT_B_REACTION_MS) - (TMT_A_RESPONSE_MS - TMT_A_REACTION_MS) 

Conceptually, it isolates the pure response component of the TMT B task from the 

TMT A task, attempting to adjust for basic reaction time to highlight more specific 

cognitive processing or motor execution times involved in the more complex TMT B 

task compared to TMT A. 

On the other hand, variable tmt_ba_artificial_response_ms sums the differences 

between the response and reaction times for both TMT B and TMT A (Equation 2).  

TMT + IRT + TTS 

Dataset 

Preprocessing 

Testing dataset Training dataset 

Machine learning 

Grid search 
Cross-validation 

Split 
33.3% -- 66.6% 

Tuned models Predictions 



6 

Equation 2. TMT_BA_ARTIFICIAL_RESPONSE_MS =  (TMT_B_RESPONSE_MS - 

TMT_B_REACTION_MS) + (TMT_A_RESPONSE_MS - TMT_A_REACTION_MS) 

This approach combines the total time that is required to complete both tasks, po-

tentially serving as a single measure of the cognitive and motor demands placed on 

the individual by both tests. 

Both approaches allowed us to conduct modeling using clinically relevant parame-

ters, such as error count for both tests, and singular time measurement in each exper-

iment (either tmt_ba_medical_response_ms or tmt_ba_artificial_response_ms, ac-

cordingly). 

It’s important to note that in clinical settings, practitioners typically measure only 

response time in seconds using a pen-and-paper method for the TMT, without regis-

tering reaction time with high precision. This traditional approach does not capture 

the nuanced differences between reaction and response times that our composite vari-

ables do. Hence, our methodology offers a more accurate and insightful analysis of 

TMT performance, surpassing the conventional clinical setup's capabilities.  

3 Results 

The study involved fifteen participants. All of them had a confirmed Parkinson’s dis-

ease diagnosis, and they were receiving treatment and advice from neurologists at 

UMass Chan Medical School. Eight participants had UPDRS III scores between 10 

and 29 (indicative of mild symptoms of PD), and seven participants with UPDRS III 

scores above 30 (indicative of advanced symptoms of PD). Accordingly, patients 

were divided into two categories: MILD and ADVANCED. 

3.1 Statistical analysis 

MILD had an average age of 70.75 years (Std. Error Mean [SE] = 1.306), with four 

females and four males. ADVANCED had an average age of 70.86 (SE = 3.074), with 

four females and three males [Table 1, Figure 4]. 

Both groups have a similar age profile, with MILD at an average of 70.75 years 

and ADVANCED at 70.86 years. The p-value of 0.974 suggests there is no significant 

difference in age between the two groups. The gender distribution (represented as a 

proportion, with 0 for males and 1 for females) is slightly higher for females in the 

ADVANCED group (0.57) compared to the MILD group (0.50). However, the p-

value of 0.800 shows this difference is not statistically significant. 

On average, MILD patients made more errors (1.50) on the TMT A than 

ADVANCED patients (0.86). Despite this, the p-value of 0.599 indicates that the 

difference is not statistically significant. 

 



Table 1. Comparison of the characteristics of patients in two groups – MILD and ADVANCED 

(ADV). 

Variable MILD 

(n=8) 

Std. Err. ADV 

(n=7) 

Std. Err. p-value 

Age(y) 70.75 1.306 70.86 3.074 0.974 

Gender(0=M,1=F) 0.50 0.189 0.57 0.202 0.800 

TMT A Errors  1.50 0.926 0.86 0.705 0.599 

TMT A IRT(s) 5.408 1.956 8.199 4.951 0.591 

TMT A TTS(s) 30.637 4.953 34.152 6.690 0.675 

TMT B Errors  3.50 2.478 5.71 2.523 0.544 

TMT B IRT(s) 3.399 0.377 3.282 0.452 0.844 

TMT B TTS(s) 60.818 11.42 81.856 11.50 0.219 

 

 

Fig. 4. Comparison of the characteristics of patients in two groups – MILD and ADVANCED 

(ADV). 

The reaction and response times for TMT A are higher for the ADVANCED group 

compared to the MILD group, indicating slower performances. Specifically, reaction 

times average 5.408 seconds for MILD and 8.199 seconds for ADVANCED, while 

response times are 30.637 seconds for MILD and 34.152 seconds for ADVANCED. 

Neither difference is statistically significant, with p-values of 0.591 and 0.675, respec-

tively. Interestingly, the reaction times in both groups were higher for TMT A than 

for TMT B, potentially due to the novelty aspect. This is because TMT A was pre-

sented as the first test, making users less familiar with it. As a result, they became 

more adjusted to TMT B, which may have shortened their reaction times. 

Furthermore, ADVANCED patients tend to make more errors (5.71) on the TMT B 

than MILD patients (3.50), though this difference is not statistically significant (p-

value = 0.544). Finally, for TMT B, the reaction and response times do not signifi-
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cantly differ between groups, with MILD patients slightly faster in reaction times and 

slower in response times compared to ADVANCED. The p-values of 0.844 for reac-

tion times and 0.219 for response times suggest these differences are not statistically 

significant. 

3.2 Patterns in variables 

The connections between variables were explored using a heatmap form of Pearson 

correlation coefficients [Figure 5]. This matrix presented a strong positive correlation 

of 0.69 between the age during the test and the reaction time in TMT A, suggesting 

that as age increases, the reaction time tends to increase as well.  

 

 

Fig. 5. A heatmap representing Pearson correlation coefficients. The darker the blue, the 

stronger the positive correlation; the closer to white or the presence of lighter blue indicates a 

weaker correlation. It's important to note that a correlation does not imply causation. These 

values simply indicate the strength and direction of the linear relationship between the pairs of 

variables. 

Moreover, there is a very strong positive correlation of 0.74 between the number of 

errors made in TMT A and the TMT A response time, indicating that a higher number 

of errors is associated with a longer response time to complete TMT A. 



Likewise, there is a very strong positive correlation of 0.75 between TMT B errors 

and TMT B response time, implying that as the number of errors increases, the total 

time to respond in TMT B also increases. 

Additionally, there is a significant positive correlation of 0.47 between TMT B re-

action time and TMT B response time, suggesting that longer reaction times are 

somewhat associated with longer total times to respond in TMT B. 

Finally, a strong correlation exists between age during the test and TMT A reaction 

time, with a coefficient of 0.69, indicating that older participants may have slower 

reaction times in TMT A. The other correlations presented in the heatmap are weaker, 

meaning they show less of a linear relationship between variables. For instance, 

there's a weak negative correlation between TMT A Errors and Age during Test (-

0.31), suggesting a slight tendency for older participants to make fewer errors on 

TMT A, although this relationship is not strong. 

3.3 Machine learning models 

To analyze how models learn, we used the Area Under the Curve (AUC). This is a 

measure of the overall performance of a classification model.  

TMT errors and medical response dynamics.  

We incorporated the number of errors from TMT A and TMT B (tmt_a_errors, 

tmt_b_errors), together with medical response time (tmt_ba_medical_response_time) 

in order to predict UPDRS group (MILD or ADVANCED). 

The Random Forest has the highest AUC of 0.92, indicating it has the best perfor-

mance among the four classifiers in terms of ROC-AUC [Figure 6]. This presents that 

it maximizes the true positive rate while minimizing the false positive rate better than 

the other classifiers in this set of ML algorithms. 

Random Forest model performed noticeably better than the Logistic Regression, 

Support Vector Machine and Naïve Bayes. Random Forest correctly predicted 80% of 

the outcomes (accuracy: 0.8, precision: 0.75, sensitivity: 1.0, specificity: 0.5), which 

is significant when compared to other models [Table 2]. Random Forest predicted all 

positive cases correctly (1 true negatives, 3 true positives, and 1 false positive, with 

no false negatives). 

The Logistic Regression and Support Vector Machine models both show a low ac-

curacy of 0.4 (precision of 1.0 and sensitivity of 0.0), which means they were unable 

to correctly identify positive cases in this scenario. However, their specificity is at 1.0, 

indicating they could correctly identify all negative cases.  

Furthermore, Naïve Bayes demonstrates the lowest accuracy among the compared 

models (accuracy: 0.2, precision: 0.33, sensitivity: 0.33, specificity: 0.0). 



10 

 

Fig. 6. The Area Under the Curve (AUC) is a measure of the overall performance of a classifi-

cation model. Using Medical Response Time, Random Forest has the highest AUC of 0.92, 

indicating it has the best performance among the four classifiers. The Logistic Regression curve 

(blue line) is covered by the Support Version Machine (orange line) and Random Forest (green 

line) curve. The random change line represents the baseline performance of a random classifier 

(purple dashed line). 

Table 2. Comparison of models' performance using tmt_a_errors, tmt_b_errors and 

tmt_ba_medical_response_ms. The table presents Accuracy (Acc.), Precision (Prec.), Sensitivi-

ty (Sens.), and Specificity (Spec.). 

Model Name Hyper-tuned Params Acc. Prec. Sens. Spec. 

Logistic Regression {'C': 1.0, 'max_iter': 

100000, 'penalty': 'l2', 

'solver': 'lbfgs'} 

0.40 1.00 0.00 1.00 

Support Vector  

Machine 

{'C': 1.0, 'kernel': 'linear', 

'max_iter': 100000} 

0.40 1.00 0.00 1.00 

Random Forest { bootstrap': True, 'crite-

rion': 'gini', 

'max_features': 'sqrt', 

'n_estimators': 100} 

0.80 0.75 1.00 0.50 

Naive Bayes {'priors': None, 

'var_smoothing': 1e-09} 

0.20 0.33 0.33 0.00 

TMT errors and artificial response dynamics. 

In the second experiment, we incorporated the number of errors from TMT A and 

TMT B (tmt_a_errors, tmt_b_errors), together with artificial response time 

(tmt_ba_artificial_response_time) in order to predict UPDRS group (MILD or 

ADVANCED). 

The Random Forest has the highest AUC of 0.92, achieving results comparable to 

the first experiment [Figure 7]. After the analysis of feature importance in both mod-



els it seems that Random Forest scored tmt_ba_artificial_response_ms  and 

tmt_ba_medical_response_ms similarly (0.65), placing tmt_b_errors on second 

(0.23), and tmt_a_errors on third place (0.11). 

Repeatedly, Random Forest model performed better than the Logistic Regression, 

Support Vector Machine and Naïve Bayes. Random Forest correctly predicted 80% of 

the outcomes (accuracy: 0.8, precision: 0.75, sensitivity: 1.0, specificity: 0.5), which 

is significant when compared to other models [Table 3]. Random Forest predicted all 

positive cases correctly (1 true negatives, 3 true positives, and 1 false positive, with 

no false negatives). 

The Logistic Regression and Support Vector Machine models both show a low ac-

curacy of 0.4 (precision of 1.0 and sensitivity of 0.0), which means they were unable 

to correctly identify positive cases in this scenario. However, their specificity is at 1.0, 

indicating they could correctly identify all negative cases.  

Furthermore, Naïve Bayes demonstrates the lowest accuracy among the compared 

models (accuracy: 0.2, precision: 0.33, sensitivity: 0.33, specificity: 0.0).  

In conclusion, Random Forest stands out with the highest accuracy (0.8), good pre-

cision (0.75), perfect sensitivity (1.0), and a specificity of 0.5. Despite the lower spec-

ificity compared to Logistic Regression and Support Vector Machine, the high sensi-

tivity and accuracy rates highlight its overall superior performance in predicting out-

comes correctly. 

 

Fig. 7. The Area Under the Curve (AUC) is a measure of the overall performance of a classifi-

cation model. Using Artificial Response Time, Random Forest has the highest AUC of 0.92, 

indicating it has the best performance among the four classifiers. The random change line rep-

resents the baseline performance of a random classifier (purple dashed line). 

  



12 

Table 3. Comparison of models' performance using tmt_a_errors, tmt_b_errors and 

tmt_ba_artificial_response_ms. The table presents Accuracy (Acc.), Precision (Prec.), Sensi-

tivity (Sens.), and Specificity (Spec.). 

Model Name Hyper-tuned Params Acc. Prec. Sens. Spec. 

Logistic Regression {'C': 1.0, 'max_iter': 

100000, 'penalty': 'l2', 

'solver': 'lbfgs'} 

0.40 1.00 0.00 1.00 

Support Vector 

Machine 

{'C': 1.0, 'kernel': 'line-

ar', 'max_iter': 100000} 

0.40 1.00 0.00 1.00 

Random Forest { bootstrap': True, 'cri-

terion': 'gini', 

'max_features': 'sqrt', 

'n_estimators': 100} 

0.80 0.75 1.00 0.50 

Naive Bayes {'priors': None, 

'var_smoothing': 1e-09} 

0.20 0.33 0.33 0.00 

4 Discussion 

This study preliminarily demonstrates the utility of the Trail Making Test with tem-

poral measures in capturing the cognitive and motor impacts of bradykinesia in Par-

kinson’s Disease.  

Importantly, this study evaluates both TMT A (processing speed and visual atten-

tion), and TMT B (cognitive functions) together with response dynamics (initial cog-

nitive processing and decision-making speed). This is because in Parkinson’s disease, 

cognitive changes are independent from the motor symptoms development and thus 

have to be assessed independently[15]. This separation allows for the nuanced detec-

tion of PD’s impact. While TMT A focuses on motor speed and visual search abili-

ties, requiring participants to connect numbered dots in sequence, TMT B adds a cog-

nitive layer by alternating between numbers and letters. Incorporation of the reaction 

and response time measurements refines this approach, making this test more sensi-

tive to slowed voluntary movement detection. 

Therefore, there is the potential to approximate the real-time effects of dopamine 

through TMT performance. Impaired patterns observed in the test could be indicative 

of underlying disruptions in dopaminergic pathways, which are central to PD's patho-

physiology. This is particularly valuable given the challenge of directly assessing 

neurochemical changes in a clinical setting. By correlating TMT performance with 

known dopaminergic deficits, clinicians gain insights into the disease's neurobiologi-

cal patterns. 



Interestingly, integration of insights from computational models of the brain and 

detailed studies on neuronal oscillations in PD patients provides a deeper understand-

ing of the disease’s neural basis[16]. Mathiopoulou et al. presented that subthalamic 

beta oscillations are directly affected by both motor activity and therapeutic interven-

tions such as dopamine replacement and deep brain stimulation (DBS)[17]. These 

beta oscillations, which are known to correlate with motor symptom severity, suggest 

a mechanism similar to the asynchronous process integration in the retina[16].  

Just as the retina synchronizes processes to produce a coherent output from dispar-

ate sensory inputs, the subthalamic nucleus is crucial in coordinating motor com-

mands disrupted by dopaminergic degeneration in PD. The TMT, by measuring reac-

tion and response times, essentially assesses the efficiency of these neural synchroni-

zation patterns. Prolonged times might reflect the brain's struggle to integrate and 

synchronize neural processes efficiently, alike to the difficulties in processing and 

output synchronization. 

To recognize these disrupted patterns, this study presents that Random Forest can 

be a helpful and accurate tool for this task. Random Forest are used because of their 

simplicity, ease of implementation, and their ability to perform well on a wide range 

of tasks with minimal hyperparameter tuning. Random Forest can capture interactions 

and nonlinear relationships between features, giving a possibility to model dopamin-

ergic pathways disruptions through motor and cognitive data. It is worth noting that 

findings of this study align with other research that presents good performance of 

Random Forest in the disease severity classification task[9, 18, 19]. 

Here, it is important to note that this study has several limitations. In such a small 

group, even individual variability could account for these findings. These include the 

small size of the research groups, potentially limiting the generalizability. Therefore 

further, more detailed research (larger sample size, longitudinal study) is crucial for 

more detailed insights that help with the prevention of neurodegenerative diseases. 

In light of this, the low performance of the Naïve Bayes model can be attributed to 

the small sample size of our dataset. Naïve Bayes relies on the assumption of a nor-

mal distribution of data and requires a sufficiently large dataset to accurately estimate 

the priors and likelihoods. Given the limited number of participants (n=15), the data 

may not adequately capture the underlying distributions, leading to lower perfor-

mance of the Naïve Bayes model. This issue might also relate to the fact that this 

dataset may not be representative of the broader population, further impacting the 

model's ability to generalize well. 

Despite its limitations, this research shows the potential of a digital approach and 

contributes to the understanding and management of PD, particularly in customized 

interventions and early detection. TMT with temporal measures could be integrated 

into clinical practice or remote monitoring systems to better navigate and mitigate the 

impacts of PD. 

Implementation of web version of TMT tests in clinical practice could offer a 

quick, non-invasive, and accessible method of assessing disease impact on cognitive 

and motor functions. Clinicians could use these tests for regular monitoring, enabling 

well-timed adjustments to treatment plans based on subtle changes in cognitive or 

motor performance.  
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In practice, implementing this approach requires creating a website that presents a 

TMT test with points labeled with letters and numbers, which participants must click 

in the correct order. This application needs to count the number of mistakes and rec-

ord the start time of the first selection (IRT, e.g., calling performance.now()) and the 

time of the last selection (TTS, with the same method call). These metrics, along with 

TMT results, can provide valuable insights into delayed patterns in motor and cogni-

tive responses. 

Importantly, this technique can be enhanced by incorporating trajectory analysis of 

mouse movement. Moreover, there is an opportunity for further integration data going 

from wearable devices using sensors such as accelerometers and gyroscopes[7].  

Integrating these assessments into telehealth platforms could facilitate remote mon-

itoring, making it easier to track patient progress and intervene promptly. Such ad-

vancements could significantly enhance personalized care strategies, improving out-

comes for PD patients.  

To conclude, the results of this paper call upon the research community to explore 

these tools further and clinicians to consider their practical applications, given the 

significant diagnostic benefits that both they and their patients can gain. 
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showed, these shared hubs IRGs (CXCR4 and FLT1) have brilliant prog-
nostic values (AUC>0.7) and whose expression level was statistically
significantly elevated (p<0.05) in the PDD brain samples compared with
the age-matched controls.
Conclusions:This work highlighted the existence of shared immune-
related mechanisms between AD and PD and described the CXCR4 and
FLT1 as candidate biomarkers for developing novel strategies for prog-
nostic evaluation, and therapeutic decision making for AD and PD patients.

P 066 (GPT)

CHARCOT-MARIE-TOOTH DISEASE ASSOCIATED WITH PARKINSON
DISEASE, ABOUT A CASE

H. Pacheco Mendoza 1, V. Alvarez Rivera 1. 1Universidad Nacional Autonoma
de Mexico, Mexico City, Mexico

Background: Charcot-Marie-Tooth disease (CMT) is a peripheral neurop-
athy accompanied by weakness, atrophy, pes cavus, tremor, hearing loss
and changes in sensitivity. In Parkinson Disease (PD), patients course with
bradykinesia, rigidity, tremor, and postural instability. The presentation of
both pathologies in a same individual is rare and cases are related to
mutations of the LRSAM1gene.
Methods: An 81-year-old woman with a history of 2 grandchildren with
MTC. Onset at age 17 with deformity in both feet and high plantar arch. He
presented generalized weakness and changes in sensitivity, progressed
slowly over time with difficulty walking and falls. At 75 years, she pre-
sented bradykinesia, generalized and tremor in upper limbs, in addition to
cognitive impairment. This a novel case of a Mexican patient who came to
Internal Medicine hospitalization, due to liver failure. After it's first eval-
uation, we found out that patient course with both CMT and PD. We
recorded (previously patient consent sign) and performed several scales in
her evaluation, such as UPDRS, MDS-UPDRS, NMSS, PDQ-39, MMSE and
MoCA test, also a Levodopa test to evaluate PD, SARA and ICARS and
clinical examination to evaluate CMT. We also performed neuroimage
studies to a better characterization of both entities.
Results:A levodopa test was performed, with improvement in motor
symptoms, cognitive tests with severe cognitive impairment, clinimetric
scales for moderate ataxia. Simple tomography of the skull with cortico-
subcortical atrophy and Magnetic resonance imaging (T1, T2, Flair, Swan).
Conclusions:Few cases of CMTand PD have been reported in the literature,
finding 2 altered genes that could be the link between both entities. In
addition, there is another important factor, limb ataxia, which has also
been found to be related to PD and CMT. There is the possibility of a
relationship between both diseases, however, it would be necessary to
carry out genetic studies to be able to identify them due to the great
heterogenicity of both neurological diseases.

Part III F: Parkinson Disease Subtypes, natural course

P 067

RELATIONSHIP BETWEEN RISK AND PROTECTIVE FACTORS AND
CLINICAL FEATURES OF PARKINSON’S DISEASE

M. Costanzo 1, D. Belvisi 2, R. Pellicciari 3, A. Fabbrini 2, G. Ressa 4, S.
Pietracupa 1, M. De Lucia 1, N. Modugno 1, F. Magrinelli 5, C.
Dallocchio 6, T. Ercoli 7, A. Nicoletti 8, M. Zappia 8, P. Solla 7, M.
Bologna 2, G. Fabbrini 2, M. Tinazzi 5, A. Conte 2, A. Berardelli 2, G.
Defazio 7. 1 IRCCS Neuromed, Pozzilli, Italy; 2 Sapienza, University of Rome,
Department of Human Neurosciences, Rome, Italy; 3 "Aldo Moro" University
of Bari, Department of Basic Medical Sciences, Bari, Italy; 4Albert Einstein
College of Medicine, Department of Developmental and Molecular Biology,
New York, United States; 5University of Verona, Department of
Neurosciences, Verona, Italy; 6ASST Pavia-Ospedale Civile di Voghera,
Voghera, Italy; 7University of Cagliari, Department of Medical Sciences and
Public Health, Cagliari, Italy; 8University of Catania, Department G.F.
Ingrassia, Catania, Italy

Background:Non-genetic risk and protective factors play a relevant role in
PD development but the relationship between these factors and PD clinical

features is unknown. The aim of the present multicenter study was to
investigate possible associations between risk/protective factors and
clinical manifestations in a large sample of PD patients.
Methods:Six hundredninety-four patientswith PDparticipated in the study.
Patients underwent a clinical evaluation assessing motor and non-motor
symptom severity. Motor symptoms were evaluated by the International
Parkinson and Movement Disorder Society-sponsored Unified Parkinson’s
Disease Rating Scale part III. Non-motor symptoms were evaluated by the
Non-Motor Symptoms Scale. Risk and protective factors were previously
identified in the present population and included coffee consumption, ciga-
rette smoking, and physical activity as protective factors and a family history
of PD, dyspepsia, and exposure to toxic agents and general anesthesia as risk
factors. Linear regression models were used to identify possible associations
between risk/protective factor profile and clinical variables.
Results:Coffee consumptionwas associated with an older age at onset and
milder motor symptom severity. Non-motor symptom severity was found
to be positively associated with dyspepsia and inversely associated with
physical activity. We did not find any association between risk/protective
factor profile and motor subtype of patients.
Conclusions:Risk and protective factors of PD development are associated
with PD clinical features. This finding may represent the first step in the
development of new preventive approaches able to slow disease onset and
mitigate the extent of clinical manifestations.

P 068 (GPT)

AMANTADINE TREATMENT IN PARKINSON’S DISEASE PATIENTS AS A
MODULATORY FACTOR OF SARS-COV-2 INFECTION

S. Szlufik 1, A. Chudzik 2, A. Przybyszewski 2, D. Koziorowski 1. 1Medical
University of Warsaw, Department of Neurology, Faculty of Health Sciences,
Warszawa, Poland; 2 Polish Japanese Academy of Information Technology,
Department of Informatics, Warsaw, Poland

Background:Amantadine has been used for the prevention and treatment
of viral influenza A, but more recently it is used mainly in PD patients.
Previous studies showed a possible impact of amantadine on COVID-19
severity in patients using this drug due to other (neurological diseases,
mainly PD). Therefore the aim of this study was to evaluate the possible
impact of amantadine on the SARS-Cov-2 infection in Parkinson’s disease
(PD) patients.
Methods:It was a nation-wide survey performed in Polish PD population
from 01.2021 till 01.2022. All members of Polish PD foundations have been
asked to answer a survey e 140 PD patients filled the questionnaire con-
sisting of 35 questions concerning the amantadine treatment, Parkinson’s
disease and SARS-Cov-2 infection history. The patients were divided into 2
groups: group A+ which was treated with amantadine (57 cases) and
group A- (83 non-amantadine takers).
Results:We have observed more slight symptoms and progression of
SARS-Cov-2 infection in PD patients taking amantadine (8 patients COVID-
19+) than in PD patients not taking amantadine (12 patients COVID-19+).
The symptoms of COVID-19 in A+ group were slight weakness, sweating or
none of symptoms whereas group A- mainly demonstrated cough, smell
loss, high temperature e one of group A- patients was hospitalized.
Conclusions:Amantadine treatment in PD patients can reduce the severity
of SARS-Cov-2 infection in PD patients.

Part III G: Parkinson Disease Clinical assessment
P 069

EFFECT OF VENTRICULAR METRICS ON THE TREATMENT RESPONSE IN
PARKINSON’S DISEASE

J.-J. Lee 1, J.S. Baik 2. 1 Ilsan Paik Hospital, Inje University College of Medicine,
Department of Neurology, Goyang, Korea, Republic of; 2 Sanggye Paik
Hospital, Inje University College of Medicine, Department of Neurology,
Seoul, Korea, Republic of

Background: A myriad of factors affects the mechanism of actions on
balance and gait in Parkinson’s disease (PD). We sought to explore the
impact of cerebral ventricular metrics on treating patients with PD.
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Abstract. There has been a lot of buzz surrounding new drug discoveries that claim to cure Alzheimer’s disease (AD).
However, it is crucial to keep in mind that the changes in the brain linked to AD start occurring 20–30 years before the first
symptoms arise. By the time symptoms become apparent, many areas of the brain have already been affected. That’s why
experts are focusing on identifying the onset of the neurodegeneration processes to prevent or cure AD effectively. Scientists
use biomarkers and machine learning methods to analyze AD progressions and estimate them “backward” in time to discover
the beginning of the disease.

Keywords: Alzheimer’s disease, Clinical Dementia Rating SUM of Boxes, cognitive tests, multi-granular computing, rough
set theory

The potential impacts of these methods on early
detection and treatment strategies are important for
AD as the prevalence of this disease is increasing
rapidly due to our aging population. By 2050, an esti-
mated 152 million cases could exist worldwide [1].
The earliest biomarker for AD, total tau (t-tau) in the
cerebrospinal fluid (CSF), appears 34 years before
the onset of the first symptoms, which can be asso-
ciated with clinical impairment several decades later
[2].

Cognitive tests and CSF amyloid-� (A�) and phos-
phorylated tau (p-tau) also show changepoints 10–15
years before symptom onset. Cognitive changes were
estimated by Cognitive Test Substitution, Logical
Memory Delayed, Pair Associates Delayed, and
Boston Naming Test [2]. Magnetic resonance imag-
ing (MRI) visible changes in medial temporal lobes
can be observed about 6 years before AD onset [2].
However, MRI changes were not the subject of [3].

∗Correspondence to: Andrzej W. Przybyszewski, Faculty of
Computer Science, Polish-Japanese Academy of Information
Technology, 86 Koszykowa St., 02-008 Warsaw, Poland. Tel.: +48
608264992; E-mail: przy@pjwstk.edu.pl.

Regrettably, no cure for AD currently exists. By
the time clinical symptoms and neurological diagno-
sis appear, many parts of the brain have already been
affected inter alia by intercellular t-tau or A�, mak-
ing recovery impossible. Since the neurodegenerative
processes begin two to three decades before observed
symptoms, the key to fighting AD is to estimate the
beginning period of the AD-related brain changes.

In their review, Cabrera-León et al. (2024) focus on
state-of-the-art studies on AD’s automatic diagnosis,
prognosis, and early stages, mainly mild cognitive
impairment [3]. Classification methods were based
on artificial neural networks, including deep learning,
and data from modalities different from brain signals.
By looking into different machine learning methods,
databases, and measured parameters these examined
studies shed some light on the complex mechanisms
related to AD in the brain.

There has been a recent increase in cross-sectional
studies that use neural computation methods, particu-
larly in the last two years. These studies have utilized
both artificial neural networks and deep neural
networks-based studies, except in areas not involv-
ing neuroimaging where deep learning dominates.
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Characterized by their deep layer structures and
extensive computational requirements, deep learning
methods present challenges in optimization and cost.
Transfer learning has been highlighted as a solution
to mitigate these issues; however, its application was
limited in the studies reviewed. This could be because
convolutional neural networks are not used as much
when neuroimaging data are not involved.

The review observed a broad range of dataset sizes
and highlighted the challenge of class imbalance in
the datasets that can bias model predictions, with
various tactics applied to overcome this issue. Impor-
tantly, binary classification tasks were more common
than multiclass ones, with the most common being the
differentiation between cognitively normal individu-
als and those with AD due to clearer distinctions in
early research stages. Prediction of the severity stage
of AD was rare. Authors noticed problems, particu-
larly in the context of unbalanced datasets. Therefore,
the review advocates the use of performance metrics,
such as the area under the curve, sensitivity, speci-
ficity, precision, and balanced accuracy, to provide
more meaningful comparisons of study outcomes,
especially in the context of unbalanced data.

There is indeed a need for more quantitative meth-
ods in the diagnosis and prognosis of mild cognitive
impairment and AD. While qualitative measures such
as cognitively normal, mild cognitive impairment,
and dementia are commonly used, they can be sub-
jective and not ideal for machine learning methods.
By using more quantitative measures, we can bet-
ter identify the onset of neurodegenerative processes
and potentially develop more effective treatments and
prevention strategies.

Furthermore, addressing the issue of homogeneity
in binary classification studies within the field, we
utilized the intelligent granular computing technique
to evaluate AD progressions and potentially identify
the beginning of neurodegeneration processes in a
backward direction. Intelligent Granular Computing
and Rough Set Theory are advanced computational
approaches that offer promising avenues for under-
standing complex data patterns. Our granules are a
set of attributes that determine different AD stages.
We proposed to implement Intelligent Granular Com-
puting as a Rough Set Theory that introduced rules
determining the possibility of dementia in normal
subjects observed for almost 30 years in the BIO-
CARD project [4].

In the BIOCARD study, neurologists evaluated
subjects every year with the global score Clinical
Dementia Rating (CDR) parameters to determine

if a particular individual is normal, has mild cog-
nitive impairment, or has dementia [4]. We used
classification based on CDRSUM (sum of boxes)
as a more precise and quantitative general index
than the global score to provide more informa-
tion on patients with mild dementia [5]. We were
using the cognitive attributes described above with
some combinations of additional attributes with the
help of multi-granular computing to demonstrate that
different sets of attributes were important for the clas-
sification of each patient [6]. Additionally, by using
rules from patients classified by neurologists as AD
and applying them to neurologically normal subjects
(CDRSUM = 0), we found that some of them had
CDRSUM > 0. Based on the study’s rules, we pre-
dicted (in 21 normal subjects) that one subject might
get mild dementia (CDRSUM > 4.5), one very mild
dementia (CDRSUM > 2.25), and five others might
get questionable impairment (CDRSUM > 0.75) [5].

Earlier detection and more personalized interven-
tions are possible with artificial intelligence methods.
They can uncover patterns invisible to neuropsychol-
ogists in the cognitive attributes of normal subjects.
That might indicate their pre-dementia stage 5–10
years before symptoms onset [2].
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