
Machine Learning Tools and Techniques
Supporting News Media Bias Analysis

PhD Thesis

mgr inż. Katarzyna Baraniak
supervisor: dr hab. Marcin Sydow

Polish-Japanese Academy of Information Technology
Warsaw, June 16, 2023

Contents

I Background 5

1 Introduction 7
1.1 Aim and scope . 7
1.2 Motivation . 7
1.3 Contents of the thesis . 9
1.4 Main contributions . 9
1.5 Software and Hardware . 10

2 Related work 13
2.1 General media bias . 13
2.2 Visibility and Agenda bias . 14
2.3 Tonality . 15
2.4 Persuasion detection . 17

3 Theoretical background 19
3.1 Basic text representations . 19

3.1.1 Bag-of-words model . 19
3.1.2 Tf-idf . 20
3.1.3 N-grams . 20

3.2 Shallow machine learning . 22
3.2.1 Logistic regression . 22
3.2.2 Support vector machines 22

3.3 Neural networks . 24
3.3.1 Feed-forward Neural Networks 24
3.3.2 Word Embeddings . 27
3.3.3 Recurrent Neural Networks 29
3.3.4 LSTM . 30
3.3.5 GRU . 30
3.3.6 CNN . 31
3.3.7 Autoencoders . 33
3.3.8 Attention . 34
3.3.9 Transformers . 37
3.3.10 Bidirectional Encoder Representations from Transformers

(BERT) . 39

3

4 CONTENTS

II Experiments 41

4 Visibility and Agenda bias 43
4.1 Entity timelines experiments . 43

4.1.1 Problem Specification . 43
4.1.2 Experiments . 44
4.1.3 Experimental results of entity occurrences analysis 45

4.2 News similarity . 49
4.2.1 Problem Specification . 50
4.2.2 News similarity detection 50
4.2.3 Towards news bias detection 51
4.2.4 Experimental Setup . 51
4.2.5 Experimental Results on Articles Similarity Detection . . 53
4.2.6 Experimental Results on News Article Source Detection . 54

4.3 Summary . 55

5 Entity-based news sentiment analysis 57
5.1 Motivation . 57
5.2 The SEN dataset . 58

5.2.1 Collecting and selecting the data 58
5.2.2 Data preprocessing, cleansing and annotation 59
5.2.3 Outlier annotator detection 61
5.2.4 General entity bias detection 64

5.3 Experiments on entity-level sentiment classification on the SEN
dataset . 64
5.3.1 Models and techniques used in the experiments 67
5.3.2 The issue of entity sentiment bias 71

5.4 Comparison with state-of-the-art approach 78
5.4.1 News-mtsc dataset . 78
5.4.2 Gru-tsc model . 78
5.4.3 Results . 78

5.5 Example application of sentiment detection for news analysis . . 80
5.6 Summary . 85

6 Persuasion techniques 89
6.1 Motivation . 89
6.2 Problem description . 89
6.3 Multitask Hierarchical Networks for persuasion techniques iden-

tification . 90
6.4 System overview . 91

6.4.1 Model architecture . 91
6.5 Experimental Setup . 93

6.5.1 Data preprocessing . 93
6.6 Results . 93

6.6.1 Error analysis . 94
6.7 Summary . 96

III Summary and conclusions 97

Part I

Background

5

Chapter 1

Introduction

The topic of media bias analysis gained popularity many years ago, and is
still explored by scientist from many fields but still most of the work is done
manually. In recent years a huge improvement of NLP techniques, especially
introducing large language models, makes it possible to investigate the problem
in automatic manner and analyse more aspects that are connected to bias. We
wish to present several techniques that can help with analysis of the news articles
textual content.

1.1 Aim and scope
The aim of this thesis is to propose methods that can help in news media bias
analysis. In particular, we study entity-level sentiment analysis in short political
news texts and persuasion techniques detection. In addition, we studied some
helper techniques, that is: news articles similarity detection, entity timeline
analysis and news source detection. We focus mainly on political news articles
from English and Polish news outlets and we add experiments on Brazilian-
Portuguese dataset.

1.2 Motivation
According to journalists’ ethics, media outlets should present news that is fair
and impartial. The readers should receive information that is clear, objective
and complete to form their own opinions. In practice, readers are exposed
to many types of bias. This problem is important especially for the digital
media, since they have significant influence on public opinion. It is important
to detect bias, especially in news portals, which should provide high-quality and
fair content.

Media bias, especially political media bias, is usually presented in a simplified
version as left, right, or center bias. In fact, it is much more complicated. Firstly,
not all left- or right-biased media support the same view. Secondly, political
bias is not the only category of bias in news.

For example the two popular portals, such http://www.allsides.com and
http://www.mediabiasfactcheck.com gather information about news sites and

7

http://www.allsides.com
http://www.mediabiasfactcheck.com

8 CHAPTER 1. INTRODUCTION

their bias annotated mainly by people.They present bias from different perspec-
tives and types: political, ideological or bias in text. Political bias is usually
considered as Left, Right, Center, when ideological refers to authoritarian vs.
libertarian, traditional vs. progressive, elitist vs. populist etc. Bias in text can
be classified as word choice, slant, flawed logic, sensationalism, opinion as fact
and many more. We can observe that media bias is a complex topic that can
be classified in different ways. It is important to prepare methods that help
broader news analysis of different news types.

Automatic detection of media bias has useful applications in several fields.
First of all, media bias analysis can improve the information transfer in demo-
cratic media and improving the quality of the public debate. However, often
people read articles that present just one-side view which creates an incom-
plete picture of the world. This may happen due to few reasons for example
personal preferences and subconscious choice of materials to read [1] which is
called "confirmation bias", or algorithms in social media and search engines that
prefer specific content [2] which is called "bubble filter". News searches and so-
cial media return information that are personalized based on the user, location,
search history or other properties. Detection of news media bias may improve
news searches so they produce more diverse results.

Moreover, media bias detection may improve the quality of democracy. If
more people have access to more diverse information they are more resistant
to manipulation and they are more open for different points of view. They
can better assess and understand political and social situations. Media can
be motivated to write about more diverse topics and society becomes better
informed.

So far there are not too many automatic solutions for this problem. Many
scientists from political or media science conduct their research based on manual
analysis. Existing automatic solutions recognize the general bias or focus just
on one type of bias. Most of them focus on the English language and situation in
the USA where there are two main parties however media bias goes far beyond
left or right bias. It may concern people, events, concepts etc. There are many
countries in the world where politics is not strictly polarized and where there
are more than two main parties.

There is a lack of automatic tools for Polish language and other underrep-
resented languages not only for media bias task. This may change soon, since
language models like transformers make it easier and faster to develop new tools
in NLP. However there is still a need to create new datasets, develop and test
new models for many languages. This is also connected with previous point,
in different countries and cultures media bias and political situation is not the
same. Because of that it may be not enough to use the same NLP method but
for different languages, it may appear that we need also different model of bias.
Another motivation is that detecting media bias is an interesting research topic
from a point of view of several disciplines: NLP, machine learning, social science
and psychology.

To sum up, there is lack of good general automatic solutions and still a lot
of interesting work has to be done.

1.3. CONTENTS OF THE THESIS 9

1.3 Contents of the thesis
In the part I of this thesis we describe what is media bias and list its types.
Next we explain theoretical background. We describe machine learning meth-
ods useful for news media bias analysis, starting from the basic ones to more
advanced.

In the second part II multiple experimental results concerning media bias
analysis are presented.

First, we present our preliminary experiments in section 4.1. Experiments
presented in this section we previously described in the paper [3]. We proposed
analysis of entities timelines as a method for recognising differences and anoma-
lies in entities’ occurrences. Using that method we can detect entities that take
part in most popular events.

Next, we present experiments that we described in artcile [4]. We assume
that for revealing bias in media it may be helpful to compare articles describing
same events. For this reason we compared methods to find articles about the
same topics in section 4.2. Also, we added experiments concerning detection of
news sources in section 4.2.6.

Chapter 5 is dedicated to entity-level news analysis which is the main part
of our experiments. First, in 5.2 we describe our bilingual "SEN"1 dataset for
entity-level news headlines analysis. It contains 1188 headlines in Polish and
2631 headlines in English from 8 and 5 news outlets respectively. In sections 5.3
and 5.4 we propose many experiments for entity-level sentiment classification
on our dataset and two others: "PTB" (Brazilian-Portuguese language) and
"news-mtsc" (English language). We created our own models and compare them
with other state-of-the-art models. We created solutions that are comparable or
better than state-of-the-art. Also, we discovered an issue that the sentiment that
models learn is based on entities themselves more than the context (we call this
phenomenon "entity sentiment bias") and propose a few techniques to overcome
that problem 5.3.2. SEN dataset and some experiments were first presented in
the article [5]. In this thesis we extended the experiments by the new analysis,
models and results. In the last section 5.5 of this chapter we demonstrate an
example application of entity-level sentiment detection for analysis of sentiment
distribution in time through different news outlets.

Final chapter 6 of part II contains experiments concerning persuasion tech-
niques detection in a multilingual dataset. We propose a multitask hierarchical
BERT-based neural network to solve this problem. The solution was a part
of semeval2023 competition and description of the network is accepted to be
published in paper [6].

In part III we summarize the results of all experiments.

1.4 Main contributions
The main contributions of this thesis are:

∙ a novel dataset called SEN for entity-level sentiment analysis - it is the
first dataset that covers two languages Polish and English and that was

1"Sentiment concerning Entity in News headline"

10 CHAPTER 1. INTRODUCTION

labeled both by researcher and crowdsourced annotators. The dataset is
publicly available2 and was downloaded 571 times so far 3

∙ we present numerous experiments on SEN dataset and compare it with
other available state-of-the-art models and datasets concerning:

– extensive experiments concerning constructing deep learning classi-
fiers detecting entity-level sentiment in news headlines, some of which
beat some state-of-the-art4 models of other researchers

– analysis of sentiment entity bias of transformer models trained on the
SEN dataset and several methods to solve this problem, consisting
in replacing entity by mask token or by the type of the entity

– enriching the vector representation of headline with Wikipedia con-
text of the entity, that improves the performance of the classifier

∙ we created a neural network architecture for news articles persuasion tech-
niques detection. It is a multitask hierarchical neural network based on
large language models. Our experiments, performed on 7 different lan-
guages, show that our solution improves the BERT for token classification
approach. Our model took part in prestigious international semeval 23
competition 5.

Additional contributions include:

∙ we propose a helper technique for finding articles on similar topics that
can be potentially used for polarization and media bias analysis

∙ we indicate that it is easy to create a machine learning model that predicts
the source of the article with high accuracy what may mean that the
outlets are not objective. That means newspaper have some own specific
style that can be further investigated regarding the presence of bias

∙ we present the possible analysis of the number of the particular entity
occurrences in news articles

1.5 Software and Hardware
Experiments presented in chapters 4, 5and 6 were conducted using Python pro-
gramming language. All the neural networks were created using PyTorch6. All
transformer models were build with use of HuggingFace library7. Text prepro-
cessing was done using mainly spacy8. Embedding models were implemented
using gensim9 or fasttext10.

2https://zenodo.org/record/5211931
303.06.2023
4at the time when the experiments where conducted
5https://propaganda.math.unipd.it/semeval2023task3/index.html
6https://pytorch.org/
7https://huggingface.co/
8https://spacy.io/
9https://radimrehurek.com/gensim/

10https://fasttext.cc/

https://zenodo.org/record/5211931
https://propaganda.math.unipd.it/semeval2023task3/index.html
https://pytorch.org/
https://huggingface.co/
https://spacy.io/
https://radimrehurek.com/gensim/
https://fasttext.cc/

1.5. SOFTWARE AND HARDWARE 11

All the computations for neural networks took thousands of hours and were
done on several servers and machines. Neural networks were trained on a server
with 6 Nvidia Tesla K80 graphic cards11 and on a Google Colab Pro 12 with
limited access to V100, A100 or T4 Nvidia GPU. Some basic computations were
done on local machines.

11In this place we would like to thank dr Radosław Nielek for sharing the server.
12https://colab.research.google.com/

https://colab.research.google.com/

12 CHAPTER 1. INTRODUCTION

Chapter 2

Related work

The media bias is a popular problem among researchers from many disciplines.
In this chapter we briefly describe the most important works about media bias
detection with machine leaning methods. We describe works that analyse gen-
eral media bias, but also types of media bias and related tasks like tonality or
sentiment analysis in the news, agenda and visibility detection or propaganda
techniques classification.

2.1 General media bias
According to the work[7] media bias can be defined as the opposition of objec-
tivity, neutrality, and fairness. The paper divides media bias into three types:
visibility, tonality, and agenda. In this thesis we try to refer to each of these
three types but first we wish to present works that concern general media bias
detection.

There are different ways to define media bias and many proposed methods
to analyse it. We present the most important ones.

In the work [8] the authors identify the news framing which is the way of
presentation of news. They compare it to google trends and demonstrate how
news framing influences the public attention. They used the concept of mean
similarity of a corpus. The mean similarity is calculated on pairs of 𝑛 articles by
average cosine distance of DocVec representation of articles. They discovered
that the public opinion change with the mean similarity.

In the paper [9] the authors describe some linguistic features that reveal the
bias in a text. They refer to the form of verbs, part of speech tags and subjective
words. Instead of news articles they used data from Wikipedia, however their
results may be used also for other types of texts.

A related work concerning the usability of linguistic features in the task
of detecting special form of bias related to the phenomenon of Web Spam is
presented in [10].

An interesting approach is presented in paper [11], where the authors identify
three roles of entities framing people in news articles. These roles are "hero",
"villain" and "victim". The results are presented in a visual form to compare
how entities are described in different articles.

The article [12] presents an approach of identifying bias through analysis of

13

14 CHAPTER 2. RELATED WORK

mentions and quotations of politicians among different parties and in different
periods of time.

Bias and its propagation is also investigated in social networks [13]. This
work used Twitter data to identify bias in short texts and to analyse its propa-
gation among the users.

In the work [14] the authors address detection of hyper-partisanship in news
articles, i.e. classifying whether news is extreme left-wing or extreme right-wing
using data annotated with distant-supervision. The best results, achieved by
the ELMO based model, are about 82% accuracy and 80% f-measure.

[15] uses crowdsourcing to gather data and discusses automated methods to
analyse the bias of various outlets concerning various issues but not the entities.

The work [16] provides extensive study on automatic media bias detection.
Authors conclude that automatic tools are still not as good as human analysis.

2.2 Visibility and Agenda bias
In this section we wish to present works that correspond to the concept of
visibility and agenda bias. Visibility bias is connected to the presence of entity
in media. It refers to the number of entities mentions an it’s exposure to the
reader. Agenda refers to the scope of topics and aspects that are written about
the entity. We decided to connect this two types of bias because the methods
that we present later can support both of them.

First, we focus on entity extraction and then on finding similar articles by
the topic.

Entity extraction and summarisation are problems which appear in many
disciplines. The concept of event or entity timeline has been studied in some
previous research, but we are not aware of any research publication that focused
on Polish political news.

In the work [17] the authors present their method called ’Timemachine’
which automatically generates timelines of events based on the knowledge base.
Authors focus on three quality criteria: relevance of events to entities, temporal
diversity, and content diversity.

In thearticle [18] authors describe their method of creating and analysing
timelines of named entities. Their research is focused on entity evolution. As a
part of their work, they analyse also political entities.

The work [19] presents a timemachine for Portuguese news. The results
of their work are presented as an interactive web tool allowing searching and
visualising news stories. Besides timelines, they present co-occurrences with an
entity as an egocentric network.

An interesting approach is presented in a paper [20] where the authors de-
scribe a problem of connecting events described in news articles. They intro-
duced a method using timelines to automatically find coherent chain linking
events and topics described in articles.

Most of the current research on automatically generated timelines was fo-
cused on news and knowledge bases in English or other popular languages. In
our research, we use only news in Polish, which have not been studied as care-
fully as other languages. Additionally, we are using the timeline to compare
entities’ occurrence between news portals.

2.3. TONALITY 15

There exist multiple approaches to identifying agenda bias. For most of them
the first inevitable phase of bias identification is to find the pairs (or clusters) of
similar articles, paragraphs or sentences. Then the way and scope of described
event can be compared.

The approach of finding similar texts by using Siamese networks is described
in [21]. Siamese networks describe how similar a pair of text documents are.
These networks use the same architecture of network and feed two text docu-
ments as an input. Then, given such an input pair, an output in the form of the
value representing the distance, for example Manhattan distance, between the
two text documents from the output is calculated as a measure of (dis)similarity.

In the paper [22] the author describes document text representations and
variety of similarity measures for text clustering. They include the measures
like: cosine similarty, Euclidean distance, Jaccard coefficient, Pearson Correla-
tion Coefficient and Averaged Kullback-Leibler Divergence. Then, based on the
results of a clustering algorithm, there is made a comparison of the results on
datasets including variety of news articles, academic papers and web pages.

Authors of the article [23] describe a similarity measure for news recom-
mender systems. In this work there is made a comparison-based analysis of hu-
man judgement of similarity and some other measures such as: Lin and WASP
measures.

Another work [24] presents research concerning articles on events. In partic-
ular it concerns tracking similar articles and clustering them to summarise the
events under interest.

2.3 Tonality
The problem of entity-level tonality(or sentiment) in political news headlines is
not as heavily studied as the related problem of target-based sentiment analysis
concerning e.g. opinions on commercial products or services, however there exist
some closely related works. Most of the works present some results on small
datasets, datasets that are not publicly available or in other languages than
covered in our research.

Although there are many approaches to the problem of media bias, to the
best of our knowledge, there is no other similar work about detecting the entity-
level sentiment of news headlines from readers perspective as we do. There are
several works about detecting sentiment or polarity in the news presenting some
different approaches. None of the work before is done on the Polish news articles.

The work [25] is the most similar to our experiments and presents a dataset,
related to sentiment concerning entities in sentences from randomly selected
news articles and consists of 3163 collected English-language sentences. The
authors admit that a sentence is not enough to decide on the sentiment in the
news and broader context is needed. In comparison to this dataset we created
dataset of news’ headlines, which are more standalone parts of articles that are
always read by the users and that influence the sentiment of an entity more than
random sentences of the article. Moreover, our SEN dataset is bi-lingual and
we compare two annotator groups: researchers and crowdsourcing-based ones
5.2.

The continuation of the previous work [26] proposes an extended dataset for
target depended sentiment classification in the news articles. Dataset is build

16 CHAPTER 2. RELATED WORK

on English news articles and annotated by crowd-sorced workers. It contains
about 11 thousand of targets that are annotated as positive negative or neutral.
Annotations are made from the perspective of the text’s authors. They proposed
a neural network that uses sentiment dictionaries as external knowledge sources
and additional mask to mark a target in a sentence.

A dataset concerning news sentiment is mentioned in work [27]. However,
it is much smaller than our dataset and not available publicly. The work [28]
presents datasets for brazilian portuguese news sentiment analysis focusing on
brasilian elections.

Article [29] concerns the general impression of headlines with respect to a
general topic rather than a target entity and report 74% and 79% of accuracy
and F1, respectively. It uses only 100 headlines and 100 comments for evalua-
tion.

Early work [30] addresses the problem of news articles’ textual affect anal-
ysis. It uses an emotional lexicon to calculate the score of positive or negative
words nearby the entity and thus seems to be not flexible and adaptive enough
to political headlines. Another early work [31] provides only guidelines for sen-
timent annotation in the news articles but their dataset is not publicly available
and no further analysis is done.

Simple, lexicon-based methods are used in [32] for measuring sentiment in
citation presented in the news based on who is cited and how. The best results
citations classification are around 82% of accuracy.

Work [33] studies information bias in the news as a problem of detecting
biased phrases, their polarity and referenced entity. BERT-based model achieves
43% F1 at the sentence level bias and 18% at the token level.

A bit different problem but related to sentiment is ’stance detection’ [34] in
tweets. It’s aim is to detect whether the author of a statement is supporting or
is against a given concept. Entities are not a concern in the analysed tweets in
this work.

In another work [35] authors present a task of flipping media bias in news
headlines using encoders and decoders. If the headline was conservative, then
the goal was to change it to more liberal and the opposite. Bias are then
evaluated by humans.

The problem of bias may be approached in various ways, e.g. binary detec-
tion and neutralisation of biased phrases in Wikipedia articles and real media
using BERT are presented in [36] achieving about 75% accuracy for detection.

Work [37] presents large scale sentiment analysis using expanded lexicons
and score calculation.

As a novelty we introduce a Polish part of a dataset which is essential to
extend the research on underrepresented languages. There are several datasets
and works on sentiment analysis in Polish language: [38], [39], [40] but none of
them concerns political news headlines.

Most of the works concerning sentiment analysis focus on reviews or tweets or
financial news [41], [42], [43]. Financial news however are focusing on sentiment
of companies, whether they are prospering or not in financial aspects.

We believe that the specificity of media outlets and in particular political
news headlines deserves a separate approach with its very strong polarisation,
dynamic character and specific language.

2.4. PERSUASION DETECTION 17

2.4 Persuasion detection
Detection of propaganda techniques is addressed in several works. The problem
of persuasion detection is challenging due to the specificity of the language and
quite large number of persuasion techniques what results in multiclass classifi-
cation problem with unbalanced classes. There are a few approaches that try to
solve the problem from different perspectives. Early work [44] uses transformers
for sentence-level and fragment level propaganda detection.

The persuasion technique identification problem has been addressed as a
problem of span and technique classification for the first time in work [45]. It
was presented as a problem of multi-modal image and text input in article [46].

In contrast to the network presented in [47] our main aim is only persuasion
technique detection, we do not use special tokens and we use one multitask
network.

Authors of the work [48] propose creating ontology for propaganda detection
in news articles.

The system to support analysis of propaganda techniques is proposed in [49].
It allows the user to explore articles, find spans of the propaganda techniques
and summarize the statistics about these techniques.

The very recent work [50] studied detection of persuasion in Polish and
Russian online news. They compare different granularity of labels and which
level of text the classes are detected (words, sentences, paragraphs).

Persuasion is present not only in news but in our everyday conversations. A
corpus for persuasion techniques detection in dialog is presented in [51].

A visual persuasion of social media content was study in [52]. They analysed
persuasion of covid-19 related news shared on Twitter.

18 CHAPTER 2. RELATED WORK

Chapter 3

Theoretical background

In this chapter, machine learning algorithms, that are suitable to the problem,
are described. We describe both statistical and neural network models. The
book [53] describes the most fundamental neural networks. There are also many
works that summarize language models and methods used in natural language
processing. For example [54] describes neural networks for machine translation
which may be used also for other NLP tasks. The book [55] describes main
concepts of natural language processing. [56] summarizes the most fundamental
statistical learning concepts. All of these methods may be incorporated for
media bias detection.

In the subsequent sections we overview the topics mentioned above.

3.1 Basic text representations
In this section we describe the basic concepts of text representation. We start
from Bag-of-words, then tf-idf and finally we describe the concept of n-grams.
More advanced text representations are described later in subsections 3.3.2,
3.3.9 and 3.3.10.

3.1.1 Bag-of-words model
Bag-of-words (BOW) model is a simple representation of a text as a set of words
or tokens. For the first time BOW was mentioned in [57]. It is used mostly for
feature generation and used as input for other models.

Before we describe BOW, we would like to define some basic concepts. A
document is a text object. A corpus is a set of documents. Vocabulary is a set
of tokens that appears in the whole corpus. Token can be a word, sub-word,
character etc.

In BOW techniques a single document is represented as a binary vector1.
The vector has length equal to the number of tokens in a vocabulary. Each coor-
dinate of the vector represents one token from the vocabulary. If the document
contains a particular token then there is "1" at the coordinate that corresponds
to that term and "0" otherwise. The term order in the document is ignored.

1Or the number of occurrences of the term in the document in non-binary version of BOW

19

20 CHAPTER 3. THEORETICAL BACKGROUND

document Bag of Words vector
Document this dog has white paws cat and ears

This dog has white 1 1 1 1 1 0 0 0
paws

This cat has white 1 0 1 1 1 1 1 1
paws and white ears

Table 3.1: BOW model representation of a corpus with two documents. It is
assumed that words are converted to lowercase and punctuation is omitted.

The BOW model can be illustrated on the example of a corpus containing
2 documents 3.1.1. Each column represents one term, each row represents one
document. The disadvantage of this model is that it produces a sparse matrix
representation of a corpus. We can observe that vectors represent the whole
vocabulary of a corpus even if a term is not present in some documents.

3.1.2 Tf-idf
Tf-idf ("term frequency inverse document frequency") unlike BOW takes into
account also the importance of a given term in a given document with respect
to the whole corpus. The document vector, instead of "0" and "1", contains the
weights of tokens on a scale from 0 to 1. The more often a term occurs in a
document the higher value of tf-idf is. If token is popular in the whole corpus
then value of tf-idf is lower.

The formula for tf-idf term is as follows:

𝑡𝑓 -𝑖𝑑𝑓 = 𝑡𝑓(𝑡, 𝑑) * 𝑖𝑑𝑓(𝑡). (3.1)
𝑇𝑓(𝑡, 𝑑) is a term 𝑡 frequency in a document 𝑑 with respect to number of

other terms in this document, which can be expressed by:

𝑡𝑓(𝑡𝑑) = 𝑓𝑡,𝑑∑︀
𝑡′∈𝑑 𝑓𝑡′,𝑑

, (3.2)

where 𝑓𝑡,𝑑 is a number of term t occurrences in document d and
∑︀

𝑡′∈𝑑 𝑓𝑡′,𝑑 is a
sum of occurences of all terms in document d.

The second part 𝑖𝑑𝑓(𝑡) measure how often the term 𝑡 appear in a corpus:

𝑖𝑑𝑓(𝑡) = |𝐷|
|𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑|

, (3.3)

where |𝐷| is a number of documents in a corpus D. The denominator |𝑑 ∈ 𝐷 :
𝑡 ∈ 𝑑| is a number of documents where term t appears at least once.

3.1.3 N-grams
N-gram is a sequence of n consecutive words or other items from a given text.
One-word n-gram is called unigram, two-word is bigram, three words - trigram.
Sentences or documents contain many n-grams. An example of n-grams from
the document ’This dog is white.’ is presented in table 3.1.3.

N-gram model is another possibility of input feature generation from text.The
basic language models are based on the idea of n-grams. According to [58], the

3.1. BASIC TEXT REPRESENTATIONS 21

n-gram type n-gram tokens
unigram This | dog | is | white
bigram This dog | dog is | is white
trigram This dog is | dog is white

Table 3.2: Example of n-grams of a sentence "This dog is white."

general aim of a probabilistic language model is to calculate the probability of
a sequence of words.

𝑃 (𝑊) = 𝑃 (𝑤1, 𝑤2, 𝑤3, ..., 𝑤𝑘), (3.4)

where 𝑊 is a sequence of words and 𝑤𝑘 is the k-th word in the sequence.
The special case of a probabilistic language model is N-gram model. It’s aim

is to calculate the probability of the k-th word based on a sequence of previous
words.

𝑃 (𝑤𝑘|𝑤1, 𝑤2, 𝑤3, ..., 𝑤𝑘−1), (3.5)

The probability of a words’ sequence of length K can be calculated using a chain
rule:

𝑃 (𝑊) = 𝑃 (𝑤1, 𝑤2, . . . , 𝑤𝐾)
= 𝑃 (𝑤1)𝑃 (𝑤2|𝑤1)𝑃 (𝑤3|𝑤1:2)...𝑃 (𝑤𝑘|𝑤1:𝑘−1))

=
∏︁

𝑘=1...𝐾

𝑝(𝑤𝑘|𝑤1:𝑘−1)
(3.6)

In reality, there are too many possibilities of word occurrences in long sequences
to calculate this probability. The idea of n-gram model is to approximate the
probability of a next word given all previous words using a probability only of
a few previous words instead. If N is the size of n-gram then the approximation
of probability of a word 𝑤𝑘 given it’s all preceding words is:

𝑝(𝑤𝑘|𝑤1:𝑘−1) ≈ 𝑝(𝑤𝑘|𝑤𝑘−𝑁+1:𝑘−1) (3.7)

To calculate the probability of a word using the unigram model, the following
formula is used:

𝑝(𝑤𝑘|𝑤1:𝑘−1) ≈ 𝑝(𝑤𝑘). (3.8)

in case of the bigram model the formula is:

𝑝(𝑤𝑘|𝑤1:𝑘−1) ≈ 𝑝(𝑤𝑘|𝑤𝑘−1), (3.9)

and for trigram model:

𝑝(𝑤𝑘|𝑤1:𝑘−1) ≈ 𝑝(𝑤𝑘|𝑤𝑘−2:𝑘−1). (3.10)

For example, when calculating the probability of the last word in a sentence
"This dog is white." instead of computing conditional probability P(white|This
dog is), bigram model calculates the approximation P(white|is) based only on
the one preceding word. The trigram model calculates the approximation of
third word based on two previous words, in this example P(white|dog is).

N-grams may be used not only in linguistics but also in other fields like
medicine and genome sequencing.

22 CHAPTER 3. THEORETICAL BACKGROUND

3.2 Shallow machine learning
Next subsections cover basics of machine learning models that are used in later
experiments logistic regression and support vector machines.

3.2.1 Logistic regression
Logistic regression [59] is binary classification algorithm that predicts the prob-
ability that an observation belongs to a particular class.

The probability is calculated by logistic function:

𝑝(𝑋) = 𝑒𝛽0+𝛽1𝑋1+...𝛽𝑝𝑋𝑝

1 + 𝑒𝛽0+𝛽1𝑋1+...𝛽𝑝𝑋𝑝
, (3.11)

where 𝑋 = (𝑋1, 𝑋2 . . . 𝑋𝑝) is input vector of length 𝑝 and 𝛽0, . . . 𝛽𝑝 is a learned
coefficient. Coefficient can be estimated using maximum likelihood. The likeli-
hood function is

𝑙(𝛽) = Π𝑖:𝑦𝑖=1𝑝𝑖Π𝑖:𝑦𝑖=0(1 − 𝑝𝑖), (3.12)

where 𝑝𝑖 is the estimated probability of 𝑖𝑡ℎ observation and 𝑦𝑖 is the real answer.
This function has to be maximized to find the best fit of the model.

3.2.2 Support vector machines
Support vector machines model is a generalization of the maximal margin clas-
sifier. It is a supervised learning model that may be used for classification,
regression or outlier detection. SVMs were described in [60]. This classifier
separates two classes with a hyperplane that has some margin. The hyperplane
is chosen, so the separation distance is maximal.

In practice, it is rare to have perfectly separable data, so we use a soft
margin classifier where some number of samples can lie inside the margin or on
the wrong side of hyperplane. The kernel trick is applied to maximum-margin
hyper-plane[61] for non-linear data.

As an example of the support vector machines with linear kernel for binary
classification, see figure 3.1. It finds the solution to the following optimization
problem

Maximize
𝛽0,𝛽1,...,𝛽𝑝,𝜖1,...,𝜖𝑛,𝑀

𝑀 (3.13)

subject to
𝑝∑︁

𝑗=1
𝛽2

𝑗 = 1 (3.14)

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + · · · + 𝛽𝑝𝑥𝑖𝑝) <= 𝑀(1 − 𝜖𝑖) (3.15)

𝜖𝑖 ≥ 0,

𝑛∑︁
𝑖=1

𝜖𝑖 ≤ 𝐶, (3.16)

where M is the width of the margin that is maximized by svm, C is a non-
negative tuning parameter,𝛽0, 𝛽1, . . . , 𝛽𝑝 are parameters of hyperplane, 𝜖1, . . . , 𝜖𝑛

are slack variables that specify if the observation 𝑖 is on the right side of the mar-
gin. The last parameters allow some training samples to be on the wrong side
of the hyperplane or margin to prevent overfitting and create greater margin.

3.2. SHALLOW MACHINE LEARNING 23

Figure 3.1: Support vector machines with a linear kernel separating 2 classes.
SVMs maximize the margin between classes marked with blue and pink. The
margin lies in variables that are called support vectors. Exactly in the middle
distance from both margins there is a separating hyperplane. Sometimes slack
variables are allowed, so the margin or even hyperplane do not separate them
correctly.

24 CHAPTER 3. THEORETICAL BACKGROUND

After solving the optimization problem, the observation 𝑥 is classified based on
the sign of the equation:

𝑓(𝑥) = 𝛽0 + 𝛽1𝑥1 + · · · + 𝛽𝑝𝑥𝑝 (3.17)

In general case, when the kernel is non linear, the decision function has the
form:

𝑓(𝑥) =
𝑁∑︁

𝑖=1
𝛼𝑖𝐾(𝑥, 𝑥𝑖) + 𝛽0 (3.18)

where n is a number of support vectors, 𝛼 and 𝛽 are parameters to be learned.
K is a kernel function.

A kernel function maps input vectors into another vector space so that classes
are easily separable. It is not necessary to calculate dot product in another
vector space thanks to a kernel trick. Support vector classifier may have various
forms of kernels. The most popular kernel functions are:

linear kernel

𝐾(𝑥𝑖, 𝑥𝑖′) =
𝑝∑︁

𝑗=1
𝑥𝑖𝑗𝑥𝑖′𝑗 , (3.19)

polynomial kernel

𝐾(𝑥𝑖, 𝑥𝑖′) = (1 +
𝑝∑︁

𝑗=1
𝑥𝑖𝑗𝑥𝑖′𝑗)𝑑 (3.20)

radial kernel

𝐾(𝑥𝑖, 𝑥𝑖′) = 𝑒𝑥𝑝(−𝛾

𝑝∑︁
𝑗=1

(𝑥𝑖𝑗 − 𝑥𝑖′𝑗)2). (3.21)

3.3 Neural networks
In this section we describe neural networks that can be used in tasks related to
natural language processing. We start from perceptron, then we move to feed-
forward neural networks, word embeddings, basic recurrent neural networks
followed by LSTMs and GRU networks. Then we also mention a convolutional
neural network. Next, we describe the autoencoders and the attention, that
are used to create transformers, described in the next subsection. Finally, we
describe BERT, one of the large language models.

3.3.1 Feed-forward Neural Networks
The basic form of a neural network is a single perceptron. The perceptron
consists of the input vector 𝑥, the weight vector 𝑤, the activation function 𝑓
and the output 𝑦. The signal of the perceptron is 𝑛𝑒𝑡 = 𝑤𝑇 𝑥 + 𝑏. The output
of the perceptron is calculated as :

𝑦 = 𝑓(𝑛𝑒𝑡) = 𝑓(𝑤𝑇 𝑥 + 𝑏) (3.22)

The activation function of the perceptron is a step function. In that case
the output is:

𝑦 =
{︃

1 𝑛𝑒𝑡 > 0
0 otherwise.

(3.23)

3.3. NEURAL NETWORKS 25

Figure 3.2: A simple neuron model with the input vector 𝑥1, ..., 𝑥𝑛, the weight
vector 𝑤1, ..., 𝑤𝑛, the activation function f and the output y. Net is a dot product
of the weight vector and the input vector.

Single perceptron is a binary classifier, that can distinguish only linearly sepa-
rable classes. From this point the idea of neural networks, that are able to solve
much more complicated tasks is developed.

There exist several activation functions that can be used instead of step
function. The model with continuous and non-linear activation function is called
a neuron or sometimes a unit. Some other types of activation functions are:

∙ sigmoid 𝑓(𝑥) = 1
1+𝑒−𝑥

∙ hyperbolic tangent 𝑓(𝑥) = 2
1+𝑒−𝑥 − 1

∙ linear 𝑓(𝑥) = 𝑥

∙ Rectified Linear Unit (ReLU) 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

Model of the single neuron is presented in figure 3.2.
Multi-layer perceptron (MLP) or feed-forward networks (FFN) [53] are neu-

ral networks that can have many layers. A layer of a neural network consists
of one or more neurons connected to previous layer or input. The last layer is
called output layer and any other layer is hidden layer.

For instance if MLP has one hidden layer and one output layer the equation
for the output calculations are:

ℎ = 𝑓1(𝑊𝑥ℎ𝑥 + 𝑏ℎ) (3.24)

𝑦 = 𝑓2(𝑊ℎ𝑦ℎ + 𝑏𝑦) (3.25)

where x is input vector, h is hidden layer, y is output, 𝑊𝑥ℎ, 𝑊ℎ𝑦 are corre-
sponding weight matrices, 𝑏ℎ, 𝑏𝑦 are biases and 𝑓1,𝑓2 are activation functions.

Hidden layers are followed by non-linear activation function, usually ReLU.
An activation function of the output layer depends on the task being solved.

26 CHAPTER 3. THEORETICAL BACKGROUND

For example, a sigmoid function can be used for a binary classification or a
multilabel classification. For multiclass classification the softmax function is
usually used. Then the equation for the 𝑖𝑡ℎ neuron of the last layer is:

𝑦𝑖 = 𝑓(𝑛𝑒𝑡𝑖) = 𝑒𝑛𝑒𝑡𝑖∑︀𝐽
𝑗=1 𝑒𝑛𝑒𝑡𝑗

(3.26)

where 𝐽 is the number of classes, 𝑛𝑒𝑡𝑖 = 𝑤𝑖𝑦 + 𝑏𝑖𝑦, 𝑤𝑖𝑦 and 𝑏𝑖𝑦 are weight vector
and bias of 𝑖𝑡ℎ neuron, when

∑︀𝐽
𝑗=1 𝑒𝑛𝑒𝑡𝑗 is a sum for all neurons in the output

layer. For a regression task a linear activation function can be used.
In general, feed forward neural networks can be thought of as a chain of func-

tions that takes some input and calculates some desired output. Composition of
simpler functions can represent some more complicated functions. Neural net-
works can approximate any kind of function and are considered as a universal
function approximation.

The Universal Approximation theorem [62] states that for continuous, bounded
and monotonic sigmoidal function 𝜎(𝑖) such that:

lim 𝜎(𝑡) =
{︃

1 𝑡 → +∞
0 𝑡 → −∞

(3.27)

any continuous, multivariable, real function 𝑓(𝑥1, 𝑥2, ...𝑥𝑝), defined within [0, 1]𝑃 ,
whenre 𝑥1, 𝑥2, ...𝑥𝑝 are input variables, and for any 𝜖 > 0, there exists such in-
teger 𝑁 and set of real constants 𝑎𝑖, 𝑏𝑖, 𝑤𝑖𝑗 so that if

𝑔(𝑥1, 𝑥2, ...𝑥𝑝) =
𝑁∑︁

𝑖=1
𝑎𝑖𝜎(

𝑃∑︁
𝑗=1

𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖), (3.28)

then the following inequality is satisfied

|𝑓(𝑥1, 𝑥2, ...𝑥𝑝) − 𝑔(𝑥1, 𝑥2, ...𝑥𝑝)| < 𝜖 (3.29)

That means any function can be approximated by one layer neural network
with finite number of neurons. However, adding more layers to neural network
can result in lower number of neurons in total .

The loss function is used to evaluate solutions during training. The loss
function calculates the cost of the solution, which can be interpreted as an
amount of error concerning the answer of network and the correct answer. L1
and L2 loss functions are the most popular. L1 is the absolute difference between
the estimated value 𝑝 and the real target value 𝑦:

𝐿𝑜𝑠𝑠(𝑦, 𝑝) = |𝑦 − 𝑝| (3.30)

L2 is the squared difference between the true 𝑦 and the estimated target value
𝑝:

𝐿𝑜𝑠𝑠(𝑦, 𝑝) = (𝑦 − 𝑝)2 (3.31)

These two functions are usually used for a regression problem. Popular loss
function for a classification problem is cross-entropy. When the number of
classes is equal to 2 then the formula is as follows:

𝐿𝑜𝑠𝑠(𝑦, 𝑝) = −(𝑦𝑙𝑜𝑔(𝑝) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑝)) (3.32)

3.3. NEURAL NETWORKS 27

and if there are more classes than 2:

𝐿𝑜𝑠𝑠(𝑦, 𝑝) = −
𝑀∑︁

𝑐=1
𝑦𝑐𝑙𝑜𝑔(𝑝𝑐), (3.33)

where M is the number of classes, p is the probability of a class, y is the target
class indicator that can have two values: 1 if observation belongs to class c and
0 otherwise.

Gradient-based optimization algorithms are used to train a neural network.
These algorithms minimize the loss function of the network. An example of
gradient method is gradient descent. In this algorithm the weights are updated
by a small value in the opposite direction to the gradient of the loss function.
The formula for the change of the weight 𝑤𝑖𝑗 with a gradient descent method
is:

Δ𝑤𝑖𝑗 = −𝜂
𝜕𝐸

𝜕𝑤𝑖,𝑗
, (3.34)

where 𝑤𝑖𝑗 is the weight vector of 𝑖𝑡ℎ neuron in the 𝑗𝑡ℎ layer, 𝐸 = 𝐿𝑜𝑠𝑠(𝑦, 𝑝)
is the error of the network and 𝜂 is learning rate that scales the gradient and
controls the amount of change.

Then:
𝜕𝐸

𝜕𝑤𝑖,𝑗
= 𝜕𝐸

𝜕𝑛𝑒𝑡𝑖

𝜕𝑛𝑒𝑡𝑖

𝜕𝑤𝑖,𝑗
, (3.35)

is error signal of the 𝑖𝑡ℎ neuron in the 𝑗𝑡ℎ layer .
During training the weights and biases of all neurons in all layers are fitted

using backpropagation method. First, the signal errors of the output layer
neurons are calculated and their weights are updated. The hidden layers are
updated based on the error signal from the output layer or the layer that is next
to them. The error is propagated from the output through all hidden layers to
the first layer.

3.3.2 Word Embeddings
Words cannot be inserted into the network directly. We need some digital repre-
sentation of them that can be understandable by neural networks. At the early
stages, words were represented as one-hot vectors, bag of words or tf-idf rep-
resentations which was easy and unambiguous representation but suffers from
many drawbacks. First, in large corpus, vectors for documents have extremely
large dimensions and use a lot of memory. Sparse matrix that is created to
represent documents in corpus, may lead to increased space and time complex-
ity. This kind of problem is similar to the problem of curse of dimensionality.
Moreover, there is a possibility that the set of words in a test sample is totally
different from samples that model seen in a training process, which is called
semantic gap.

Another problem of this representation is that it does not cover context of the
words or their semantic similarity. The words ’cat’ and ’kitty’ will be treated as
completely different words despite they are strongly related. Another problem
is homonyms, for example the word "book", in sentences "I read a book" and "I
book a flight", should have different vectors as the meaning is different.

28 CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.3: Architecture of word2vec cbow and skip-gram models. 𝑤𝑡 is a target
word, {𝑤𝑡−2, 𝑤𝑡−1, 𝑤𝑡+1, 𝑤𝑡+2} are context words.

The solution for the first problem with semantic similarity are word embed-
dings. In general such word embedding is a vector that represents semantic
meaning of a word as a real vectors. There are many methods of creating word
embeddings. For the first time they were introduced in [63] as neural language
models.

The next version of word embeddings are word2vec [64] [65]. There are
two architectures of word2vec : CBOW and Skip-gram. Both models are two-
layer neural networks. The input is a large corpus and the output is a vector
space that assigns vectors to each unique word in the corpora. In CBOW
approach the neural network takes as input some window of words and tries
to predict a target word that fits to the context of given words. The window
slides through the whole corpus and learns vectors for each word. The order
of context words does not matter. The Skip-gram model tries to predict the
surrounding window of context words from a single word as an input. This
model assigns weights to context words. The more distant the word is the lower
weight it has. In both method the embedding is created from a hidden layer
weights. Both architectures are presented in figure 3.3.

The resulting word embeddings contains such vectors that the words which
are more semantically and syntactically similar, have vectors that are closer to
each other and more dissimilar words have farther vectors.

A little bit later glove [66] vectors were introduced. It is a regression model
that combines global matrix factorization and local context window methods.

Next type is an embedding of sub-words known as fastText [67]. These word
vectors use part of words to create embeddings of the whole words, so they
reduce a problem of unknown words and word’s inflection.

Word embeddings are not enough to represent the complexity of language.
They can only create one embedding per word or sub-word even if this word
may appear in many different contexts with different semantic meaning. They
have also some problems with unknown words, partially solved by fastext.

3.3. NEURAL NETWORKS 29

Figure 3.4: RNN cell. 𝑊𝑥ℎ is a weight matrix of input, 𝑊ℎℎ is a weight matrix
of previous hidden state 𝑊ℎ𝑠 is a weight matrix for a current hidden state.

3.3.3 Recurrent Neural Networks
Another type of neural networks are recurrent neural networks (RNN) [68]. This
type networks are able to precess the sequence of any length.That makes them
more capable for language processing than feed-forward networks.

The input of such network is a sequence 𝑋 = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑡} where each
element 𝑥𝑡 is an input at timestep 𝑡. The network calculates the hidden state
ℎ𝑡 and the output 𝑦. The idea is to add connection, which passes the value
of the previous hidden state ℎ𝑡−1 to the current neuron’s input. Equations to
calculate basic RNN’s output at timestep 𝑡 are:

ℎ𝑡 = 𝑔1(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ)
𝑦𝑡 = 𝑔2(𝑊ℎ𝑠ℎ𝑡 + 𝑏𝑠)

(3.36)

where ℎ𝑡 is the hidden state at time step 𝑡, y is the output of network, 𝑔1 and
𝑔2 are activation functions, ℎ𝑡−1 is the previous hidden state, 𝑊𝑥ℎ is weight
matrix for input, 𝑊ℎℎ is weight matrix for previous hidden state, 𝑊ℎ𝑠 is weight
matrix for current hidden state, 𝑏ℎ and 𝑏𝑠 are corresponding biases.

The illustration of the RNN’s neuron is presented in picture 3.4. RNN can
be also presented unfolded as a repetitive structure similar to chain of events.

RNNs may be categorised on input and output type, suited to the task it
performs:

∙ vector-to-sequence - in this type an input is a single element, then the
output is generated at each timestep and used as input for the next time
step. This kind of input and output representation can be used for se-
quence generation task, for example in text generation task

∙ sequence-to-vector - the input is a sequence and there is only one output.
This architecture is used for sequence classification tasks like sentiment
analysis

30 CHAPTER 3. THEORETICAL BACKGROUND

∙ sequence-to-sequence with input and output of the same length - the net-
work produces as many outputs as the input length. This is mostly used
for sequence token classification tasks like named entity recognition

∙ sequence-to-sequence with input and output of different lengths - the input
shape and output shape doesn’t have to be the same for the task where
we generate a new sequence based on the input sequence, for example
machine translation

Recurrent neural networks are trained using a backpropagation through time
[69]. In the basic version of this method the network is unfolded, so it contains
a sequence of t inputs and t outputs. Every instance of unfolded network shares
the same parameters. The error is calculated at each time step and backprop-
agated through all previous instances of unfolded network. Calculated weights
changes are summed together. Then the weights are updated.

3.3.4 LSTM
The problem of basic RNNs is a vanishing gradient and an exploding gradient.
The vanishing gradient is when we run a backpropagation method to train neural
network and gradient gets smaller and smaller, and the exploding gradient is
the opposite. The long short-term memory (LSTMs) neural networks [70] are a
special kind of networks designed to reduce the problem of vanishing gradient. In
addition to hidden state they also contain memory cell and forget cell. This two
cells are not susceptible to vanishing or exploding gradient. As a consequence
they are able to catch long term dependencies better than simple RNNs. The
functions for the LSTM cells are as follows:

𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖)
𝑓𝑡 = 𝜎(𝑊𝑖𝑓 𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊ℎ𝑓 ℎ𝑡−1 + 𝑏ℎ𝑓)

𝑔𝑡 = tanh(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑔)
𝑜𝑡 = 𝜎(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)

(3.37)

where ℎ𝑡 is the hidden state at the time step 𝑡, 𝑐𝑡 is the cell state that preserves
LSTM from the exploding gradient, 𝑓𝑡 is the forget gate which sets the weight
of the previous cell state from 0 to 1 using a sigmoid function, 𝑖𝑡 is the input
gate which controls how much of the new input is let in using sigmoid function,
𝑔𝑡 is the cell gate which is responsible for an update of the information coming
from the input, 𝑜𝑡 is an output gate that controls the output of the hidden state.
The variable 𝑥𝑡 is the input at the time t. For each gate 𝑊𝑖, 𝑊ℎ and 𝑏ℎ denote
input weights, hidden state weights and bias respectively.

The model of the LSTM cell is presented in 3.5. There are various types of
LSTMs, usually with modifications of the forget gate or the output gate.

3.3.5 GRU
Another variant of RNN is Gated Recurrent Unit Network (GRU) [71]. This
architecture is easier to train than the LSTM network, without loses on the

3.3. NEURAL NETWORKS 31

Figure 3.5: LSTM cell model

performance. In this network the interpolation between the hidden state ℎ𝑡 and
the previous state ℎ𝑡−1 is modulated only by the update gate. If the update
gate is close to 1 then GRU uses the new candidate for the hidden state and
when it is close to 0 the previous one. They also have a reset gate to calculate
the hidden state. There is no cell state.

The hidden state at step t is computed as following. First the reset gate 𝑟𝑡

is computed by

𝑟𝑡 = 𝜎
(︀
𝑊𝑖𝑟𝑥𝑡 + 𝑏𝑖𝑧 + 𝑊ℎ𝑟ℎ(𝑡−1) + 𝑏ℎ𝑟

)︀
, (3.38)

the update gate 𝑧𝑡 is computed by:

𝑧𝑡 = 𝜎
(︀
𝑊𝑖𝑧𝑥𝑡 + 𝑏𝑖𝑧 + 𝑊ℎ𝑧ℎ(𝑡−1) + 𝑏ℎ𝑧

)︀
, (3.39)

the new gate 𝑛𝑡 is defined by:

𝑛𝑡 = tanh(𝑊𝑖𝑛𝑥𝑡 + 𝑏𝑖𝑛 + 𝑟𝑡 * (𝑊ℎ𝑛ℎ(𝑡−1) + 𝑏ℎ𝑛)), (3.40)

and finally, the hidden state ℎ𝑡 is computed by following:

ℎ𝑡 = 𝑧𝑡 * ℎ(𝑡−1) + (1 − 𝑧𝑡) * 𝑛𝑡, (3.41)

where x is the input, ℎ𝑡−1 is the previous hidden state, 𝑊𝑖 and 𝑊ℎ, 𝑏 are learned
input weights, recurrent weights and bias.

Every RNN, LSTM and GRU layer can be stacked as multiple layers. In
case of NLP these layers can be responsible for different features of language
for example one layer is responsible for part of speech and another one learns
features responsible for a tense.

3.3.6 CNN
The next architecture is a Convolutional Neural Network [72].It is widely used
for an image processing. In natural language processing tasks these networks

32 CHAPTER 3. THEORETICAL BACKGROUND

combine the information from spatially or temporally local segments. This
network is not used in this thesis however it may be used in Natural Language
processing and is one of the most fundamental types of Neural Network, so we
decided to describe it in this subsection.

The advantages of CNNs is that they provide relatively simple way to detect
features of words in a sentence, and they do not suffer so much from vanishing
gradient. The disadvantage is that CNN are not natural representation for
complicated patterns.

Convolution networks usually contain the layer responsible for convolution
operation, activation function and then the pooling operation. There are two
kinds of terminology, in the first one three operations are separate layers and in
the second the three operations are one layer, in this thesis the second notation
is used.

The general convolution operation for two functions 𝑓 and 𝑔 is denoted as *
and has the form:

𝑠(𝑡) = (𝑓 * 𝑔)(𝑡) =
∫︁ ∞

−∞
𝑓(𝑡 − 𝜏)𝑔(𝜏) 𝑑𝜏 (3.42)

where f is referred as an input, g is a kernel, 𝑡 is a time and 𝑠(𝑡) is an output at the
time 𝑡, 𝜏 is dummy variable. In machine learning the input is multidimensional
array of data. The kernel is multidimensional array of parameters. For discrete
input and kernel values the convolution is defined as:

𝑠(𝑡) = (𝑓 * 𝑔)(𝑡) =
∞∑︁

𝜏=−∞
𝑓(𝑡 − 𝜏)𝑔(𝜏) (3.43)

The output is sometimes called feature map. Often, for image or text processing,
there are used two dimensions [53]. An example of equation for two-dimensional
input I and two-dimensional kernel K is:

𝑆(𝑖, 𝑗) = (𝐼 * 𝐾)(𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛) (3.44)

In practice, as convolution is commutative, formula with flipped kernel rel-
ative to the input is used more often.

𝑆(𝑖, 𝑗) = (𝐾 * 𝐼)(𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛) (3.45)

However, most often the cross-correlation is used instead of the convolution:

𝑆(𝑖, 𝑗) = (𝐼 * 𝐾)(𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛) (3.46)

An example of convolution operation in CNN network is presented in 3.6 The
convolution operation is usually followed by an activation function, the most
common is ReLU. The next stage is the pooling function. A pooling function
takes the output of the previous operation and calculates statistics of nearby
outputs. For instance, a max pooling chooses the maximum value among the
outputs in a certain area. An average pooling calculates the mean of all outputs
in a certain area. The reason for using pooling is to reduce the size of input
and make the output invariant to small translations of the input. That means,
small changes in positions of input do not change a lot in the pooled output.

After a few convolutional layers there is an output layer, for example, a dense
layer that performs classification or regression task.

3.3. NEURAL NETWORKS 33

Figure 3.6: Example of convolution operation. Input and kernel are 2-
dimensional. Flipping is not used.

3.3.7 Autoencoders
The next type of neural network is an autoencoder [53]. The aim of this network
is identity mapping input to the output. This is done using the hidden layer
that represents the code for the input. This kind of network has two parts, an
encoder ℎ = 𝑓(𝑥) that encodes an input 𝑥 and a decoder that reconstructs the
input 𝑟 = 𝑔(ℎ).

The autoencoder is forced to learn which aspects of the data have higher
priority. It should not copy the whole input to the output perfectly but only
approximate it. For that reason the hidden layer usually has fewer dimensions
that the input and output layer. That makes autoencoders learn useful proper-
ties. The architecture of this type of network is presented in 3.7.

First autoencoders were used for dimension reduction or feature representa-
tion. Encoder and decoder layers can be simple feed-forward layers but there
are many variants of autoencoders. An example is a stochastic encoder-decoder,
where an encoder provides a conditional distribution 𝑝𝑒𝑛𝑐𝑜𝑑𝑒𝑟(ℎ|𝑥) and a decoder
has to provide a conditional distribution 𝑝𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑥|ℎ) or a denoising autoen-
coder, where the input has some noise and the aim is to predict the original
input.

They can be also used for information retrieval, anomaly detection or ma-
chine translation. Encoder-Decoder, a special case of autoencoders used in
machine translation, produce an input and output of different lengths.

These models [71] are focused on calculating the probability of 𝑃 (𝐸|𝐹) of
the output sequence E given the input sequence F. The first encoders-decoders
use RNNs to encode and decode a sequence.

A sequence 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑇𝑥) is an input of length 𝑇𝑥 for RNN encoder
that calculates:

ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1) (3.47)

and then:
𝑐 = 𝑔({ℎ1, . . . , ℎ𝑡𝑥

}), (3.48)

where ℎ𝑡 is hidden state at time step t, 𝑐 is a context vector generated from
the hidden states, 𝑓 and 𝑔 are non-linear functions.

The decoder has to predict the next word 𝑦𝑡, based on the all previous
predictions of words {𝑦1, . . . , 𝑦𝑡′−1} and the context vector c. It is calculated as

34 CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.7: Autoencoder’s architecture. X is input encoded as h by the encoder
and X’ is reconstructed input from h by the decoder.

ordered conditional probabilities:

𝑝(𝑦) = Π𝑇
𝑡=1𝑝(𝑦𝑡|{𝑦1, . . . , 𝑦𝑡−1}, 𝑐)) (3.49)

where 𝑦 = (𝑦1, . . . , 𝑦𝑇𝑦) is the output sequence. Decoder’s RNN models each
conditional probability as

𝑝(𝑦𝑡|{𝑦1, . . . , 𝑦𝑡−1}, 𝑐)) = 𝑞(𝑦𝑡−1, 𝑠𝑡, 𝑐), (3.50)

where q is a nonlinear function, 𝑠𝑡 is the hidden state of the RNN.
Nowadays, autoencoders for NLP tasks are replaced by transformers that

share some similar concepts and are described in the next subsections.

3.3.8 Attention
For the first time, attention was proposed in a paper [73] in encoder-decoder
neural network for neural machine translation. Later, the concept of attention
started to be used in other tasks of natural language processing.

The general idea of this model is to search for a set of positions in a source
sentence to find the most relevant information, each time the new word is gen-
erated. These source positions determine the context vectors that model takes
into account together with previously predicted words, when the model predicts
a target word.

In this model decoder computes the conditional probability by:

𝑝(𝑦𝑖|{𝑦1, . . . , 𝑦𝑖−1}, 𝑐)) = 𝑞(𝑦𝑖−1, 𝑠𝑖, 𝑐𝑖), (3.51)

3.3. NEURAL NETWORKS 35

where 𝑠𝑖 is a hidden state of RNN at time step 𝑖 computed by:

𝑠𝑖 = 𝑓(𝑠−𝑖, 𝑦𝑖−1, 𝑐𝑖) (3.52)

In this equation the difference from 3.50 is 𝑐𝑖. Now each target word 𝑦𝑖 is
conditioned on a distinct context vector 𝑐𝑖.

The context vector is computed as:

𝑐𝑖 =
𝑇𝑥∑︁

𝑗=1
𝛼𝑖𝑗ℎ𝑗 , (3.53)

where ℎ𝑗 is an annotation from a sequence of annotations (ℎ1, . . . , ℎ𝑇𝑥) to which
encoder maps the input sequence an 𝛼𝑖𝑗 is a weight of annotation ℎ𝑗 computed
by softmax:

𝛼𝑖𝑗 = 𝑒𝑥𝑝(𝑒𝑖𝑗)∑︀𝑇𝑥

𝑘=1 𝑒𝑥𝑝(𝑒𝑖𝑘)
, (3.54)

where 𝑒𝑖𝑗 is an alignment model that scores the match of inputs around position
j and the output at position i:

𝑒𝑖𝑗 = 𝑎(𝑠𝑖−1, ℎ𝑗) (3.55)

The alignment model 𝑎 is a feedforward neural network that is trained jointly
with other components. The decoder decides to which part of an input sentence
it should pay attention to, what is called attention mechanism.

Annotations for decoder summarize words based not only on the previous
words but also the surrounding context which may include also the following
words. For that reason the encoder uses bidirectional RNN which consist of two
RNNs: forward and backward. The forward one processes the input sequence
in its order and produces a sequence of forward hidden states and the backward
- reversed. Hidden states of this two RNNs are concatenated to obtain the
annotation for each word. These sequences of annotations are used by decoder
in 3.53 and 3.54. The idea of attention mechanism is presented in 3.8

In the above example, described attention is referred as additive attention.
There are many variants of attention. In the next subsection the most relevant
to this work attention types are described.

3.3.8.1 Self-attention

Attention may be used within a single sentence and then is called self attention
[74]. In the basic form, words in an input sequence of length 𝑇 are represented
by word embeddings 𝑋 = (𝑥1, . . . , 𝑥𝑇). The context vector 𝑐𝑖 for 𝑖𝑡ℎ word is:

𝑐𝑖 =
𝑇∑︁

𝑗=1
𝛼𝑖𝑗𝑥𝑗 , (3.56)

where attention weights 𝛼𝑖𝑗 are computed using a softmax function as in the
additive attention:

𝛼𝑖𝑗 = 𝑒𝑥𝑝(𝜔𝑖𝑗)∑︀𝑇𝑥

𝑘=1 𝑒𝑥𝑝(𝜔𝑖𝑘)
, (3.57)

36 CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.8: Autoencoder with additive attention

.
This time attention weights involve 𝜔𝑖𝑗 which is s dot product of two vectors

from the input sequence:
𝜔𝑖𝑗 = 𝑥𝑡

𝑖𝑥𝑗 (3.58)

The difference with additive attention is 𝜔𝑖𝑗 that pays attention to the relation
between words in a given sequence rather than words in input and output se-
quence. This type of attention is called dot-product attention [75]. Dot-product
attention is faster than first additive attention [73] which uses a feed-forward
network to calculate the attention alignment score.

3.3.8.2 Scaled dot product attention

Before we define the next type of attention we have to explain the concepts of
key K, query Q and value V matrices. The mechanism of attention works as a
function that maps vectors of a query and set of key-value pairs to an output
[73].

The exact meaning of query, values and keys depends on the performed task.
For machine translation it may be vectors of input words for queries and output
words for keys and values. For language models if self-attention is used the key,
values and queries are equal and may be interpreted as vectors of words in a
sentence.

In previous subsection self-attention, we calculate a dot product 3.58 of the
input vectors 𝑥𝑖, that represent keys 𝑘𝑖, and input vectors 𝑥𝑗 , that represent
queries 𝑞𝑖. Values are represented by 𝑥𝑗 from attention weights 3.57.

Using that notation and using matrix notation for vectors of key K, query
Q and values V, we can write the formula for dot product attention’s output:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇)𝑉 (3.59)

An example of a scale dot product attention is presented in figure 3.9. In

3.3. NEURAL NETWORKS 37

Figure 3.9: Two architectures of attention mechanism. On the left scaled Dot-
Product attention which is a part of Multihead Attention on the right. These
attentions are used in transformers models. Source of this figure: [76]

this form of attention the matrix of output is computed as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√
𝑑𝑘

)𝑉. (3.60)

It is similar to the dot product attention except of scaling queries and keys by
the factor 1√

𝑑𝑘
and 𝑑𝑘 is the dimensionality of input queries and keys. Values

have dimension𝑑𝑣.

3.3.8.3 Multi-head attention

The architecture of this model is presented on the right in figure 3.9.
The model linearly projects queries, keys and values ℎ times with different

linear projections to 𝑑𝑘, 𝑑𝑘 and 𝑑𝑣 respectively. Then the attention function
is applied on each of these projections parallel to calculate heads of attention
model:

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝐾
𝑖), (3.61)

where the projections are matrices of parameters 𝑊 𝑄
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊 𝐾

𝑖 ∈
R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊 𝑉

𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 .
Then, heads are concatenated and projected again to calculate Multi-Head

Attention:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑𝑖, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊 𝑂, (3.62)

where 𝑊 𝑂 ∈ R𝑑ℎ𝑑𝑣 ×𝑑𝑚𝑜𝑑𝑒𝑙 is also a parameter matrix.

3.3.9 Transformers
Transformer [76] is a language model that may be used for various NLP tasks.
The architecture of this model is presented in figure 3.10. It is a sequence-to-
sequence model based on encoder-decoder architecture. It relays completely on
attention mechanisms and does not use any recurrent or convolution layer.

38 CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.10: Transformer model architecture. The left part is responsible for
encoding the sequence and the right part for decoding. Multi-head attention
is used to catch the most important elements in the sequences. Source of this
figure : [76]

The aim of the encoder in this model is to map input sequence (𝑥1, . . . , 𝑥𝑛)
to another sequence of continuous representation z =(𝑧1, . . . , 𝑧𝑛). Then the
decoder is given the vector 𝑧 and generates the sequence (𝑦1, . . . 𝑦𝑚). This model
is autoregressive, what means the symbols previously generated, are additional
input for the next steps. The illustration of model architecture is presented on
3.10.

The model starts with input tokens that are converted to vectors of dimen-
sion 𝑑𝑚𝑜𝑑𝑒𝑙 using learned embeddings. Also output tokens are converted to
vectors in the same way. Positional encodings are added to the input tokens to
store the information about the order of sequence.

The encoder part is on the left in the picture. It has N stacked identical layers
and each layer has two sublayers. The first of two sublayers is a multi-head-
attention mechanism. The second sublayer is a fully connected feed-forward
network. There is a residual connection around each sublayer. It is followed by
a normalization layer. That is, after each sublayer the input and output of this
sublayer is summed and normalized. All sublayers and embedding layers in the
model have the output of the same dimension equal to 512.

Decoder part is on the right in the picture. It has also N stacked identical

3.3. NEURAL NETWORKS 39

layers. Decoder has two sub-layers similar to encoder. In addition, it has
sublayer with multi-head attention over the output of the encoder stack (in
the middle in the right picture). Each sublayer is surrounded by a residual
connection followed by normalization layer as in encoder. A masked multi-
head attention is applied on the output embeddings with position encoding to
ensure that predictions at the current position depend only on known outputs
from the previous positions. The output of the decoder is converted using
linear transformation and softmax function to calculate next-token probabilities.
There is the same weight matrix shared between input and output embedding
layers and linear transformation after the decoder. The difference is that in the
embedding layers the weights are multiplied by

√
𝑑𝑚𝑜𝑑𝑒𝑙.

3.3.10 Bidirectional Encoder Representations from Trans-
formers (BERT)

This Bidirectional Encoder Representations from Transformers (BERT) [77] is
the model that outperformed existing performance scores on all tasks that it
was used for. BERT’s aim is to create word embeddings from a textual data. It
is similar task as the Word2Vec does but BERT takes into account the context
when learning vector representation of words [78]. The difference between left-
to-right language models and BERT is that the latter fuse the left and the right
context, which stands for bidirectional Transformer. The whole architecture
is based on implementation of the encoder from [76] described in the previous
paragraphs. The reason for using only encoder part is that we wish to produce
words’ representation vectors, not to translate sequence into another sequence.

Training BERT involves two steps: pre-training and fine-tuning. BERT is
pre-trained using unlabelled text data and different pre-training tasks: masked
language model and next sentence prediction. Then, one additional layer is
added to initialized during pre-traing BERT to fine-tune this model for a specific
task. All parameters are fine-tuned with downstream task like a sentiment
analysis, the next sentence prediction or a question answering. Each task has a
different model with a dedicated output layer even if the pre-trained model is
the same.

There are many freely available pre-trained models of BERT in various
languages. In the first paper authors describe two models of varying size:
𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 and 𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸 . The first one has number of layers L=12,
for each hidden size H=768 and self-attention heads A= 12. The second,
𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸 has a number of layers L=24 , a hidden size H= 1024 and a
self-attention heads’ number A=16.

BERT has specific input/output representation. It is able to unambiguously
represent one or two sentences in one input token sequence. Thanks to that it is
able to handle tasks like question answering or next sentence prediction where
sentences create some natural pairs.

Sentence is split into tokens based on a token vocabulary. The WordPiece
embedding model [79] is used for that. It splits words into sub-words in de-
terministic data-driven approach. Every sub-word is a separate token. Among
tokens for the input and output representation, there are two special tokens:
[CLS] and [SEP]. The first one is always added as the first token of a sequence.
For this token the final hidden state is used as a representation of a whole se-
quence for the classification tasks. The second special token is used when two

40 CHAPTER 3. THEORETICAL BACKGROUND

sentences are packed together into a one sequence, and we wish to separate them
by this token. In that case, learned segment embedding added to every token,
marks if the token belongs to the first or the second sentence.

Final input representation of a token is a sum of position embedding, segment
embedding and token embedding.

After tokenizing, the input sequence is ready for pre-training. First the mask
language model task is performed. In this task, the bidirectional representation
is trained by masking some percentage of input tokens at random and predict-
ing only those masked tokens. This solution overcomes a problem of standard
conditional models trained left-to-right or right-to-left that can’t use the whole
context of a sequence. Simply using bidirectional conditioning would allow deep
model to "see" each target word in a multilayer context before it is predicted.
15% of input tokens in each sentence are selected to be masked. The problem is
that [MASK] token does not appear during fine-tuning. Because of that, if the
token is selected, then only 80% of time it is replaced by [MASK], 10% of time
it is replaced by another random token and 10% of time it is not changed. Then
the hidden vector of the replacing input token is used to predict the original
token.

Next, sentence prediction task is used to train BERT because many NLP
tasks are based on the relationship between two sentences like question answer-
ing or natural language inference. This is not captured by previous language
models. In order to train this model binary classification task was performed.
Two consecutive sentences were chosen from the monolingual corpus. During
training 50% of time the second sentence was the actual successor of the first one
with label 𝑖𝑠𝑁𝑒𝑥𝑡 and 50% was a random sentence with label 𝑁𝑜𝑡𝑁𝑒𝑥𝑡. Token
[CLS] is used as a representation of both sentences for next sentence prediction.

Next, BERT model is fine tuned for a specific task. In this step, the proper
input and output labels are fed into BERT and end-to-end fine-tuning is done
by adjusting pretrained parameters. The input data is specific for task and is
tokenized similarly as in pre-trainng. The output layers and acivation functions
depend on the task. Fine-tuninig step is usually inexpensive in terms of time
and space complexity comparing to pre-training.

Since BERT and transformers succeeded in many NLP tasks transformers
become popular and transformed into many new models. Some of them are:
RoBERTa [80] that uses more efficient training and smaller number of elements
in a network architecture, GPT-2 [81] and newer GPT-3 [82] that are able to
generate human-like texts, Electra [83] that uses two transformer models: the
generator and discriminator, XLNet [84] that learns bidirectional context and
overcomes BERT limitations by autoregressive formulation, DistilBert [85] that
learns from pretrained BERT, XLM-Roberta [86] that combines Roberta and
XLNet.

Part II

Experiments

41

Chapter 4

Visibility and Agenda bias

In this chapter we describe helper techniques and tools for news media bias
analysis that concern visibility and agenda bias.

In this chapter first we present entities’ timeline analysis to reveal visibility
bias. Next we propose methods for finding news articles that describe similar
events. Finally, we add experiments that show how easy it is to recognize the
source of the news.

4.1 Entity timelines experiments
The availability of textual data in web portals gives many opportunities of
information extraction. News media create articles about politics and events
which should reflect the real world. The amount of information makes it difficult
for a human to know and identify all important and objective information. We
found it important to extract information from web portals such as news articles
and create methods that help to identify most important events.

Analysis of the time series based of news articles or user generated content
can give us answers for questions about real life events. We may find out what
caused stock market crashes or drop of support of a candidate in president
elections. Comparing news texts and user sentiments we can find what topics
were the most important in an election campaign.

In our research, we wish to show how timeline of entities’ frequency can
reflect occurrences of real events and can be used to compare occurrences of
entities in different web portals. This section presents research on how to use
named entity occurrences in news articles and comments in order to analyse real-
world events, their presentation in the media and reception by the on-line users.
We present proof-of-concept demo on gathering text from news media, using
basic summaries and visualisation of entities that result in promising results.

4.1.1 Problem Specification
The goal of this research is an analysis of entities appearing in political news
articles published on leading on-line Polish web portals.

More precisely, the goal is to find if there are any patterns related to named
entities encountered in the news articles in time. A named entity is any object

43

44 CHAPTER 4. VISIBILITY AND AGENDA BIAS

or thing that exists itself and can be named. It can be person, organisation,
place, events etc. We wish to make a visual analysis of differences in entity
distributions among different time periods.

Additionally, we wish to identify visibility bias. More precisely, we wish to
check if there are differences between news portals in a number of mentions
of certain entities in their articles. We also wish to analyse co-occurrences of
entities.

4.1.2 Experiments
Our approach is to crawl the data from 2 popular web portals and find all entities
appearing in each article. We choose portals that are known as representing
diverse political views. We recognise named entities in each article and present
an analysis of them.

4.1.2.1 Data

A simple crawler developed in Python programming language was used to collect
data concerning articles and comments. The language of the textual data is
Polish.

We collected the following data: entities in articles, dates of articles, com-
ments to articles, authors of comments and dates of comments.

Web news portals that we consider are the following:

∙ wpolityce.pl

– 5519 articles
– 255427 comments

∙ gazeta.pl

– 521 articles
– 83832 comments

All the analysed articles are in the category “politics”. One of the analysed web
portals is commonly known as an example of moderate conservative and another
as liberal. We have collected data from 01.01.2017 to 22.04.2017.

4.1.2.2 Entity detection

Named entity recognition was done using tool liner2 [87]. This tool is available
by REST API and is a part of Clarin-PL project. This tool recognises named
entities and assigns categories to each of them. There are several category
models available for liner2, but we have noticed that using 4 models increases
chances of finding all entities. These models are:

∙ names - recognizing borders of named entities boundaries

∙ 5nam - recognizing 5 categories: first name, last name, country, city, street

∙ top9 - recognising 9 categories: adjective, event, facility, living, location,
numex, organization, other and product

4.1. ENTITY TIMELINES EXPERIMENTS 45

∙ n82 - recognising 9 categories as in top9 and their 82 subcategories.

We excluded two models for temporal entities: timex1,timex4, as we do not use
them in our research. We found that sometimes phrases recognised as entities do
not represent true entities or sometimes entities are merged when they appear
one by one in a text. Despite this, we are able to find the most frequently
occurring entities.

We collected entities appearing in the text of articles and article titles. Be-
cause of declension of words in Polish, after recognising an entity we take its
base form to count its occurrences. For simplicity, we do not focus on entity
linking and co-reference resolution i.e. we assume that two different base form
entities are always treated separately even if they have the same disambiguation
meaning. For example, we collected separate entities ’Tusk’ and ’Donald Tusk’
even if they most probably represent the same person (a former prime minister
of Poland). Despite this, the number of entities appearing as most frequent was
sufficiently representative to observe a relation between real world events and
higher occurrence frequencies of entities. We are aware about of more advanced
NER techniques, however this is out of the scope of this thesis.

We have recognised 24207 unique entities in wpolityce.pl articles and 3542
unique entities in gazeta.pl articles.

4.1.2.3 Analysis of entities occurrence

We analysed the frequency of entities in news portals. Firstly, we compared
data from gazeta.pl and wpolityce.pl and entities’ occurrences among different
months. Entity frequency is defined as the number of occurrences of each recog-
nised entity in all documents in a month. As a next step, we visualise frequency
of entities in time using area plots. This time in visualisation, we use frequency
of entities appearing in all articles from one day.

We also analyse co-occurrence of entities in articles from the whole period
of time of data we have collected. We can use it to investigate which entities
relate to each other. Based on data representing entities in articles we created
a matrix, elements of which represent the number of articles where each pair of
entities co-occurs.

For example if entity ’Tusk’ appears twice and entity ’Kaczyński’ (the pres-
ident of “PiS” (“Law and Justice”) the major party in the Polish parliament)
appears three times in one article we count it as one co-occurrence. The num-
ber of the articles where entity ’Kaczyński’ and ’Tusk’ appears together is the
number of their co-occurrences.

4.1.3 Experimental results of entity occurrences analysis
As the results of our experiments we study the following characteristics:

∙ the most frequently occurring entities

∙ entity timelines, i.e. area plots representing occurrence intensity of entities
over time

∙ co-occurrence statistics of entities

46 CHAPTER 4. VISIBILITY AND AGENDA BIAS

January February
entity freq. entity freq.
Sejm 315 PiS 132
PiS 242 MON 95
Polska 141 Polska 89
Kaczyński 96 Kaczyński 85
Sala kolumnowa 93 Beata Szydło 75
Jaroslaw Kaczyński 69 Sejm 60
Beata Szydło 51 Warszawa 58
KOD 45 Szydło 54
Macierewicz 44 BOR 53
senat 44 Macierewicz 53

March April
entity freq. entity freq.
Polska 247 PiS 160
PiS 225 Polska 56
Donald Tusk 177 Macierewicz 44
Tusk 163 MON 44
Rada Europejska 142 Sejm 38
UE 105 Jaroslaw Kaczyński 35
Sejm 98 PO 30
Kaczyński 93 Donald Tusk 29
polski 88 Warszawa 29
MON 75 Antoni Macierewicz 23

Table 4.1: Most common entities in web portal gazeta.pl

The results presented in this chapter concern some example entities to illus-
trate our approach.

Tables 4.1 and 4.2 present the most frequent entities among the first 4 months
in 2017. Some entities are the most frequent ones in both portals other appears
just in one of them. We can observe that some entities are encountered with
similar frequency in every month. These are entities which give us less informa-
tion about current popular topics in the news. Not surprisingly for each month
for both portals ’Polska’ (Poland) entity is among the most common entities.
Similar popularity is observed for the entity ’PiS’ the name of major party in
the Polish parliament.

One can notice that some entities appear more often in one web portal than in
another. We observed the following phenomenon: in the first month of analysis,
gazeta.pl more often uses entities related to the currently ruling party, when
wpolityce.pl represents the higher frequency of entities related to opposition.

Figures 4.1 and 4.2 present intensity timelines of three example entities from
the most frequent ones: ’Sala kolumnowa’ (’Column Hall’) - the name of the
room in the Polish parliament where the voting on the Polish budget had to
be exceptionally moved in December 2016, ’MON’ (abbreviation of the name of
the Polish Ministry of Defense) and ’Donald Tusk’ (a former prime minister of
Poland, who resigned in 2014 for taking a position of a president of the European
council). It can be noticed that entity distributions in these examples seem to be
strongly associated with some real events of high importance in Polish politics

4.1. ENTITY TIMELINES EXPERIMENTS 47

January February
entity freq. entity freq.
Polska 2712 Polska 2383
Sejm 2293 PiS 1466
PiS 1927 Warszawa 1092
KOD 895 polski 645
Polak 758 UE 638
Kijowski 594 Sejm 532
Nowoczesna 581 Polak 499
zloty 537 Niemcy 496
polski 537 zloty 493
TK 515 Europa 481

March April
entity freq. entity freq.
Polska 3551 Polska 1264
PiS 1818 PiS 1210
UE 1417 Polak 519
Donald Tusk 1194 Donald Tusk 438
Tusk 1088 Tusk 429
polski 1015 Sejm 390
Europa 996 MON 373
Polak 801 zloty 332
Rada Europejska 722 polski 311
Unia Europejska 629 UE 293

Table 4.2: Most common entities in web portal wpolityce.pl

48 CHAPTER 4. VISIBILITY AND AGENDA BIAS

Figure 4.1: Example of timeline for entities: Sala Kolumnowa, MON, Donald
Tusk encountered in news articles at gazeta.pl from 01.01.2017 to 10.03.2017

that actually took place at that time.
First of all, we can observe a high frequency of the entity ’sala kolumnowa’ at

the beginning of the year. ’Sala kolumnowa’. The timeline shows that this place
was often mentioned in Polish news in January. After some time this entity is
almost not mentioned in articles of both portals anymore. With a background
knowledge of the political situation in Poland, we can draw a suggestion that this
represents particular event: Sejm meeting unexpectedly took place in Column
Hall due to the illegal blocking of the main voting room by the opposition. This
event provokes discussion about the legality of the blocking or validity of the
voting between the ruling party and the opposition what had a reflection in the
news from that time.

Also for entity ’Donald Tusk’ which represents Polish politician, former
prime minister, we can find some interesting pattern. Just before a day of
his election for President of the European Council the number of occurrences
rapidly grows for both portals. Again it was a controversial event in the Polish
political scene.

The third entity ’MON’ is related to the Polish Ministry of National Defence.
Higher frequency of this entity observed in February 2017 seems to be naturally
related to an affair that actually took place at this institution that time.

Except for mentioned similarities, we can observe some differences. For
example ’MON’ entity is mentioned rather regularly at portal ’wpolityce.pl’,
and at ’gazeta.pl’ mainly at February. ’Donald Tusk’ entity occurs more often
at ’wpolityce.pl’ portal than in ’gazeta.pl’ in the first two months. Entity ’MON’
is more popular than entity ’Donald Tusk’ at ’gazeta.pl’ but ’Donald Tusk’ entity

4.2. NEWS SIMILARITY 49

Figure 4.2: Example of timeline for entities: Sala Kolumnowa, MON, Donald
Tusk encountered in news articles at wpolityce.pl from 01.01.2017 to 10.03.2017

is, in general, more popular entity than ’MON’ at ’wpolityce.pl’.
Co-occurrence of entities to exemplary entities are shown in table 4.3 for

portal gazeta.pl and table 4.4 for wpolityce.pl. Each examplary entity has its
co-occurring entities. Entities are considered as co-occuring if they encounter
in the same article at least once. In each case entities ’Polska’, ’PiS’ are re-
peated because they are among most frequent ones and relate to the country
and government. For entity ’Donald Tusk’ the most interesting one is ’Rada
Europejska’ (EU Council) which is strongly connected to his current function.
’MON’ occurs most often with entity ’Macierewicz’ and ’Antoni Macierewicz’
which relates to the person of the current Minister of National Defense. For
entity ’Sala kolumnowa’ there is some difference between both portals. Both
use entities ’sejm’ (parliament), ’PiS’ (the ruling party), ’Polska’ but only in
one the phrase ’Sala kolumnowa’ is mentioned with ’PO Michał Szczerba’ (a
politician from the current opposition known for initialising the illegal process
of blocking the work of the Polish parliament what resulted in moving the work
into the ’Sala kolumnowa’ room) and ’PO i Nowoczesna’ (the names of the cur-
rent opposition parties in Poland) but at ’wpolityce.pl’ it co-occurs with ’senat’
(the higher chamber of the Polish parliament).

4.2 News similarity
One of basic modules in any bias-analysis tool is a module that makes it possible
to automatically or semi-automatically detect pairs of news articles (or, more
generally: text documents), that report on the same event, topic or entity.

50 CHAPTER 4. VISIBILITY AND AGENDA BIAS

Donald Tusk MON Sala kolumnowa
entity freq. entity freq. entity freq.
Rada Europejska 66 Macierewicz 58 sejm 30
PiS 64 Antoni Macierewicz 50 PiS 21
Tusk 63 PiS 31 PO i Nowoczesna 16
Polska 63 Polska 29 PO Michał Szczerba 13
polski 42 NATO 26 PO 12

Table 4.3: Co-occurring entities in web portal gazeta.pl

Donald Tusk MON Sala kolumnowa
entity freq. entity freq. entity freq.
Polska 729 Polska 249 sejm 134
Tusk 606 Antoni Macierewicz 206 PiS 95
PiS 526 Macierewicz 199 Polska 72
Rada Europejska 463 PiS 177 PO 52
polski 155 polski 155 senat 46

Table 4.4: Co-occurring entities in web portal wpolityce.pl

Such pairs of articles, where each article comes from a different source (e.g. web
portal, particular author, etc.) can be further used to make comparison-based
analysis towards detecting information bias. The pairs are also necessary to
build a training, test or reference set in the case of machine-learning approach
to the described research problem.

In this subsection we present a method and experimental results of detecting
pairs of news articles on the same (similar) topic or reporting the same (similar)
event, etc. We focus here on the news articles in news portals.

4.2.1 Problem Specification
In this section we consider two research problems:

∙ news similarity detection problem

∙ information source recognition problem

4.2.2 News similarity detection
We proposed two approaches to news similarity detection: find all similar articles
to the given one and given two articles decide if they are similar or not. The first
approach to the problem is as follows. In a given collection of news articles from
a given time window (e.g. particular day, etc.) detect the groups of articles that
report on the same topic/event, etc. A manually labelled training set that is a
collection of manually grouped news articles is prepared. We apply text mining
techniques to identify the similar events. The models are evaluated using the
metrics presented in the next section: averaged precision, averaged recall and
averaged F-measure.

The second approach is to identify whether 2 articles are similar. We apply
the machine-learning approach to this problem. For each article there are com-
puted several attributes based on the textual contents, keywords, etc. Then,

4.2. NEWS SIMILARITY 51

news portal number of articles
gazeta.pl 2623
dorzeczy.pl 4197

Table 4.5: Dataset

the set is used to train some ML models. Finally, the models are used to auto-
matically detect similar articles. The models are evaluated using the prepared
group labels and some standard measures such as precision, recall or f-measure.

4.2.3 Towards news bias detection
The second research problem studied in this section is the following. Given an
article and the set of information sources (e.g. web news portals) is it possible
to automatically recognise which source does this article comes from based only
on the contents? This kind of experiment can be viewed as a one of simple tests
of imparity of information sources. I.e. if it is possible to correctly predict the
source of the news article based on its content then it is more likely that this
information source has some information bias.

Of course some other reasons may make it possible to predict the source
of the news article including the writing style, etc. However this simple test
may serve as one of the multiple tools that could in ensemble help to detect
information bias. More advanced bias-detection tools are envisaged in our on-
going research.

4.2.4 Experimental Setup
4.2.4.1 Data Collection

We collect the data from two Polish news portals: ’dorzeczy.pl’ and ’gazeta.pl’.
These two are chosen from among the most popular Polish news portals. In
addition, they are considered by many readers as examples of media having
completely different views on the reality in Poland especially in the domain
of social issues or politics and hence making it possible to build an interest-
ing dataset with a potential of containing pairs (or clusters) of articles on the
same/similar topic/event/entity but with potentially various forms of informa-
tion bias. Articles are categorised by a predefined set of topic categories on
each of the portals. The decision was made to focus on events connected to
the politics in Poland or world. In this case we were looking for articles from
category ’Information’ (’Wiadomosci’) in ’gazeta.pl’ and in portal ’dorzeczy.pl’
for categories ’Country’ and ’World’ (’Kraj’ and ’Swiat’).

In these experiments we decided to focus only on Polish media but it is
possible to extend our research to other languages.

We have collected the articles from 01.01.2018 to 07.04.2018. Table 4.5
presents the number of articles.

4.2.4.2 Database

We store the data in MongoDB - a document database. We create article collec-
tion of news articles and their comments. Each item in the collection represents

52 CHAPTER 4. VISIBILITY AND AGENDA BIAS

group quantity number of groups
1 145
2 36
3 17
4 or more 16

Table 4.6: Distribution of articles among groups

an article and contains the following fields: _id’, ’article_id’, title’, ’date’,
’lead_text’, ’text’, ’keywords’, ’source’, ’url’ and ’comments’. Field comments
contains ’author’, date’, ’comment_id’, ’text’.

4.2.4.3 Data Annotation

For news similarity detection we needed to manually create an annotated data
set. The common approach for text similarity recognition is to create a set of
article pairs and annotate if they are similar or not. We realised that for news
articles this approach may not be the best one. We wish to find all articles
that are similar and sometimes one news portal describes an event in one article
and other news portal writes about this in a series of four articles, for example.
Thus we define the task of annotating similar articles as follows.

For a given time window (e.g. a particular date) we collect all articles from
the specified web news portals. Each article is assigned to a group with articles
about similar event. If there is no group with articles describing the event create
a new one. The group contains all articles about the same event.

We have annotated 385 articles from 6 randomly chosen days. Articles
formed 213 groups. There are groups of consisting of one article or groups
containing many articles. The distribution of articles among groups quantity is
presented in table 4.6 Each record of annotated data contains (among others)
the following attributes: ’date’, ’article_id’, ’group_id’.

4.2.4.4 Data Preprocessing

In the preprocessing phase we apply several operations including: removing
stop-words, normalising - convert words to the base form using Morfeusz li-
brary1.

4.2.4.5 Evaluation Measures

In order to evaluate experimental results we calculate the average precision,
recall and f measure in each experiment.

The average precision is the average of precision of each group. That is given
by the following expression:

𝑎𝑝 = 1
𝑁

𝑁∑︁
𝑛=1

𝑝𝑛 = 1
𝑁

𝑁∑︁
𝑛=1

𝑡𝑝𝑛

𝑡𝑝𝑛 + 𝑓𝑝𝑛
(4.1)

1http://sgjp.pl/morfeusz/morfeusz-siat.html

http://sgjp.pl/morfeusz/morfeusz-siat.html

4.2. NEWS SIMILARITY 53

Algorithm ap ar af1
Keywords similar. 0.60 0.57 0.42
Doc2Vec + cos sim 0.72 0.57 0.50
Doc2Vec+bigram+cos simililar. 0.93 0.60 0.64
Doc2Vec+trigram+cos similar. 0.92 0.63 0.66
TF-IDF +cos similar. 0.50 0.69 0.53

Table 4.7: Evaluation of article’s similarity detection

Where N is the number of evaluated groups. Accordingly average of recall
is given as:

𝑎𝑟 = 1
𝑁

𝑁∑︁
𝑛=1

𝑟𝑛 = 1
𝑁

𝑁∑︁
𝑛=1

𝑡𝑝𝑛

𝑡𝑝𝑛 + 𝑓𝑛𝑛
(4.2)

Finally, average F-measure is defined as follows:

𝑎𝑓1 = 1
𝑁

𝑁∑︁
𝑛=1

2 * 𝑝𝑛 * 𝑟𝑛

𝑝𝑛 + 𝑟𝑛
(4.3)

4.2.5 Experimental Results on Articles Similarity Detec-
tion

4.2.5.1 Group approach

In a group approach of finding similar articles we experimented with three meth-
ods for the news similarity detection problem:

∙ keyword set similarity - this is our simple baseline solution. We compared
the number of similar keywords and find the most similar articles using
predefined threshold based on the number of keywords.

∙ tf-idf with cosine similarity- after preprocessing of a textual data, we cal-
culated tf-idf and cosine similarity between articles from a given data
frame. Again we choose the most similar articles based on the predefined
threshold.

∙ doc2vec [88] with cosine similarity in three variants: unigrams, bigram
phrases, trigram phrases. For Each of these we choose doc2vec based on
bag of words model. Similar preprocessing was done as for tf-idf.

The results of evaluation are presented in a table 4.7. The best averaged
results for given measures were highlighted in bold. The best average precision
is observed for two doc2vec models. That means for these models there are the
least false positives. However, the best f-measure and recall is observed for tf-idf
algorithm. This algorithm is better choice if we wish to find as many similar
articles as possible without caring about dissimilar articles among them.

54 CHAPTER 4. VISIBILITY AND AGENDA BIAS

news portal training set test set
similar (1) 320 151
not similar (0) 7837 2624

Table 4.8: Number of article pairs for similarity detection

Algorithm Class Precision Recall F1-score Support
Siamese 0.0 0.95 0.86 0.90 2624
LSTM 1.0 0.07 0.19 0.10 151

avg / total 0.90 0.82 0.86 2775
SVM 0.0 0.98 0.91 0.94 2624
polynomial 1.0 0.29 0.63 0.40 151
kernel avg / total 0.94 0.90 0.91 2775
SVM 0.0 0.98 0.85 0.91 2624
linear 1.0 0.20 0.68 0.31 151
kernel avg / total 0.94 0.84 0.88 2775
Logistic 0.0 0.98 0.89 0.93 2624
regression 1.0 0.24 0.63 0.35 151

avg / total 0.94 0.87 0.90 2775
Gradient 0.0 0.96 0.95 0.96 2624
boosting 1.0 0.27 0.28 0.27 151
classifier avg / total 0.92 0.92 0.92 2775

Table 4.9: Evaluation of one to one articles pairs. Class "1" means articles are
about the same topic and "0" means they are not about the same topic

4.2.5.2 Pair approach

In this task we wished to identify if a pair of articles is similar or not. The
data was split into test and train datasets as presented in 4.8. Similar articles
was labelled as ’1’ and not similar articles as ’0’. We have created the following
features as input vector for each pair: cosine similarity on tf-idf vectors, number
of similar keywords, normalized number of similar entities that is number of
similar entities/sum of entities in both articles. In table 4.9 we present an
evaluation of proposed algorithms.

All algorithms have quite good results. Support vector machines occur to
be the best one. Siamese neural networks has high results in total but very low
scores for similar pairs where the reason may be that it was not able to detect
dependencies in long text.

4.2.6 Experimental Results on News Article Source De-
tection

We experimented with three machine learning algorithms in the problem stated
as prediction of the news article source based on its content. In all the experi-
ments concerning this problem, the articles’ attributes explicitly mentioning the
actual source (e.g. the “source” attribute) were ignored in the prediction phase.
Dataset for this task is presented in table 4.10. We have used the following
algorithms: naive bayes, logistic regression, support vector machines.

4.3. SUMMARY 55

news portal training set test set
gazeta.pl 2436 395
dorzeczy.pl 3591 606

Table 4.10: Number of articles for media outlet detection

Table 4.11: Evaluation of article’s media outlets detection
algorithm news portal precision recall f1-score support
Naive dorzeczy.pl 0.69 0.98 0.81 606
Bayes gazeta.pl 0.89 0.32 0.47 395

avg / total 0.77 0.72 0.67 1001
Logistic dorzeczy.pl 0.90 0.83 0.86 606
Regression gazeta.pl 0.76 0.86 0.81 395

avg / total 0.85 0.84 0.84 1001
SVM dorzeczy.pl 0.88 0.86 0.87 606

gazeta.pl 0.79 0.83 0.81 395
avg / total 0.85 0.85 0.85 1001

The evaluation of proposed methods is presented in table 4.11. Support
vector machines have the best score for pairs of articles (dentoed as 1) slightly
outperforming logistic regression. These results show that based on simple ap-
proach, analysing the basics of used language we are able to recognise the source.

4.3 Summary
In this section we presented helper tools that may be used in the online news
media bias detection.

56 CHAPTER 4. VISIBILITY AND AGENDA BIAS

Chapter 5

Entity-based news
sentiment analysis

In this chapter the main results of this thesis are presented. We study the
entity-level sentiment detection in news headlines. We proposed several models
and compared them with state-of-the-art approaches. We achieved similar or
better results.

5.1 Motivation
Many ordinary users of the news portals usually quickly and superficially read
lots of news headlines every day, often without deeper background knowledge.
The news headlines read in this way by the users may influence the way they
view the world, often unconsciously. It especially concerns political news media
where the stake is potentially high (e.g. supporting by the reader one or another
politician in elections, etc.).

It is possible that media outlets often intentionally construct the headlines to
present an entity (e.g. a politician) in a positive (or negative) light. Examples
are:

”Trump is projecting an image of strength amid battle with coronavirus”
“Trump actually believes he can sell himself to America as a COVID-conquering

hero”,
to mention two real political news headlines concerning 2020 presidential

elections in USA and coming from on-line media and mentioning a major politi-
cian in a perhaps non-neutral way.

It is hard to precisely define what exactly makes positive or negative im-
pression (concerning the politician) on the reader while reading such headlines,
and it might be partially unconscious for the reader. But the fact that majority
of readers of a news headline independently have similar impression concerning
the mentioned entity might be a signal that the phenomenon is real.

Obviously, one of the main tools to achieve this effect is biased language.
However, even if the language is objective (neutral), the positive or negative
entity-level tonality might be achieved for example by selecting the context
(facts, other entities, etc.) in which the entity is mentioned.

57

58 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

Dataset final headlines an-ns an-rs R-𝜅 F-𝜅 % agr.
size excluded

SEN-pl 1188 168 4441 19 0.512 0.459 80.89
SEN-en-R 1271 40 3913 19 0.406 0.309 76.22
SEN-en-AMT 1360 55 4503 57 0.396 0.303 75.95

Table 5.1: SEN datasets summary. Column name an-ns is number of annota-
tions and an-rs is number of anntoators.

Thus, providing a human-labelled benchmark dataset for training and testing
machine-learning algorithms for sentiment concerning entities in political news
headlines seems to be valuable for the research community.

In this section we present a new publicly available benchmark dataset for
bi-lingual entity-level sentiment analysis in news headlines. We hope that in-
troducing such data would make it possible to work towards providing tools
for supporting more objective and fairer media that would be beneficial for the
society. To our best knowledge this is the first labelled dataset concerning this
domain that includes Polish.

5.2 The SEN dataset
For our experiments we created a novel bi-lingual benchmark dataset called
"SEN" ("Sentiment concerning Entity in News headlines").

The set is publicly available1 and consists of 3819 human-labelled and cu-
rated records. Each record contains a news headline, a named entity mentioned
in the headline and a human annotated label (one of “positive”, “neutral”, “neg-
ative”2).

Our SEN dataset package consists of 2 parts: SEN-en (2631 English head-
lines that split into SEN-en-R and SEN-en-AMT), and SEN-pl (1188 Polish
headlines). Each headline-entity pair was annotated via the open-source an-
notation tool doccano3 by at least 3 annotators from a team of volunteer re-
searchers (the whole SEN-pl dataset and a subset of 1271 English records: the
SEN-en-R subset, “R” for “researchers”) or via the Amazon Mechanical Turk
service (a subset of 1360 English records: the SEN-en-AMT subset). Table 5.1
summarises the details.

5.2.1 Collecting and selecting the data
The headlines were crawled from an intentionally diversified set of popular on-
line news media outlets. In total we gathered 212.982 articles in Polish and
136.379 in English. In our collection of articles the earliest news in Polish
dataset has a date 03.05.2019 and the latest 16.10.2020. The earliest English
collection article is from 19-10-2001 and the latest 14-04-2021.

As some outlets do not provide access to archival articles and some reduce
the number of them, to achieve consistency and typical number of titles in each

1 https://zenodo.org/record/5211931
2The fourth, special ”unknown” label was available only during the annotation process

when selecting any other label was problematic for an annotator
3https:/github.com/doccano/doccano

https://zenodo.org/record/5211931

5.2. THE SEN DATASET 59

English Polish
source total SEN-en-R SEN-en-AMT source total SEN-pl
nytimes.com 23913 491 470 niezalezna 36015 140
wsj.com 88489 47 99 onet.pl 44807 139
foxnews.com 4452 260 250 tvn24 31193 64

truepundit.com 12890 121 191 wpolityce 28971 664
washingtonpost.com 6635 392 405 natemat 1313 7

tvp.info 20750 58
dorzeczy.pl 18900 112
polsatnews 15751 58

Table 5.2: The number of downloaded articles (total) and those selected for the
annotation

news portal for our research we decided to use the data ranging from December
2019 to February 2020. From this period of time we selected headlines that
contain selected named entities. We selected the entities manually to represent
some active politicians, famous people, political parties or countries.

We assured to have certain minimum number of headlines about each entity.
We selected the entities manually, since some NER tools that we have tested
miss entity mentions when they are at the beginning of the sentence, what is a
common case in news headlines, and some entities with surnames being common
words are not recognized by NER. Statistics of collected data are presented in
table 5.2.

The entities selected for the research are:

∙ for SEN-en: 15 named entities being popular politicians or celebrities, with
a special emphasis on the candidates on current US presidential campaign,
including: Trump, Biden, Sanders, Bloomberg, Putin, Thunberg, etc.

∙ for SEN-pl: 17 named entities being popular politicians, political parties,
etc. including: Duda (the current Polish president), Tusk (former Polish
prime minister), Trump, Putin, Macron, Thunberg, etc. and the country
name “Polska” (“Poland”).

Detailed proportion of labels for each entity is presented on figure 5.1

5.2.2 Data preprocessing, cleansing and annotation
The data is annotated by two groups of annotators: voluntary researchers and
workers of a crowdsourcing tool Amazon Mechanical Turk (AMT) (only for
English).4

For the first group of data annotation we created a survey in doccanno [89]
framework. Before final annotations we made a few trial annotations with differ-
ent data annotation rules with 20 headlines each. We analysed the annotators’
questions and their performance.

For example, we clarified that the annotators should not evaluate the general
sentiment of the whole headline when it does not express any sentiment towards
the target entity. We instructed the annotators to not interpret subtle irony or
sarcasm. We observed that annotators perform better when the annotation rules
are strict and short. For the final version we asked volunteer researchers and
academics to annotate the data. Each annotator had access to a few packages

4We did not use AMT for Polish language as we did not find relevant number of annotators
and the number of annotations was too small.

60 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

Figure 5.1: On the left: 3 pictures with number of all class labels that were
assigned to each entity by anntoators. On the right: final class labels after
aggregation.

5.2. THE SEN DATASET 61

Figure 5.2: Label distribution in the SEN dataset

of data each of 100 headlines. It was recommended to annotate at least one
package or more. During the process of annotation it was assured that each
headline has at least 3 annotators.

Each annotator was presented a headline-entity pair and was expected to
select one of possible lablels: "positive", "neutral", "negative" and "unknown".
Similar prerequisites were used for the AMT workers.

The final set of annotation rules was based on our experience from the first
phase and on some existing works [32], [31]. Examples of annotation rules
presented to the annotators are as follows:

∙ decide whether the entity is presented in negative, neutral or positive light

∙ sentiment may be revealed by clear statement or opinion about an entity

∙ do not focus on the whole headline sentiment but only on the sentiment
of the entity, how this entity is described

∙ in case the sentiment is not possible to be determined use the "unknown"
label (it may happen, for example, when the headline strongly depends
on the context or the sentiment is mixed, etc.)

∙ try to be neutral and objective (supress your personal opinion on the
entity)

Annotators were expected to use only the first impression just after having
read the headline and try to abstract from their subjective personal opinions on
the entities or events, etc. The records which obtained ambiguous labels, i.e.
3 different labels, or at least 2 “unknown” labels were excluded from further
processing. The final labels were aggregated via majority voting. See Figure
5.2 for label distribution.

5.2.3 Outlier annotator detection
In order to detect outliers among the annotators we computed the Jensen-
Shanon entropy divergence (JSD) measure [90] of each annotator and inspected

62 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

Figure 5.3: SEN-en-AMT annotators Distribution of JSD values
.

the distributions of the JSD value in each of the 3 parts of the SEN dataset.
JSD measure The JSD measure can be viewed as a variant of the Kullback-

Leibler divergence and is defined as follows:

𝐽𝑆𝐷(𝑝𝑖||𝑞𝑖𝑗) =
√︂

𝐷(𝑝𝑖||𝑚) + 𝐷(𝑞𝑖𝑗 ||𝑚)
2 (5.1)

where 𝑝𝑖 is the label distribution vector for the i-th entity in the final dataset,
𝑞𝑖𝑗 is the label distribution vector for the i-th entity and j-th annotator.

To curate the labels, we did not take into the account the labels of the top-
JSD value annotators. The figures 5.4 and 5.5 present the distibutions of the
JSD values. It can be observed that in all datasets there are some outlier anno-
tators. We excluded the annotators that were more than 2 standard deviations
away from the mean of the distributions. There were 6, 4 and 2 such annotators
in the sets SEN-en-AMT, SEN-en-R and SEN-pl, respectively (see the top-right
bars of the histograms on the figures).

5.2.3.1 Detecting entity-related bias of annotators

Furthermore, we analysed the annotators in terms of their bias towards the
annotated entities. To this end we applied the sentiment score measure.

Sentiment score measure The sentiment score measure is defined as fol-
lows:

𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡_𝑠𝑐𝑜𝑟𝑒(𝐸𝑛𝑡𝑖𝑡𝑦) = 𝑝𝑜𝑠 − 𝑛𝑒𝑔

𝑝𝑜𝑠 + 𝑛𝑒𝑔 + 𝑛𝑒𝑢𝑡𝑟
, (5.2)

where pos, neg and neutr is the number of positive, negative or neutral annota-
tions, for the given setting, respectively. The score equal to 1 means maximal
positivity, etc.

We have calculated sentiment score for each entity-annotator pair, see figures
5.6, 5.7 and 5.8. The labels of the outlier entity-annotator pairs (represented as
the dots over or below the boxplots) were excluded from further considerations.

5.2. THE SEN DATASET 63

Figure 5.4: SEN-en-R annotators. Distribution of JSD values

Figure 5.5: SEN-pl-R annotators. Distribution of JSD values

64 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

entity number of pos neutr neg sentiment score entropy
annotations

Biedroń 307.0 41 94 160 -0.403390 1.400166
Bosak 36.0 9 17 9 0.000000 1.513697
Duda 704.0 236 333 101 0.201493 1.443068
Hołownia 168.0 17 69 79 -0.375758 1.372542
KO 3.0 0 0 3 -1.000000 0.000000
Kidawa 251.0 9 69 121 -0.301255 1.483329
Konfederacja 3.0 0 0 3 -1.000000 0.000000
Kosiniak-Kamysz 149.0 32 74 33 -0.007194 1.464520
Liroy-Marzec 23.0 9 9 4 0.227273 1.502220
Macron 149.0 14 69 62 -0.331034 1.359555
Merkel 3.0 0 3 0 0.000000 0.000000
Morawiecki 439.0 175 197 43 0.318072 1.374472
Polska 1369.0 348 610 295 0.042298 1.510150
Potocki 6.0 0 4 1 -0.200000 0.721928
Putin 391.0 15 109 253 -0.631300 1.088838
Rosja 3.0 0 2 1 -0.333333 0.918296
Thunberg 40.0 5 10 24 -0.487179 1.314427
Trump 388.0 68 189 118 -0.133333 1.469778
Tusk 6.0 0 0 6 -1.000000 0.000000
Śpiewak 3.0 1 2 0 0.333333 0.918296

Table 5.3: Polish entities statistics and measures. The lowest sentiment score
and entropy is underlined. The highest is bold.

5.2.4 General entity bias detection
In addition we applied the sentiment score measure (defined in the subsection
5.2.3.1) to each entity in the dataset. The results are presented in the tables:
5.3, 5.4, 5.5.

We also applied the entropy measure to see whether the entities vary in
diversification of sentiment labels.

It can be observed that some entities are strongly biased in the dataset,
i.e. most of the headlines that concern them are either positive or negative.
Examples are: "Trump", "Biden", "Putin", etc. Because of this entity-bias ob-
servation, we decided to use several techniques to achieve better performance of
machine-learning algorithms trained on this dataset.

5.3 Experiments on entity-level sentiment clas-
sification on the SEN dataset

In this section we present the experiments concerning one of the main forms of
bias detection, namely tonality bias detection in headlines of news articles. More
precisely the input of the classifier is the headline of the article and the entity
(for example famous politician such as Donald Trump, etc.). The output is one
of the labels: "positive", "neutral", "negative". It can help to detect whether
the author of the article and headline manipulates the reader’s reception of the

5.3. EXPERIMENTS ON ENTITY-LEVEL SENTIMENT CLASSIFICATION ON THE SEN DATASET65

entity number of pos neutr neg sentiment score entropy
annotations

Bennet 24.0 2 11 11 -0.375000 1.330484
Biden 416.0 73 189 140 -0.166667 1.488811
Bloomberg 208.0 51 95 55 -0.019900 1.524660
Buttigieg 271.0 85 126 51 0.129771 1.494380
Delaney 2.0 0 1 1 -0.500000 1.000000
Gabbard 9.0 1 5 3 -0.222222 1.351644
Klobuchar 116.0 34 62 18 0.140351 1.418920
Patrick 21.0 0 11 8 -0.421053 0.981941
Putin 18.0 4 11 3 0.055556 1.347223
Sanders 413.0 108 193 97 0.027638 1.513349
Steyer 35.0 5 23 6 -0.029412 1.229776
Thunberg 5.0 1 2 2 -0.200000 1.521928
Trump 2167.0 297 1000 750 -0.221299 1.439697
Warren 160.0 34 67 57 -0.145570 1.53241
Yang 48.0 12 29 6 0.127660 1.311806

Table 5.4: SEN-en-R entities statistics and measures. The lowest sentiment
score and entropy is underlined. The highest is bold.

entity number of pos neutr neg sentiment score entropy
annotations

Bennet 6.0 1 1 4 -0.500000 1.251629
Biden 388.0 62 145 176 -0.297650 1.471261
Bloomberg 167.0 44 74 47 -0.018182 1.543412
Buttigieg 243.0 106 85 50 0.232365 1.522223
Delaney 9.0 0 5 4 -0.444444 0.991076
Democratic Party 33.0 4 8 20 -0.500000 1.298795
Democrats 682.0 121 219 331 -0.312966 1.475775
GOP 183.0 47 51 80 -0.185393 1.542511
Gabbard 11.0 0 10 1 -0.090909 0.439497
Klobuchar 75.0 34 27 11 0.319444 1.455905
Patrick 6.0 0 3 3 -0.500000 1.000000
Putin 12.0 2 3 7 -0.416667 1.384432
Republican Party 10.0 4 3 3 0.100000 1.570951
Republicans 294.0 76 102 108 -0.111888 1.569110
Sanders 308.0 112 97 99 0.042208 1.581976
Steyer 30.0 10 16 4 0.200000 1.399581
Thunberg 2.0 0 2 0 0.000000 0.000000
Trump 1837.0 287 738 804 -0.282668 1.468850
Warren 168.0 34 78 55 -0.125749 1.508196
Yang 39.0 9 21 9 0.000000 1.457266

Table 5.5: SEN-en-AMT entities statistics and measures. The lowest in the
column sentiment score and entropy is underlined. The highest is bold.

66 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

Figure 5.6: Sentiment score of annotators for each entity. We can see that for
almost each entity there is an outlier annotator. Entities with less than 10 labels
where excluded from this boxplot

Figure 5.7: Sentiment score of annotators for each entity. We can see that for
almost each entity there is an outlier annotator. Entities with less than 10 labels
where excluded from this boxplot

5.3. EXPERIMENTS ON ENTITY-LEVEL SENTIMENT CLASSIFICATION ON THE SEN DATASET67

Figure 5.8: Sentiment score of annotators for each entity. We can see that for
almost each entity there is an outlier annotator. Entities with less than 10 labels
where excluded from this boxplot

entity.

External Datasets: PTB and SEMEVAL-L : Besides the SEN dataset,
we run our experiments on two other, publicly available datasets adapted to our
problem: PTB – 1042 paragraphs from Portuguese-Brazilian news articles [91]
dataset prepared for paragraph-level sentiment analysis consisting of articles
about the main president and governor candidates in Brazil and we considered
only paragraphs where an entity is mentioned. In addition, since up to our
knowledge there are do not exist other dataset about political entities we test
models on dataset concerning sentiment about laptops SEMEVAL-L: subset of
the semeval14 dataset [92] restricted to 2328 opinions concerning laptops.

5.3.1 Models and techniques used in the experiments
In the next paragraphs we explain the details of techniques used during experi-
ments.

We present a few stages of experiments. In our baseline experiments we use
SVM, LSTM and Target-Dependent LSTM. Next we present experiments that
use Large Language models. We experiment with BERT, TD BERT and our
own model: EntBERT. Then, we present several modifications of BERT: use
of all intermediate layers of BERT, gathering embeddings of different tokens
and adding external context of the entity. In most cases we address Large
Language Model as BERT but in fact, after some minor modifications, any of

68 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

Large Language Model can be used there. After each set of models, we present
the results and short summary.

5.3.1.1 General experimental setup

All variants of SEN dataset and PTB dataset are randomly split into train
(75%) and test (25%) sets. For laptops we use the train test file prepared by
the authors of [92]. In all experiments we use 2 evaluation metrics: accuracy
and F1 macro-averaged measure. The hyperparameters specific for each model
type are provided together with model description. We conducted experiments
with several settings and present the best ones.

5.3.1.2 Baseline models

In this place we report baseline experiments with SVM and two LSTM-based
models. These models are described in chapter 3. The experimental setup for
each model is described in the next paragraphs.

SVM Based on the training set the feature vector space is created using tf-
idf algorithm with n-grams for n ranging from 1 to 3. Then the vocabulary
from training set, is used to transform test set of headlines to a feature vector.
Scikit-learn implementation [93] of svm algorithm is used with the following
hyperparameters: kernel is a radial basis function, kernel coefficient gamma is
set to 0.5, penalty parameter C of the error term is set to 3, class weight is
set to ’balanced’ that means that each class has weight calculated as number of
samples / (number of classes * number of class samples))

LSTM Simple LSTM network is used to classify a sequence of word vectors.
Word vectors are created using fasttext5 algorithm. The whole headline, without
modifications is converted into vectors. The following hyperparameters are used:
64 hidden units, weights initialization with uniform distribution from -0.3 to
0.3, learning rate 0.01, clipping gradient at value 200. For word embeddings we
pretrained fasttext embeddings on the whole news articles, separately for each
language. The network was trained through 50 epochs.

Target-Dependent LSTM (TDLSTM) The model was proposed in [94].
Given text is split into two parts: left and right based on the index of entity.
Left part is the sequence of words from the first word to the entity, and right
part is the sequence from the entity to the end of the sentence. Both parts
are represented as sequences of word embedding vectors. Two LSTM layers are
used, one for the left and one for the right part. The last hidden states of the
left and right LSTM layers are concatenated. The softmax of the output is
calculated to classify the tonality of the text for the given entity as positive,
neutral or negative. The hyperparameter settings of the network are analogous
as for the LSTM experiments.

5https://fasttext.cc/

https://fasttext.cc/

5.3. EXPERIMENTS ON ENTITY-LEVEL SENTIMENT CLASSIFICATION ON THE SEN DATASET69

Dataset metric svm LSTM TDLSTM
SEN-pl acc 52.66 45.09 50.90

f1-macro 35.66 38.98 47.70
SEN-en-R acc 54.73 43.92 45.89

f1-macro 37.00 34.98 41.82
SENenAMT acc 44.86 37.38 39.25

f1-macro 43.67 37.55 39.42
SEN-en acc 53.33 45.12 49.23

f1-macro 46.67 42.49 46.01
PTB acc 58.84 42.30 50.00

f1-macro 58.00 42.25 49.41
SEMEVAL-L acc 63.13 63.79 67.08

f1-macro 53.00 57.09 60.90

Table 5.6: Results for baseline machine learning models. LSTM and TDLSTM
models were trained for 50 epochs.

5.3.1.3 The results of the baseline models

First, we present the results of the SVM, LSTM and TDLSTM models in table
5.6. In general, RNNs for news headlines do not improve the results in most
cases. SVM is the best among the 3 analysed models according to accuracy
metric. It achieves the best accuracy for all datasets with news. The only case
where both LSTM based architectures are better is the laptops dataset. When
considering F-measure, the TDLSTM model achieves better performance than
SVM for SEN-pl and SEN-en-R datasets. For all datasets TDLSTM is better
than LSTM. The neural networks are not always better than shallow machine
learning. It turns out that for our problem among baselines models, n-grams
and svm is better than word embedding and LSTMs.

5.3.1.4 Models based on the transformer architecture

The transformer and BERT architectures are described in chapter 3. In our
experiments, we used Hugging Face6 [95] implementation of BERT. For English
"bert base cased"7 pretrained model was used, for Polish - "polBERT" 8 and
for Brazilian Portuguese the model "bert base portuguese cased" 9 described in
the paper [96]. Models are trained 10 times for 10 epochs and the best result
according to macro f-measure is chosen. The gradient clipping is set to 10.
Xavier weight normalisation is used for all dense layers. Batch size is set to 8.
Learning rate is 2e-05. Learning rate warmup scheduler is set to 5 steps. L2
normalisation is set to 1e-10. The optimization method is ADAM.

BERT The first layer consists of bidirectional transformer bert model. Em-
bedding of the first token which is the special ”[𝐶𝐿𝑆]” token is the input for a
dense layer ended with softmax.

6https://huggingface.co/
7https://huggingface.co/bert-base-cased
8https://huggingface.co/dkleczek/bert-base-polish-uncased-v1
9https://huggingface.co/neuralmind/bert-base-portuguese-cased

https://huggingface.co/
https://huggingface.co/bert-base-cased
https://huggingface.co/dkleczek/bert-base-polish-uncased-v1
https://huggingface.co/neuralmind/bert-base-portuguese-cased

70 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

Figure 5.9: EntBERT model visualisation.

Target-Dependent BERT (TDBERT) : is based on work [97] with our
custom minor changes. The first part is the same, starting with a BERT layer.
Next in the original model the whole BERT embedding of the target part is
passed to the pooling layer while we took the embedding of the last target
token and passed directly to a linear layer that is followed by softmax function.

EntBERT (our model): We propose a novel modification of BERT called
EntBERT (for ”Entity BERT”) for the entity-level sentiment detection. The
first layer is the one with BERT embeddings. Then we concatenate the embed-
ding vector of the first token [CLS] and embedding vector at the entity index of
the sentence. Then we use it as the input vector for a linear layer with softmax.
The difference to TDBERT is that besides using the token that represents the
entity (that is used in TDBERT), we additionally use the token [CLS] that rep-
resents the whole sentence. Thanks to that we can use a broader context of the
headline. As we show this solution improves the classification performance.

It is also different than the model TD-BERT-QA proposed in th same paper
as TDBERT [97] as we do not use helper question to create sentence-pair to
create [CLS] token embedding.

The model is presented on figure 5.9

5.3.1.5 The results of BERT-based models

In table 5.7 we present the results of EntBERT, BERT and TDBERT tested
on 6 datasets. We can observe that our model EntBERT outperforms other
models on the 3 datasets SEN-en-AMT, SEN-en and PTB. It achieves the best

5.3. EXPERIMENTS ON ENTITY-LEVEL SENTIMENT CLASSIFICATION ON THE SEN DATASET71

dataset BERT EntBERT TDBERT
SEN-pl acc 61.31±3.18 61.95±1.57 61.85±1.89
SEN-pl F1 56.96±3.2 55.79±1.62 56.37±2.38
SEN-en-R acc 54.77±1.75 52.75±1.83 52.08±1.36
SEN-en-R F1 44.73±6.35 43.03±2.59 40.82±1.80
SEN-en-AMT acc 49.04±2.31 51.86±2.01 49.22±1.40
SEN-en-AMT F1 47.44±2.36 50.67±2.02 48.00±1.26
SEN-en acc 50.79±0.9 52.85±1.08 50.97±1.03
SEN-en F1 49.04±1.14 51.09±1.51 47.64±1.51
PTB acc 65.61±1.27 68.07±1.34 63.11±2.27
PTB F1 65.61±1.65 67.94±1.31 62.99±2.23
SEMEVAL-L acc 75.72±0.92 76.34±1.04 76.51±0.47
SEMEVAL-L F1 70.16±0.99 71.67±1.84 72.18±0.89

Table 5.7: Experimental results for the BERT-based models. Odd rows repre-
sent accuracy, even ones represent F1. Each result is the mean after 10 repeti-
tions with random initializations. The best result in each row is typed with the
boldface.

accuracy for SEN-pl and slighly lower f-measure. On other datasets SEN-en-R
and SEMEVAL-L the results of EntBERT are close to the best ones.

5.3.2 The issue of entity sentiment bias
During experiments, we observed that models can unintentionally learn entity
bias when predicting the sentiment of the headline i.e. models can learn the
sentiment not only based on the context surrounding the entity but also connect
it to the entity itself. To solve this problem we used two techniques: masking
and substituting the entity with its type. Before applying these techniques, the
trained model can exhibit sentiment bias dependent on the given entity (i.e.
each headline containing an entity x can be classified as "negative", etc.).

Masking First we replaced the target entity by the special token [MASK].

Substituting entity with its type We tested two approaches with replacing
entities with their type. First approach is to replace only the target entity by
their type. For example an entity can be replaced by an occupation or function
like "politician", "person" or "organisation".

The second approach is as follows. We replace all named entities in the
headline with their types.

We used two databses: DBpedia https://www.dbpedia.org/ and spacy10.
We found the second database performing better for our experiments, because
it has higher entity coverage.

We found replacing entity by type useful not only for removing entity bias
tonality, but additionally it enriches the input data with some information about
the target.

10https://spacy.io/usage/linguistic-features#named-entities

72 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

Figure 5.10: Confusion matrices representing the target dependence problem for
BERT on the SEN-en dataset. The same headlines with target entity substitu-
tion are used for predictions in both confusion matrices. The numbers represent
proportions of labels that changed after substituting Trump for Sanders (left)
or for Putin (right). Rows represent labels predicted by BERT for headlines
where Trump was the target entity, columns the labels for the same headlines
where it was substituted. The matrices are row-normalised.

5.3.2.1 Results of entity-bias-aware models

The experimental results for BERT, TDBERT and our EntBERT models, with
all 4 variants of entity representations on several datasets are presented in the
table 5.8.

Initially we experimented with the unchanged headlines: our proposed Ent-
BERT model for the most datasets is slightly better here than the baselines.
However, we discovered an interesting entity-dependence phenomenon. To
demonstrate this, we made a simple experiment: we substituted the original tar-
get entity in the headline with another one (e.g. “Trump” changed to “Sanders”,
etc.). We observed that the resulting label of the headline was surprisingly of-
ten different after such substitution (see Table 5.9 for an example). We further
investigated this problem , and it turned out that it is omnipresent in case of
BERT, EntBERT, and TDBERT models on both SEN-en and SEN-pl datasets.

It seems to introduce a consequent unwanted bias into the classification,
i.e. it learns to “favour” some entities over other. More detailed figures are
presented on Figure 5.10. One can see that the BERT model trained on the
SEN-en dataset seems to “favour” the “Sanders” entity over the “Trump” entity,
turning many labels from neutral to positive or from negative to neutral with
no change of the original headline surrounding the entity.

A possible remedy to this problem is masking the target entity with a special
token [MASK] or generalising it with the DBpedia type of the entity. In variant
(2) we masked the target entity, in (3) we replace the target entity with its
DBpedia type and in (4) we replace all named entities in the headline with
their types with the use of spacy11. One can see, that the variant (2) achieves
generally better performance than (1) and (3) even further improves it, while
the variant (4) is generally worse than (3).

To summarise: in all the variants (except (4)), our proposed EntBERT model

11https://spacy.io/usage/linguistic-features#named-entities

5.3. EXPERIMENTS ON ENTITY-LEVEL SENTIMENT CLASSIFICATION ON THE SEN DATASET73

(1) unmasked entities
dataset BERT EntBERT TDBERT
SEN-pl acc 61.31±3.18 61.95±1.57 61.85±1.89
SEN-pl F1 56.96±3.2 55.79±1.62 56.37±2.38
SEN-en-R acc 54.77±1.75 52.75±1.83 52.08±1.36
SEN-en-R F1 44.73±6.35 43.03±2.59 40.82±1.80
SEN-en-AMT acc 49.04±2.31 51.86±2.01 49.22±1.40
SEN-en-AMT F1 47.44±2.36 50.67±2.02 48.00±1.26
SEN-en acc 50.79±0.9 52.85±1.08 50.97±1.03
SEN-en F1 49.04±1.14 51.09±1.51 47.64±1.51
PTB acc 65.61±1.27 68.07±1.34 63.11±2.27
PTB F1 65.61±1.65 67.94±1.31 62.99±2.23
SEMEVAL-L acc 75.72±0.92 76.34±1.04 76.51±0.47
SEMEVAL-L F1 70.16±0.99 71.67±1.84 72.18±0.89

(2) masked target entities
dataset BERT EntBERT TDBERT
SEN-pl acc 62.51±0.34 63.04±0.42 56.43±2.45
SEN-pl F1 56.83±0.31 58.25±0.86 48.34±2.46
SEN-en-R acc 56.39±2.04 53.80±1.63 51.48±0.50
SEN-en-R F1 49.87±1.99 43.21±1.83 48.61±1.11
SEN-en-AMT acc 51.88±1.98 53.63 ± 1.07 47.26±1.71
SEN-en-AMT F1 50.71±1.87 52.84 ± 1.19 46.13±1.73
SEN-en acc 51.06±1.22 53.77±0.59 53.13±1.47
SEN-en F1 49.40±1.40 51.70±0.61 48.59±2.50
PTB acc 64.65±3.26 70.15±1.29 60.27 ± 2.24
PTB F1 64.47±3.35 70.05±1.25 60.27 ± 2.24
SEMEVAL-L acc 75.72±0.90 76.22± 0.89 74.81 ± 2.26
SEMEVAL-L F1 70.16±0.98 71.58 ± 1.22 70.01± 2.84

(3) ’typed’ target entities
dataset BERT EntBERT TDBERT
SEN-pl acc 63.60±2.07 64.61±2.01 61.01 ± 2.60
SEN-pl F1 57.98±2.43 59.36±2.09 56.26 ± 2.95
SEN-en-R acc 55.85±2.20 55.13±1.16 52.67 ± 2.99
SEN-en-R F1 46.56±2.29 44.61±1.17 42.26 ± 2.08
SEN-en-AMT acc 53.38±2.11 54.32±2.27 53.82 ± 1.37
SEN-en-AMT F1 52.44±2.21 53.33±2.46 53.14 ± 1.51
SEN-en acc 53.90±1.18 54.77±1.33 54.37 ± 0.93
SEN-en F1 52.43±1.09 52.66±1.37 52.37±1.48
PTB acc 69.23±1.32 69.88±2.06 64.00±1.44
PTB F1 69.17±1.83 69.74±2.13 63.74 ± 1.57

(4) ’typed’ all entities
dataset BERT EntBERT TDBERT
SEN-pl acc 63.23±0.96 63.30±1.10 62.10± 1.98
SEN-pl F1 57.70±1.32 58.46±1.41 57.40± 2.31
SEN-en-R acc 57.61±1.77 56.82±1.38 54.025±1.01
SEN-en-R F1 50.79±2.34 47.78±2.05 42.94 ± 1.01
SEN-en-AMT acc 48.77±1.22 48.18±0.87 47.04 ± 2.39
SEN-en-AMT F1 47.57±1.25 46.96±1.00 45.86 ± 2.32
SEN-en acc 51.53±0.94 51.00±1.09 50.08 ± 1.06
SEN-en F1 49.95±0.87 48.60±1.33 46.78 ± 1.48

Table 5.8: Experimental results for the 4 variants. Odd rows represent accu-
racy, even ones represent F1. Each is a mean result after 10 repetitions with
random initializations for BERT-based models. The best result in each row is
typed with the boldface. For each dataset the best score is underlined
.

74 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

headline Entity Sentiment
𝑒𝑛𝑡𝑖𝑡𝑦 Arrival in London Sanders pos
Brings Controversy but Putin neut
Little Surprise Trump neg

Table 5.9: An example of the entity-dependence phenomenon. Sentiment label
predicted by BERT after the replacement of the target entity with another one
changes the label.

is superior to the baseline models on almost all the tested datasets. The highest
accuracy and f-measure for 4 datasets SEN-pl, SEN-en-AMT, SEN-en and PTB
is achieved by variant (4) and model EntBERT. We were unable to use variant
(3) and (4) for SEMEVAL-L dataset because it is not using entities. Also PTB
is not included in variant (4).

5.3.2.2 Models based on utilization of all layers

Following the concept of [98] we checked several modifications of BERT utilizing
intermediate layers. Hidden layers of BERT store more information than just the
last one and we wish to check if adding them to the output improves the overall
performance. The two networks LSTM-L-cls and Attention-L-cls are almost the
same as in the mentioned publication. The next four are incorporating another
modifications to these concepts.

All networks were trained for 10 epochs 10 times with random initializa-
tion and the results were averaged. The input contains the masked version of
target entity as described in section 5.3.2. The rest of hyperparameters and
regularisation is similar as in previous BERT-based models.

LSTM -L-cls This architecture uses an LSTM layer to process hidden BERT’s
layers representation of [CLS] token: from the first layer to the last one. Then
the output of the last hidden state of the LSTM is processed to the dense layer
with a softmax function. LSTM with 256 hidden units is used.

Attention-L-cls Instead of LSTM layers we use the attention operation. The
dot product attention is used to combine all intermediate layers embeddings at
the index of [CLS] token. The result of attention is processed by dense layer
with softmax function.

LSTM-L-idx In this model we use LSTM layer that utilize embedding of all
BERT’s layers but not of the [CLS] token as in LSTM-L-cls but embedding
vectors at hte index of entity in a sequence as shown on figure 5.11.

Attention-L-idx This network is very similar to LSTM-L-idx, but instead
of an LSTM layer we use self-attention operation to combine all intermediate
embedding vector representations of entity. Then the output of the attention is
used as input to the dense layer with softmax function.

5.3. EXPERIMENTS ON ENTITY-LEVEL SENTIMENT CLASSIFICATION ON THE SEN DATASET75

Figure 5.11: LSTM-L-idx, Utilization of embedding from all BERT layers at
the index of corresponding to the last entity token

LSTM-L-split In this version we split the input text into two parts by the
entity. Then we used them two create two separate BERT embeddings and we
again utilize all BERT’s layers as input of LSTM layers. This time embedding
vector of [CLS] token is used as input because the entity was used for splitting.
Then the outputs of the last hidden state of LSTMs are concatenated. The
resulting vector is processed through a dense layer with softmax function. The
network architecture is presented on figure 5.12.

Attention-L-split This network is very similar to LSTM-L-split, but again
the only difference is the attention and dense layer instead of LSTM. We split
the input text into two parts by the entity and create two separate BERT
embeddings. We utilize all BERT’s layers as input of attention. This time
embedding vector of [CLS] token is used as the entity was used for splitting.
Then the outputs of the attention are concatenated. The resulting vector is
processed through a dense layer with softmax function.

5.3.2.3 The results of models based on utilization of all layers

In the table 5.10 we present experimental results of models based on utilization
of all BERT layers described in subsection 5.3.2.2. The "type" version of target
entity is used. Models that use LSTM to read information from intermediate
layers, are better than those using attention except from the Attention-L-split
on SEN-pl dataset. Comparing to the previous experiments wich use only the
last layer of BERT, the results for SEN-en are better in general but for SEN-
pl are worse. The best model for SEN-en is LSTM-L-split with the highest
f-measure and slightly lower then the highest accuracy. These results confirm
that splitting the input improves the performance despite that the context of
the sentence is limited in each part. We have not extended the experiments for

76 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

Figure 5.12: LSTM-L-split, Utilization of embedding from all BERT layers at
the index of [CLS] token

other datasets as the results were not promising.

5.3.2.4 External context

Pre-trained transformers models are able to embed entities based on the context
of the current text and datasets that it was trained on. Additional data can
provide useful information for a model, that were not provided in a pretraining
step. For example, additional knowledge about target entities, especially for rare
entities, can enrich model with information about entities’ country, profession,
gender or any other important feature. Additional knowledge can be presented
directly or using word embeddings.

Wikipedia’s assumption is to present neutral information, that means em-
beddings we used should not be biased by sentiment.

We make a few modifications of networks and inputs to incorporate some
external knowledge.

EntSeqBERT BERT transformer CLS token embedding is concatenated with
LSTM layer that processes a sequence of entities’ embeddings from a given
headline. Entities are embedded using Wikipedia2Vec tool [99]. The models for
Polish and English language are trained on Wikipedia dump created on June
2022. Wikipedia embedding vector size is 100.

EntSeqBERT2 Again, we used BERT model embedding of CLS token, but
we added two LSTM layers that learn about entities. The first LSTM layer
learns the sequence of entities in a headline, the second learns the sequence of

5.3. EXPERIMENTS ON ENTITY-LEVEL SENTIMENT CLASSIFICATION ON THE SEN DATASET77

dataset Attention-L-cls Attention-L-idx Attention-L-split
SEN-pl acc 56.86 ± 4.30 57.99± 2.41 59.26 ±2.62
f1-macro 51.55 ± 4.56 50.26±3.38 54.52 ± 2.74
SEN-en acc 54.05±2.31 52.15±2.11 52.11 ±3.43
f1-macro 50.00± 2.85 46.63±2.37 49.07 ± 2.74
dataset LSTM-L-cls LSTM-L-idx LSTM-L-split
SEN-pl acc 59.82 ±1.92 59.72± 1.33 54.00± 4.44
f1-macro 53.39 ± 3.88 55.27± 2.67 43.26 ± 10.83
SEN-en acc 55.63± 2.30 55.08±2.03 55.59±1.31
f1-macro 51.85± 2.86 49.70±1.73 53.27±0.87

Table 5.10: The results concerning BERT based models utilising all layers aver-
aged over 10 runs with random initialization. The input contains masked target
entity version of headline. The best results among all models are bold

Dataset WikiBERT EntSeqBERT EntSeqBERT2
SEN-pl acc 59.65 ± 1.34 57.41 ± 2.14 56.17 ± 2.8
f1-macro 55.41 ± 1.51 55.69 ± 2.03 53.67 ± 4.81
SEN-en-R acc 53.55 ± 3.06 50.08 ± 3.15 51.74 ±0.49
f1-macro 50.84 ± 2.58 47.43 ± 4.00 50.80 ±0.75
SENenAMT acc 46.42 ± 2.03 47.58 ± 1.60 51.23 ± 3.05
f1-macro 44.77 ± 2.29 46.27 ± 1.61 50.60 ± 2.38
SENen acc 55.79 ± 3.58 56.06 ±4.58 53.68 ± 0.45
f1-macro 52.78 ± 4.23 55.18 ±0.05 52.01 ± 0.84

Table 5.11: Mean results after 5 runs with random initialization for BERT
models with external context

entities in the whole article. Entities are embedded in the same way as in the
previous model.

WikiBERT Two BERT layers are concatenated together with Wikipedia2Vec
embeddings. Sentence is split into two parts by entity, which is not included in
any part. The first BERT is trained on left part of the sentences, and the second
on the right part. Between them there is entity embedding from Wikipedia2Vec.

The learning rate for the models above is set to 1e-05. Gradient clipping is
set to 10. The rest of hyperparameters is the same as in previous BERT based
models.

5.3.2.5 Results for models with external context

The last presented results 5.11 in this section concern BERT models with exter-
nal knowledge. Again, the results for SEN-pl are not improved by modifications.
For SEN-en the best results among all presented models so far are achieved by
EntSeqBERT, the BERT extended by headlines’ entities embedding processed
by LSTM layer. Among BERT with external knowledge WikiBERT is the best
for SEN-pl and SEN-en-R. EntSeqBERT2, BERT extended by wikiembedings of
entities from headlines and full articles, is the best one for SENenAMT dataset.
In this last experiments entities were typed.

78 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

To sum up the presented results , our best models are:

∙ EntBERT with ’typed’ target entities or SEN-pl and SEN-en-AMT datasets,

∙ WikiBERT for SEN-en-R dataset and EntSeqBERT for SEN-en dataset.

∙ Also EntBERT gains high results on dataset ptb but this dataset was used
only in two first stages of experiments.

In the next section we compare these models with a state-of-the-art model.

5.4 Comparison with state-of-the-art approach
We compared the results on our dataset and on another available dataset newst-
mtsc and best models with a model which we called gru-tsc, both presented in
the same paper [26]. The results are presented in table 5.12. We used original
code provided by the authors to reproduce the results of gru-tsc model on news-
mtsc dataset and apply it on SEN dataset.

5.4.1 News-mtsc dataset
This dataset is prepared for multi-target sentiment classification. It was released
in the same year as our SEN dataset. It contains sentences from political news
articles annotated by MTurk workers. The dataset is split into train with 8739
samples and test set that has two versions called mt and rw. MT consist of 1476
only multi-target sentences and rw, which refers to "real world" and contains
1146 single and multi-target sentences.

5.4.2 Gru-tsc model
In the same paper the authors present a model for target sentiment classification.
The model consists of four components that are a pre-trained language model,
external knowledge embedding, a target mention mask and bidirectional GRU.
There are three model inputs. First input use method suggested in [77] and
is a sentence 𝑠 concatenated with target mentions 𝑡 and tokenized. This input
can be represented as T=[𝐶𝐿𝑆, 𝑠𝑜, 𝑠1, . . . , 𝑠𝑝, 𝑆𝐸𝑃, 𝑡0, 𝑡1, . . . , 𝑡𝑞, 𝑆𝐸𝑃]. Second
input is a feature representation of a sentence 𝐸 created using combination of
dictionaries as an external knowledge. Third input is a mask 𝑀 that for each
token from input sentence sets 1 if it belongs to the target or 0 otherwise. Each
of these three inputs has its own embedding which is next concatenated into
one embedding layer. This layer is passed to interaction layer which is build
from single BiGRU layer. Then three pooling techniques are used: element wise,
mean and maximum is calculated over all hidden states of previous layer. Then
these three vectors are stacked and feed into fully connected layer.

5.4.3 Results
The comparison of the gru-tsc model and our best models is presented in 5.12.

We can observe a huge difference in results between SEN and newsmtsc
datasets. The results from all models are much higher for news-mtsc data.
There may be several reasons for that. First of all, our dataset contains only

5.4. COMPARISON WITH STATE-OF-THE-ART APPROACH 79

dataset m. models
newsmtsc gru-tsc WikiBERT EntBERT EntSeqBERT
mt acc 75.25±11.36#*/84.6† 81.22±0.20 79.36±0.67 72.95±0.8
mt f1 70.89±16.40#*/82.5† 79.71±0.90 76.77±0.57 71.48±0.9
rw acc 82.24±1.37#/83.8† 82.05±0.54 79.85±0.72 72.07±0.41
rw f1 81.45±1.16#/83.1† 81.37±0.52 79.37±0.75 70.84±0.52
SEN gru-tsc WikiBERT EntBERT EntSeqBERT
pl acc 65.18±12.58 * 59.65±1.34 64.61±2.01 57.41±2.14
pl f1 51.33±22.00 * 55.41±1.51 59.36±2.09 55.699±2.03
en-R acc 42.77±3.70 53.55±3.06 55.85±2.20 50.08±3.15
en-R f1 29.74±6.04 50.84±2.58 46.56±2.29 47.43±4.00
en-AMT acc 49.16±5.39 46.42±2.03 54.32±2.27 47.58±1.60
en-AMT f1 42.87±8.30 44.77±2.29 53.33±2.46 46.27±1.61
en acc 54.49±2.71 55.79±3.58 54.77±1.33 56.06±4.58
en f1 52.35±2.58 52.78±4.23 52.66±1.37 55.18±0.05

Table 5.12: Mean results of gru-tsc model compared with our best models Wik-
iBERT, EntBERT EntSeqBERT on "newsmtsc" and "SEN" data. The notation
is as follows: "m." is for metric, two "newsmtsc" datasets "mt" and "rw" denotes
"multi-target" and "real world" respectively, for "SEN": datasets "pl" denotes
Polish language, "en" English laguage and "R" is for researchers, "AMT" is for
Amazon Turk annotators . The best results for each dataset are bold. Results
marked as †are as reported by the author in the original paper. Results mark
as # are as repeated by the author of this thesis based on the original code.
Results marked as * are unstable, sometimes the accuracy and f-measure is low.

headlines which may be less clear, more confusing than sentences from articles.
The aim of headline is to encourage reading the article rather than provide exact
information.

The sentences from newsmtsc were manually selected. Authors removed
ambiguous texts. We assumed that in real life news produce headlines and
articles of varying quality and ambiguity, so we haven’t removed them, only
those where no agreement between annotators were achieved.

We compared also the models that have the best performance with proposed
gru-tsc model. Our best models are competitive to the state-of-the-art gru-tsc
model. For news-mtsc dataset mt version WikiBERT model achieved even better
results than results of gru-tsc that we managed to reproduce. For rw version the
gru-tsc is just slightly better. The third of our models EntSeqBert achieved the
worst performance. For all SEN dataset versions our models achieved better
results. Only in SEN-pl the accuracy of gru-tsc is better, but f-measure is
much lower than for our models. EntBert achieved the best performance for
datasets SEN-pl, SEN-en-R and SEN-en-AMT, EntSeqBert is the best for SEN-
en dataset. The gru-tsc has unstable results for SEN-pl and news-mtsc mt, what
caused lower results. For news-pl-R dataset f-measure vary from 23.08 to 74.12
and accuracy from 47.65 to 77.65 . For newsmtsc the f-measure is from 37.82
to 80.62 and accuracy from 52.90 to 81.72.

To sum up, our models outperform state-of-the-art model in most of the
cases. EntBERT achieved the most promising results but also WikiBERT and
EntSeqBert are providing satisfactory results.

80 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

5.5 Example application of sentiment detection
for news analysis

In this subsection we present possible application of headline tonality classifi-
cation for media analysis. W used the idea of entity timelines from 4.1 and
the model EntBERT trained in 5.3 to present changes of the entity sentiment
through time.

To create timelines we use use all crawled headlines that mention given entity
from a given period of time. We classify them as positive, negative or neutral
relative the given entity using model EntBERT trained on a SEN dataset in a
language adequate to a language of news outlet. For English we trained the
model on SEN-en and for Polish on SEN-pl.

On a timeline we present the proportion of each headline sentiment class
in each month. We can observe how this proportions change through months,
from 12.2019 to 06.2020, among different portals. For one entity "Duda" we also
manage to crawl older headlines from 11.2014 to 05.2015 from two portals.

Each presented figure stands for one entity and contains separate plots for
each news outlet. Each plot contains three lines representing the proportion of
a given sentiment class among total number of headlines.

The first two figures 5.13 and 5.14 present the sentiment ratio of "Biden"
and "Trump" respectively. The presented period of time is a few months before
elections of the USA president on 11.2020. On the first figure "Biden" gains
the highest neutral ratio of headlines from wsj.com and nytimes.com ranging
from 0.5 to almost 0.8. For nytimes.com the ratio of neutral headlines grows in
time and the ratio of negative drops with an increase on the last two months .
The most negative headlines about "Biden" are written by truepundit.com with
ratio varying from about 0.5 to above 0.6. Also foxnews.com have a high ratio
of negative headlines about Biden on the similar level as neutral. Washington-
post.com produces mixed sentiment of headlines, that is for the most of the time
the highest ratio is for neutral but at the beginning af analysed period and at
the end there are more negative headlines than positive and in the middle more
positive than negative.

On the second figure the sentiment of headlines containing "Trump" is pre-
sented. The highest neutral ratio again is achieved by wsj.com and nytimes.com.
For truepundit.com we can observe that the ratio of negatives is just slightly
higher than neutral for most of the time, in contrast to previous figure where
the difference were more noticeable. The most negative headlines are presented
by washingtonpost.com, truepundit.com and foxnews.com. All the news outlet
keeps the ratio of positive headlines low about 0.1 with some slightly higher
ratio for foxnews.com about 0.2.

Two next figures present sentiment ratio for "Democrats" 5.16 and "GOP"
5.15 the two main parties in the USA. In all plots for GOP party we can observe
mixed sentiment. Foxnews.com, nytimes.com and truepundit.com present GOP
more often in negative light. For wsj.com and washingtonpost.com there is no
prevailing sentiment. If two or three points are equal to zero that means we
have not found headlines containing provided entity in that month.

The plots are different for "Democrats" entity. We can observe higher pro-
portion of neutral headlines especially for wsj.com, nytimes.com, washington-
post.com. Two news outlets foxnews.comand truepundit.com have similar pro-

5.5. EXAMPLE APPLICATION OF SENTIMENT DETECTION FOR NEWS ANALYSIS81

Figure 5.13: Entity-level sentiment timeline for Biden in selected English news
outlets.

82 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

Figure 5.14: Entity-level sentiment timeline for Trump in selected English news
outlets

5.5. EXAMPLE APPLICATION OF SENTIMENT DETECTION FOR NEWS ANALYSIS83

Figure 5.15: Entity-level sentiment timeline for GOP in selected English news
outlets

portion of neutral and negative headlines. Truepundit.com have the lowest
proportion of positive comments.

To sum up examples of English timelines it seems that some outlets like
wsj.com or nytimes.com produce more neutral headlines than others. Another
outlet truepundit.com is usually more negative about entities. The proportion of
positive headlines is lower for "Trump" than "Biden" except from truepundit.com
where both positive ratios are low.

Next two figures present ration of sentiment for entities "Duda" and "Ki-
dawa". This is the time of presidential election in Poland. Entity "Duda" has
the highest neutral ratio for all news outlet. The lowest neutral ratio is presented
in wpolityce.pl The highest positive ratio of headlines is presented by outlets
niezalezna.pl and wplotyce.pl. The rest of the outlets have rather similar ratio
of positive and negative headlines containing entity Duda.

84 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

Figure 5.16: Entity-level sentiment timeline for Democrats in selected English
news outlets

5.6. SUMMARY 85

Figure 5.17: Entity-level sentiment timeline for "Duda" in selected Polish news
outlets

Entity "Kidawa" has the highest neutral headlines ratio for almost all of
the portals except from wpolityce.pl Also, niezalezna.pl present lower ratio of
neutral headlines than most of the outlets. For all the outlets ratio of negative
headlines is usually higher than positive headlines.

The last one figure 5.19 present the sentiment ratio for "Duda" from 11.2014
to 05.2015 for two portals. The ratio of neural headlines is the highest for both
portals. It can be observed that after 02.2015 the ratio of positive headlines
about entity "Duda" increase when negative decreases.

These experiments show exemplary usage of entity-level sentiment analysis.
We can observe that even for short period of time there are noticeable, consistent
differences between news outlets and the entities they present.

5.6 Summary
In this section we presented the main results of this thesis. In particular we
presented the bilingual dataset SEN for entity-level sentiment analysis of news

86 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

Figure 5.18: Entity-level sentiment timeline for Kidawa in selected Polish news
outlets

5.6. SUMMARY 87

Figure 5.19: Entity-level sentiment timeline for "Duda" in selected Polish news
outlets

88 CHAPTER 5. ENTITY-BASED NEWS SENTIMENT ANALYSIS

headlines. According to our knowledge this is the first dataset for Polish lan-
guage. In addition, we presented extensive experiments on this and other pub-
licly available benchmark datasets. We tested numerous existing and proposed
several novel variants of models for entity-level sentiment analysis. The best of
our model is EntBERT. Our model outperforms a state-of-the-art model in most
of the cases. In addition, we identified entity-bias phenomenon and proposed
some techniques for removing it that additionally improved the performance of
the models.

Chapter 6

Persuasion techniques

In this chapter we study another problem that is related to media bias analysis,
namely the problem of persuasion techniques detection. We presented a novel
variant of model for this task and experimental results on a publicly available
dataset. The results presented in this chapter were submitted to the Semeval
23 international competition [100] (task 3).

6.1 Motivation
News articles are expected to present reliable information, however quite often
contain some kind of manipulation. Unconscious reader can be unable to spot
all kind of persuasion that he is exposed to. Reading such news can influence
a reader’s point of view especially if the reader has a low level of political
knowledge [7]. Automatic tools for detection of persuasion can help in media
analysis and creating more objective news.

We used deep learning model for persuasion techniques detection in news
articles.

6.2 Problem description
We focus on paragraph-level persuasion techniques recognition. We created
model trained and tested on languages: English, French, German, Italian, Polish
and Russian and for additional languages with only test data: Spanish, Greek
and Georgian.

Our solution combines multitask learning and hierarchical neural networks.
The system identifies span where the persuasion techniques appear and then
passes this information to the next module that classifies it to one or more
categories of persuasion techniques. We used pre-trained and fine-tuned Bert
embedding as the shared input layer.

We discover that adding an auxiliary task such as span identification as
the first step of training neural network may give better results than simply
classifying the whole paragraph. Moreover, using one neural network for that
approach makes solving the task possible even for limited data.

The code of our solution is publicly available at https://github.com/
Katarzynaa/persuasion_detection

89

https://github.com/Katarzynaa/persuasion_detection
https://github.com/Katarzynaa/persuasion_detection

90 CHAPTER 6. PERSUASION TECHNIQUES

Technique N. test N. train
Doubt 187 518

Whataboutism 2 16
Appeal to Hypocr. 8 40
Causal Oversimp. 24 213
Appeal to Author. 28 154
Guilt by Associat. 4 59

Slogans 28 153
Flag Waving 96 287
Loaded Lang. 483 1809
Red Herring 19 44

False Dil.-NoCh. 63 122
App. to Popular. 34 15
Convers. Killer 25 91
Name Call.-Lab. 250 979
A.to Fear-Prejud. 137 310
Exaggerat.-Mini. 115 466

Repetition 141 544
Straw Man 9 15

Obf.-Vag.-Conf. 13 8

Table 6.1: Number of labels in English dataset

The problem is the multi-label classification task, i.e. to classify all persua-
sion techniques that appear in every paragraph of a news article. The input
data is a single paragraph, the output is a list of detected techniques. The data
is provided in three folders: “train”, “dev” and “test”. Each folder contains files
with articles. Each article is divided into paragraphs separated by an additional
empty line. For each paragraph of each article in “train” and “dev” sets organ-
isers provide the lists of labels of persuasion techniques in separate files. Labels
of test data are unknown. As an additional information authors provide for
each paragraph the list of spans, start and end character index, and its class.

The data can be downloaded from https://propaganda.math.unipd.it/
semeval2023task3/. There are 23 classes with a distribution that is not bal-
anced (far from the uniform one). These classes are presented in table 6.1 One
can find a detailed description in the task description paper [100].

6.3 Multitask Hierarchical Networks for persua-
sion techniques identification

Our solution is based on multitask networks. This kind of network shares the
same part or full architecture to solve several tasks being trained at once. Much
research evidence demonstrates that properly choosing of auxiliary task may
help to get better results at the main one (e.g. [101]).

Multi-task learning is mostly used for emotion and sentiment analysis [102],
aspect based sentiment analysis [103] or named entity recognition, etc.

Hierarchical networks are formed as an acyclic graph, which means that
the tasks are learned by the networks’ modules in some order. The results of

https://propaganda.math.unipd.it/semeval2023task3/
https://propaganda.math.unipd.it/semeval2023task3/

6.4. SYSTEM OVERVIEW 91

previous modules influence the next modules. Hierarchical multitask approach
has many forms and applications in NLP, for example: embedding learning
[104] or aspect-based sentiment analysis [105], etc. In our solution we created
a network that solves two tasks: span identification and persuasion techniques
identification. Both share the same input of Bert embedding but have separate
layers for the classification part. The second one uses the results of the first one.
Span identification can be treated as a sequence tag classification. We predict
the span where the persuasion technique is present. For the second task we used
the predicted span to identify the technique used in that span. If more than one
span is identified we predicted techniques based on the first index. One span
can represent many persuasion techniques.

We also experimented with other modifications or variants of network archi-
tectures. For example, we tried to add auxiliary task of POS tagging, adding
general sentiment based on “Vader” approach [106], add entity-level sentiment
trained on the SEN benchmark dataset [5] however no improvement was ob-
served so details are not included.

In our preliminary approach we tried to translate articles between languages
to get more data but no improvement was observed. That can be caused by
the fact that specific persuasion techniques for a given language are not easy to
translate to other language or the fact that a basic translator omits persuasion
techniques and translates it in more neutral words.

6.4 System overview
Our system proceeds in the following general steps:

1. Use pre-trained model to continue pre-training using masked language
model task on provided news articles data from all subtasks

2. Train the multitask hierarchical model on specific tasks: span detection
and multilabel classification

3. Evaluate model on the devset
4. Train model on joint trainset and devset
For the step 1 we used standard code provided by huggingface1. Step 2

uses our implementation of a multitask hierarchical BERT based network that
is described in the next subsection.

One approach is used for all languages that contain train and dev set but
models are trained separately.

For languages that do not have train and dev set we translate the articles
from Polish to the required language. For these languages we use simple BERT
model for sequence classification. We do not use our model as we believe it is
hard to find exact spans after translation.

6.4.1 Model architecture
General schema of the model architecture is presented in Figure 6.1.

The first layer of a model is a BERT layer. It takes tokenized input paragraph
and calculates embeddings. Next we add dropout layer. Then it is followed by
the first linear layer responsible for tag classification for span identification. We

1https://huggingface.co/

https://huggingface.co/

92 CHAPTER 6. PERSUASION TECHNIQUES

Figure 6.1: Proposed model architecture. Bert embedding layer is shared be-
tween two linear layers. First linear layer identifies the first token index (dark
blue arrow) of persuasion text span. Then its embedding of the first token of
persuasion span is passed to the second linear layer that performs multilabel
classification. The index of span embedding even for the same sample may
change during training.

use softmax as activation function of this layer. It classifies each token as I or
O.

We take the index of the first token of a span and we use it to find the
BERT embedding from this token from the previous layer. Then this embedding
is passed to the second linear layer. If no span is identified the layer takes
the first token of BERT embedding. The second linear layer is followed by
sigmoidal activation function. It has as many outputs as the number of classes
and determines whether the sample belongs to each class or not (it can activate
for any class).

Loss function for our model is a sum of two:

𝐿𝑜𝑠𝑠 = 0.5 * 𝐿𝑜𝑠𝑠1 + 𝐿𝑜𝑠𝑠2 (6.1)

The 𝐿𝑜𝑠𝑠1 is cross entropy that calculates the loss for span identification and is
used without any modification.

𝐿𝑜𝑠𝑠1𝑛 = −[𝑦𝑛𝑙𝑜𝑔𝑥𝑛 + (1 − 𝑦𝑛) * 𝑙𝑜𝑔(1 − 𝑥𝑛)] (6.2)

where 𝑦𝑛 is the correct answer and 𝑥𝑛 is the prediction for the nth batch.
The 𝐿𝑜𝑠𝑠2 is used for a multi-label classification and is binary cross entropy
calculated for each label with added weight 𝑝𝑐:

𝐿𝑜𝑠𝑠2𝑛,𝑐 = −[𝑝𝑐𝑦𝑛𝑙𝑜𝑔𝑥𝑛 + (1 − 𝑦𝑛) * 𝑙𝑜𝑔(1 − 𝑥𝑛)] (6.3)

We add weight 𝑝𝑐 because of unbalanced number of classes. Weight of a

6.5. EXPERIMENTAL SETUP 93

class 𝑐 is a proportion of samples from other classes to the number of samples
from class 𝑐 calculated as follows:

𝑝𝑐 = 𝑛𝑎𝑙𝑙 − 𝑛𝑐

𝑛𝑐
(6.4)

where 𝑛𝑎𝑙𝑙 is the number of all samples in the dataset and 𝑛𝑐 of the current
class.

6.5 Experimental Setup
For final evaluation we use train file for training and test file for evaluation.
After choosing the right parameters we train the whole model on both datasets.

We used random search for hyper-parameter tuning. For final model we used
hyper-parameters as follows. Maximum length of a sequence is 256, as it speeds
up the computation and we did not see much improvement when using longer
sequences. Train batch size is 8 as it is mostly limited by the machines that
were available. Maximum number of epochs is 30 and we saved the best model
on dev set according to the micro-f1 metric. Learning rate was set to 1e-05 and
max gradient norm was set to 10. Dropout before both linear layers is set to
0.1. The network is trained using AdamW optimization algorithm with weight
decay equal to 0.01.

6.5.1 Data preprocessing
Spans are provided as a list of starting and ending indexes of characters. We
converted them to list of I and O tags where each tag corresponds to one word.
Tag O means that the word does not contain persuasion and I means that word
belongs to a persuasion span. First we identify which parts are between start
and end index and then we split into words using the “spacy” library2.

When preparing the input data to the BERT model, transformers have their
own tokenizer and it may split the words into smaller tokens. In such case each
token has the same tag as the original word.

All labels were provided as a list. We convert them to multi-hot encoding
vectors. Pre-trained models from table 6.2 are used in our retraining . All
of them come from the huggingface3. We use all sets from all the three tasks
to continue pre-training our BERT model for a particular language. We use
masked language model for that.

Models were evaluated by 𝑚𝑖𝑐𝑟𝑜 − 𝐹1 in a first place and then 𝑚𝑎𝑐𝑟𝑜 − 𝐹1.

6.6 Results
The results on the official test set are presented in table 6.4. Our system for
all languages performs better than the baseline. Interestingly, models that have
no train and dev set such as Spanish, Greek or Georgian still perform better
than baseline but much worse than other languages. That means we can achieve
better performance using translation but it is never good enough. The reason

2https://spacy.io/
3https://huggingface.co/

https://spacy.io/
https://huggingface.co/

94 CHAPTER 6. PERSUASION TECHNIQUES

Language model name
English bert-base-cased
Polish dkleczek/bert-base-polish-uncased-v1
French dbmdz/bert-base-french-europeana-cased
Italian dbmdz/bert-base-italian-uncased
Russian DeepPavlov/bert-base-bg-cs-pl-ru-cased
German dbmdz/bert-base-german-uncased
Spanish dccuchile/bert-base-spanish-wwm-uncased
Greek nlpaueb/bert-base-greek-uncased-v1

Georgian bert-base-multilingual-cased

Table 6.2: Transformer models used for continuing pre-training.

Our model baseline
Lang rank/total f-micro f-macro f-micro f-macro

Polish 11/20 0.31427 0.17940 0.17928 0.05932
French 11/20 0.36246 0.26628 0.24014 0.09867
Italian 15/20 0.39874 0.20056 0.39719 0.12152

Russian 12/19 0.25289 0.11653 0.20722 0.08598
German 12/20 0.37264 0.20109 0.31667 0.08345
English 23/23 0.06022 0.03066 0.19517 0.06925

12* 0.30113* 0.08047*
Spanish 13/17 0.24490 0.14257 0.24843 0.02007

Greek 12/16 0.15021 0.12095 0.08831 0.00606
Georgian 13/16 0.15017 0.09988 0.13793 0.14083

Table 6.3: Results on the final test sets. For English language we present
post-evaluation result marked as *, as the reason of the lower score on official
evaluation is a wrong file uploaded. The rank with * is calculated based on offi-
cial leader board. rank/total number of participants, baseline - official baseline,
svm model with unigrams and bigrams as input

could be that translation tries to preserve the meaning but may skip or change
the type of persuasion. Also the techniques for different languages may vary.

All models on the dev set perform much better than the baseline (Figure 6.3).
According to micro-f1, the results for 3 random runs of model are stable, the
standard deviation is rather low. According to macro-f1, the standard deviation
is slightly higher, that means one can observe differences between dev set results
and test set results. The reason may be that the data for test set may come
from different topics and time. The system learns the techniques that are more
specific for train and dev set.

6.6.1 Error analysis
We analysed which classes in the English devset are the easiest/hardest to be
recognized (Table 6.5). The most frequent class ("loaded language") gets a high
f-measure value, but the highest one is achieved by the “Guilt by Association”
class which has only 4 and 59 observations in the test and train sets, respectively,
which means it is probably the easiest class to detect. Classes "Loaded Lan-

6.6. RESULTS 95

Our model BERT baseline
Lang. f-micro f-macro f-micro f-macro f-micro f-macro

English 40.80±0.1 16.04±3.0 38.11±1.2 14.54±0.3 16.13 21.74
Polish 36.72±0.6 21.13±2.3 36.24±0.2 21.81±0.8 12.52 5.67
French 41.57±0.9 28.25±1.4 38.59±0.5 28.49±0.6 29.29 13.48
Italian 43.51±2.0 22.07±0.5 40.22±2.8 20.51±0.6 38.92 10.39
Russian 44.60±0.4 15.98±2.0 39.97±2.0 14.69±2.0 25.32 4.284
German 41.20±0.1 23.73±1.6 39.64±0.1 23.59±1.0 33.12 10.02

Table 6.4: Mean scores achieved on the dev set for all language. Our model for
each language was run 3 times. For baseline we get the results from the leader
board

guage" and "Name-Calling Labeling" get high recall but lower precision, which
means they are often wrongly detected. "False Dillema-No Choice" gets much
higher precision than recall which means it is precisely recognized. There are a
few classes that are not recognized at all and most of them have the low number
of samples.

Some classes may require another approach, like adding broader context. For
example "Red Herring" is when someone introduces irrelevant information, what
may be hard to detect based on a single sentence like He died there. what was
classified wrongly as "Repetition" or "Melania paired the mid-length half price
frock with Christian Loubotin heels" what was classified as "Loaded language"
and "Name-Calling-Labelling". Both cases are hard to be recognized without
the context. For example, the second is suited to an article about fashion but
not about politics.

The system was wrong also about the "Conversation Killer" technique which
is often a short and rather obvious statement: "Everybody knows it." or hidden
in some long paragraph "How about sorting that stuff out instead of politicizing
something that should be fun for everyone? How many times does it have to be
said".

We noticed that sometimes a broader context not only from the article but
also from the world of politics is necessary to correctly recognise a technique.
For example, the paragraph containing "Appeal to Hypocrisy" But he didn’t
mention Mueller for the rest of the day. and Of course, Sir Kim would have had
plenty of targets had he decided to pass judgement on the present incumbent of
the White House. are not easy to be classified based only on what is given in
the sentence.

Only 129 paragraphs were predicted correctly from the English devset (all
true labels are correctly recognised and no other labels). Most of them have one
or two labels.

We discovered that simple change of the index in Bert embedding may help
to improve the persuasion classification. Moreover, we are able to identify spans
and perform classification on limited data using the described networks. Our
system works better than classic BERT for sequence classification and can be
used as a technique for persuasion detection in news.

96 CHAPTER 6. PERSUASION TECHNIQUES

Technique precision recall f1
Doubt 0.29 0.25 0.27

Whataboutism 0.00 0.00 0.00
Appeal to Hypocr. 0.00 0.00 0.00
Causal Oversimp. 0.06 0.08 0.07
Appeal to Author. 0.10 0.04 0.05
Guilt by Associat. 0.60 0.75 0.67

Slogans 0.26 0.25 0.25
Flag Waving 0.46 0.50 0.48
Loaded Lang. 0.49 0.89 0.63
Red Herring 0.00 0.00 0.00

False Dil.-NoCh. 0.30 0.05 0.08
App. to Popular. 0.00 0.00 0.00
Convers. Killer 0.00 0.00 0.00
Name Call.-Lab. 0.39 0.70 0.50
A.to Fear-Prejud. 0.26 0.15 0.19
Exaggerat.-Mini. 0.19 0.38 0.26

Repetition 0.19 0.04 0.06
Straw Man 0.00 0.00 0.00

Obf.-Vag.-Conf. 0.00 0.00 0.00

Table 6.5: Scores for each class achieved by our model on English devset . Prec,
rec, f1 are precision recall and f1-measure respectively.

6.7 Summary
In this chapter we presented additional study concerning the problem of per-
suasion detection techniques. The hierarchical multitask neural network was
proposed. The experiments were conducted on several languages. The results
show that our solution is better than the baseline. These experiments may help
to detect that the text of the article contains phrases that manipulate the reader
which is another way to reveal bias.

Part III

Summary and conclusions

97

99

At the end of this thesis we would like to summarise the main contributions
and achievements in the order of their importance.

In chapter 5 we proposed transformer-based models for entity-level sentiment
analysis. We reproduced the state-of-the-art models. Our models achieved
higher f-measure than state-of-the-art gru-tsc model for all SEN dataset variants
and partially for newsmtsc dataset. Only for newsmtsc "mt" variant the gru-tsc
model was better.

We discovered that the models, learning to detect sentiment, become biased
towards some entities. Several solutions to the problem were proposed: mask-
ing the target entity, replacing the target entity by its type and replacing all
occurrences of the entities in headline by their type. These methods not only
overcame the problem of entity-bias but also improved the models’ performance.

In chapter 6 we proposed a hierarchical multitask neural network architec-
ture for persuasion techniques detection. The network performed two tasks:
it identified the span of the persuasion and then detected the technique. The
model was able to learn the main task together with auxiliary task, what is
faster and more efficient than training two models separately, especially when
the data is limited. Moreover, shared weights helped to learn the main task
faster and more accurately.

In chapter 4 we also presented some helper techniques like finding articles
describing similar topics and entity timeline analysis. The timeline together
with sentiment analysis is presented as a prototype of a tool for media analysis.

We presented methods that can help other researchers and society to analyse
media bias. We believe that our experiments will be inspiration for others to
improve the quality of news presented in digital media.

100

List of Figures

3.1 Support vector machines with a linear kernel separating 2 classes.
SVMs maximize the margin between classes marked with blue
and pink. The margin lies in variables that are called support
vectors. Exactly in the middle distance from both margins there
is a separating hyperplane. Sometimes slack variables are al-
lowed, so the margin or even hyperplane do not separate them
correctly. 23

3.2 A simple neuron model with the input vector 𝑥1, ..., 𝑥𝑛, the weight
vector 𝑤1, ..., 𝑤𝑛, the activation function f and the output y. Net
is a dot product of the weight vector and the input vector. 25

3.3 Architecture of word2vec cbow and skip-gram models. 𝑤𝑡 is a
target word, {𝑤𝑡−2, 𝑤𝑡−1, 𝑤𝑡+1, 𝑤𝑡+2} are context words. 28

3.4 RNN cell. 𝑊𝑥ℎ is a weight matrix of input, 𝑊ℎℎ is a weight
matrix of previous hidden state 𝑊ℎ𝑠 is a weight matrix for a
current hidden state. 29

3.5 LSTM cell model . 31
3.6 Example of convolution operation. Input and kernel are 2-dimensional.

Flipping is not used. 33
3.7 Autoencoder’s architecture. X is input encoded as h by the en-

coder and X’ is reconstructed input from h by the decoder. . . . 34
3.8 Autoencoder with additive attention 36
3.9 Two architectures of attention mechanism. On the left scaled

Dot-Product attention which is a part of Multihead Attention
on the right. These attentions are used in transformers models.
Source of this figure: [76] . 37

3.10 Transformer model architecture. The left part is responsible for
encoding the sequence and the right part for decoding. Multi-
head attention is used to catch the most important elements in
the sequences. Source of this figure : [76] 38

4.1 Example of timeline for entities: Sala Kolumnowa, MON, Donald
Tusk encountered in news articles at gazeta.pl from 01.01.2017 to
10.03.2017 . 48

4.2 Example of timeline for entities: Sala Kolumnowa, MON, Donald
Tusk encountered in news articles at wpolityce.pl from 01.01.2017
to 10.03.2017 . 49

101

102 LIST OF FIGURES

5.1 On the left: 3 pictures with number of all class labels that were
assigned to each entity by anntoators. On the right: final class
labels after aggregation. 60

5.2 Label distribution in the SEN dataset 61
5.3 SEN-en-AMT annotators Distribution of JSD values 62
5.4 SEN-en-R annotators. Distribution of JSD values 63
5.5 SEN-pl-R annotators. Distribution of JSD values 63
5.6 Sentiment score of annotators for each entity. We can see that

for almost each entity there is an outlier annotator. Entities with
less than 10 labels where excluded from this boxplot 66

5.7 Sentiment score of annotators for each entity. We can see that
for almost each entity there is an outlier annotator. Entities with
less than 10 labels where excluded from this boxplot 66

5.8 Sentiment score of annotators for each entity. We can see that
for almost each entity there is an outlier annotator. Entities with
less than 10 labels where excluded from this boxplot 67

5.9 EntBERT model visualisation. 70
5.10 Confusion matrices representing the target dependence problem

for BERT on the SEN-en dataset. The same headlines with tar-
get entity substitution are used for predictions in both confu-
sion matrices. The numbers represent proportions of labels that
changed after substituting Trump for Sanders (left) or for Putin
(right). Rows represent labels predicted by BERT for headlines
where Trump was the target entity, columns the labels for the
same headlines where it was substituted. The matrices are row-
normalised. 72

5.11 LSTM-L-idx, Utilization of embedding from all BERT layers at
the index of corresponding to the last entity token 75

5.12 LSTM-L-split, Utilization of embedding from all BERT layers at
the index of [CLS] token . 76

5.13 Entity-level sentiment timeline for Biden in selected English news
outlets. 81

5.14 Entity-level sentiment timeline for Trump in selected English
news outlets . 82

5.15 Entity-level sentiment timeline for GOP in selected English news
outlets . 83

5.16 Entity-level sentiment timeline for Democrats in selected English
news outlets . 84

5.17 Entity-level sentiment timeline for "Duda" in selected Polish news
outlets . 85

5.18 Entity-level sentiment timeline for Kidawa in selected Polish news
outlets . 86

5.19 Entity-level sentiment timeline for "Duda" in selected Polish news
outlets . 87

LIST OF FIGURES 103

6.1 Proposed model architecture. Bert embedding layer is shared
between two linear layers. First linear layer identifies the first
token index (dark blue arrow) of persuasion text span. Then its
embedding of the first token of persuasion span is passed to the
second linear layer that performs multilabel classification. The
index of span embedding even for the same sample may change
during training. 92

104 LIST OF FIGURES

List of Tables

3.1 BOW model representation of a corpus with two documents. It is
assumed that words are converted to lowercase and punctuation
is omitted. 20

3.2 Example of n-grams of a sentence "This dog is white." 21

4.1 Most common entities in web portal gazeta.pl 46
4.2 Most common entities in web portal wpolityce.pl 47
4.3 Co-occurring entities in web portal gazeta.pl 50
4.4 Co-occurring entities in web portal wpolityce.pl 50
4.5 Dataset . 51
4.6 Distribution of articles among groups 52
4.7 Evaluation of article’s similarity detection 53
4.8 Number of article pairs for similarity detection 54
4.9 Evaluation of one to one articles pairs. Class "1" means articles

are about the same topic and "0" means they are not about the
same topic . 54

4.10 Number of articles for media outlet detection 55
4.11 Evaluation of article’s media outlets detection 55

5.1 SEN datasets summary. Column name an-ns is number of anno-
tations and an-rs is number of anntoators. 58

5.2 The number of downloaded articles (total) and those selected for
the annotation . 59

5.3 Polish entities statistics and measures. The lowest sentiment
score and entropy is underlined. The highest is bold. 64

5.4 SEN-en-R entities statistics and measures. The lowest sentiment
score and entropy is underlined. The highest is bold. 65

5.5 SEN-en-AMT entities statistics and measures. The lowest in the
column sentiment score and entropy is underlined. The highest
is bold. 65

5.6 Results for baseline machine learning models. LSTM and TDL-
STM models were trained for 50 epochs. 69

5.7 Experimental results for the BERT-based models. Odd rows rep-
resent accuracy, even ones represent F1. Each result is the mean
after 10 repetitions with random initializations. The best result
in each row is typed with the boldface. 71

105

106 LIST OF TABLES

5.8 Experimental results for the 4 variants. Odd rows represent ac-
curacy, even ones represent F1. Each is a mean result after 10
repetitions with random initializations for BERT-based models.
The best result in each row is typed with the boldface. For each
dataset the best score is underlined 73

5.9 An example of the entity-dependence phenomenon. Sentiment la-
bel predicted by BERT after the replacement of the target entity
with another one changes the label. 74

5.10 The results concerning BERT based models utilising all layers
averaged over 10 runs with random initialization. The input con-
tains masked target entity version of headline. The best results
among all models are bold . 77

5.11 Mean results after 5 runs with random initialization for BERT
models with external context . 77

5.12 Mean results of gru-tsc model compared with our best models
WikiBERT, EntBERT EntSeqBERT on "newsmtsc" and "SEN"
data. The notation is as follows: "m." is for metric, two "newsmtsc"
datasets "mt" and "rw" denotes "multi-target" and "real world" re-
spectively, for "SEN": datasets "pl" denotes Polish language, "en"
English laguage and "R" is for researchers, "AMT" is for Amazon
Turk annotators . The best results for each dataset are bold.
Results marked as †are as reported by the author in the origi-
nal paper. Results mark as # are as repeated by the author of
this thesis based on the original code. Results marked as * are
unstable, sometimes the accuracy and f-measure is low. 79

6.1 Number of labels in English dataset 90
6.2 Transformer models used for continuing pre-training. 94
6.3 Results on the final test sets. For English language we present

post-evaluation result marked as *, as the reason of the lower
score on official evaluation is a wrong file uploaded. The rank
with * is calculated based on official leader board. rank/total
number of participants, baseline - official baseline, svm model
with unigrams and bigrams as input 94

6.4 Mean scores achieved on the dev set for all language. Our model
for each language was run 3 times. For baseline we get the results
from the leader board . 95

6.5 Scores for each class achieved by our model on English devset .
Prec, rec, f1 are precision recall and f1-measure respectively. . . . 96

Bibliography

[1] Raymond S Nickerson. Confirmation bias: A ubiquitous phenomenon in
many guises. Review of general psychology, 2(2):175–220, 1998.

[2] Eli Pariser. The filter bubble: What the Internet is hiding from you. Pen-
guin UK, 2011.

[3] Katarzyna Baraniak and Marcin Sydow. Towards Entity Timeline Anal-
ysis in Polish Political News, pages 323–332. Springer International Pub-
lishing, Cham, 2019.

[4] Katarzyna Baraniak and Marcin Sydow. News articles similarity for auto-
matic media bias detection in polish news portals. In M. Ganzha, L. Maci-
aszek, and M. Paprzycki, editors, Proceedings of the 2018 Federated Con-
ference on Computer Science and Information Systems, volume 15 of An-
nals of Computer Science and Information Systems, pages 21–24. IEEE,
2018.

[5] Katarzyna Baraniak and Marcin Sydow. A dataset for sentiment analysis
of entities in news headlines (sen). Procedia Computer Science, 192:3627–
3636, 2021. Knowledge-Based and Intelligent Information and Engineering
Systems: Proceedings of the 25th International Conference KES2021.

[6] Katarzyna Baraniak and Marcin Sydow. Kb at semeval-2023 task 3: On
multitask hierarchical bert base neural network for multi-label persuasion
techniques detection. In Proceedings of the 17th International Workshop
on Semantic Evaluation, SemEval 2023, Toronto, Canada, July 2023.

[7] Jakob-Moritz Eberl, Hajo G Boomgaarden, and Markus Wagner. One bias
fits all? three types of media bias and their effects on party preferences.
Communication Research, 44(8):1125–1148, 2017.

[8] Karthik Sheshadri, Chung-Wei Hang, and Munindar Singh. The
causal link between news framing and legislation. arXiv preprint
arXiv:1802.05768, 2018.

[9] Marta Recasens, Cristian Danescu-Niculescu-Mizil, and Dan Jurafsky.
Linguistic models for analyzing and detecting biased language. In Pro-
ceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages 1650–1659, 2013.

[10] Jakub Piskorski, Marcin Sydow, and Dawid Weiss. Exploring linguistic
features for web spam detection: a preliminary study. In AIRWeb ’08:

107

108 BIBLIOGRAPHY

Proceedings of the 4th international workshop on Adversarial information
retrieval on the web, pages 25–28, New York, NY, USA, 2008. ACM.

[11] Diego Gomez-Zara, Miriam Boon, and Larry Birnbaum. Who is the hero,
the villain, and the victim?: Detection of roles in news articles using nat-
ural language techniques. In 23rd International Conference on Intelligent
User Interfaces, pages 311–315. ACM, 2018.

[12] Konstantina Lazaridou and Ralf Krestel. Identifying political bias in news
articles. Bulletin of the IEEE TCDL, 12, 2016.

[13] Haokai Lu, James Caverlee, and Wei Niu. Biaswatch: A lightweight sys-
tem for discovering and tracking topic-sensitive opinion bias in social me-
dia. In Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management, pages 213–222. ACM, 2015.

[14] Johannes Kiesel, Maria Mestre, Rishabh Shukla, Emmanuel Vincent,
Payam Adineh, David Corney, Benno Stein, and Martin Potthast.
SemEval-2019 Task 4: Hyperpartisan News Detection. In 12th Inter-
national Workshop on Semantic Evaluation (SemEval 2019). Association
for Computational Linguistics, June 2019.

[15] Ceren Budak, Sharad Goel, and Justin M Rao. Fair and balanced? quan-
tifying media bias through crowdsourced content analysis. Public Opinion
Quarterly, 80(S1):250–271, 2016.

[16] Felix Hamborg. Media Bias Analysis, pages 11–53. Springer Nature
Switzerland, Cham, 2023.

[17] Tim Althoff, Xin Luna Dong, Kevin Murphy, Safa Alai, Van Dang, and
Wei Zhang. Timemachine: Timeline generation for knowledge-base enti-
ties. CoRR, abs/1502.04662, 2015.

[18] Arturas Mazeika, Tomasz Tylenda, and Gerhard Weikum. Entity time-
lines: visual analytics and named entity evolution. In Craig Macdonald,
Iadh Ounis, and Ian Ruthven, editors, CIKM, pages 2585–2588. ACM,
2011.

[19] Pedro Saleiro, Jorge Teixeira, Carlos Soares, and Eugénio Oliveira.
Timemachine: Entity-centric search and visualization of news archives. In
European Conference on Information Retrieval, pages 845–848. Springer,
2016.

[20] Dafna Shahaf and Carlos Guestrin. Connecting the dots between news
articles. In Proceedings of the 16th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD ’10, pages 623–632,
New York, NY, USA, 2010. ACM.

[21] Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. Learning text simi-
larity with siamese recurrent networks. In Proceedings of the 1st Workshop
on Representation Learning for NLP, pages 148–157, 2016.

[22] Anna Huang. Similarity measures for text document clustering. In Pro-
ceedings of the sixth new zealand computer science research student con-
ference (NZCSRSC2008), Christchurch, New Zealand, pages 49–56, 2008.

BIBLIOGRAPHY 109

[23] Nava Tintarev and Judith Masthoff. Similarity for news recommender
systems. In Proceedings of the AH’06 Workshop on Recommender Systems
and Intelligent User Interfaces. Citeseer, 2006.

[24] Kathleen R McKeown, Regina Barzilay, David Evans, Vasileios Hatzivas-
siloglou, Judith L Klavans, Ani Nenkova, Carl Sable, Barry Schiffman, and
Sergey Sigelman. Tracking and summarizing news on a daily basis with
columbia’s newsblaster. In Proceedings of the second international confer-
ence on Human Language Technology Research, pages 280–285. Morgan
Kaufmann Publishers Inc., 2002.

[25] Felix Hamborg, Karsten Donnay, and Bela Gipp. Towards target-
dependent sentiment classification in news articles. In Proceedings of the
iConference 2021, Mar. 2021.

[26] Felix Hamborg and Karsten Donnay. NewsMTSC: A dataset for (multi-
)target-dependent sentiment classification in political news articles. In
Proceedings of the 16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume, pages 1663–1675,
Online, April 2021. Association for Computational Linguistics.

[27] Ralf Steinberger, Stefanie Hegele, Hristo Tanev, and Leonida Della Rocca.
Large-scale news entity sentiment analysis. In Proceedings of the In-
ternational Conference Recent Advances in Natural Language Process-
ing, RANLP 2017, pages 707–715, Varna, Bulgaria, September 2017. IN-
COMA Ltd.

[28] Gabriel Domingos de Arruda, Norton Trevisan Roman, and Ana Maria
Monteiro. An annotated corpus for sentiment analysis in political news.
In Proceedings of the 10th Brazilian Symposium in Information and Hu-
man Language Technology, pages 101–110, Natal, Brazil, November 2015.
Sociedade Brasileira de Computação.

[29] Julio Cesar Soares Dos Rieis, Fabrício Benevenuto de Souza, Pedro Olmo
S Vaz de Melo, Raquel Oliveira Prates, Haewoon Kwak, and Jisun An.
Breaking the news: First impressions matter on online news. In Ninth
International AAAI conference on web and social media, 2015.

[30] Gregory Grefenstette, Yan Qu, James G. Shanahan, and David A.
Evans. Coupling niche browsers and affect analysis for an opinion min-
ing application. In Coupling Approaches, Coupling Media and Coupling
Languages for Information Retrieval, RIAO ’04, page 186–194, Paris,
FRA, 2004. LE CENTRE DE HAUTES ETUDES INTERNATIONALES
D’INFORMATIQUE DOCUMENTAIRE.

[31] Alexandra Balahur and Ralf Steinberger. Rethinking sentiment analysis
in the news: from theory to practice and back. Proceeding of WOMSA, 9,
2009.

[32] Alexandra Balahur, Ralf Steinberger, Mijail Kabadjov, Vanni Zavarella,
Erik van der Goot, Matina Halkia, Bruno Pouliquen, and Jenya Belyaeva.
Sentiment analysis in the news. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation (LREC’10), Valletta,
Malta, May 2010. European Language Resources Association (ELRA).

110 BIBLIOGRAPHY

[33] Lisa Fan, Marshall White, Eva Sharma, Ruisi Su, Prafulla Kumar
Choubey, Ruihong Huang, and Lu Wang. In plain sight: Media bias
through the lens of factual reporting. arXiv preprint arXiv:1909.02670,
2019.

[34] Saif Mohammad, Svetlana Kiritchenko, Parinaz Sobhani, Xiaodan Zhu,
and Colin Cherry. Semeval-2016 task 6: Detecting stance in tweets. In
Proceedings of the 10th International Workshop on Semantic Evaluation
(SemEval-2016), pages 31–41, 2016.

[35] Wei-Fan Chen, Henning Wachsmuth, Khalid Al Khatib, and Benno Stein.
Learning to flip the bias of news headlines. In Proceedings of the 11th
International Conference on Natural Language Generation, pages 79–88,
2018.

[36] Reid Pryzant, Richard Diehl Martinez, Nathan Dass, Sadao Kurohashi,
Dan Jurafsky, and Diyi Yang. Automatically neutralizing subjective bias
in text. arXiv preprint arXiv:1911.09709, 2019.

[37] Namrata Godbole, Manja Srinivasaiah, and Steven Skiena. Large-scale
sentiment analysis for news and blogs. Icwsm, 7(21):219–222, 2007.

[38] Aleksander Wawer and Julita Sobiczewska. Predicting sentiment of polish
language short texts. In Proceedings of the International Conference on
Recent Advances in Natural Language Processing (RANLP 2019), pages
1321–1327, 2019.

[39] Aleksander Wawer. Sentiment analysis for polish. Poznan Studies in
Contemporary Linguistics, 55(2):445–468, 2019.

[40] Jan Kocoń, Piotr Miłkowski, and Monika Zaśko-Zielińska. Multi-level
sentiment analysis of polemo 2.0: Extended corpus of multi-domain con-
sumer reviews. In Proceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), pages 980–991, 2019.

[41] Dayan de França Costa and Nadia Felix Felipe da Silva. Inf-ufg at fiqa
2018 task 1: Predicting sentiments and aspects on financial tweets and
news headlines. In Companion Proceedings of the The Web Conference
2018, WWW ’18, page 1967–1971, Republic and Canton of Geneva, CHE,
2018. International World Wide Web Conferences Steering Committee.

[42] Simra Shahid, Shivangi Singhal, Debanjan Mahata, Ponnurangam Ku-
maraguru, Rajiv Ratn Shah, et al. Aspect-based sentiment analysis of
financial headlines and microblogs. In Deep Learning-Based Approaches
for Sentiment Analysis, pages 111–137. Springer, 2020.

[43] Keith Cortis, André Freitas, Tobias Daudert, Manuela Huerlimann, Manel
Zarrouk, Siegfried Handschuh, and Brian Davis. Semeval-2017 task 5:
Fine-grained sentiment analysis on financial microblogs and news. In
Proceedings of the 11th International Workshop on Semantic Evaluation
(SemEval-2017), pages 519–535, 2017.

BIBLIOGRAPHY 111

[44] Seunghak Yu, Giovanni Da San Martino, and Preslav Nakov. Exper-
iments in detecting persuasion techniques in the news. arXiv preprint
arXiv:1911.06815, 2019.

[45] Giovanni Da San Martino, Alberto Barrón-Cedeño, Henning Wachsmuth,
Rostislav Petrov, and Preslav Nakov. Semeval-2020 task 11: Detection of
propaganda techniques in news articles. In Proceedings of the Fourteenth
Workshop on Semantic Evaluation, pages 1377–1414, 2020.

[46] Dimitar Dimitrov, Bishr Bin Ali, Shaden Shaar, Firoj Alam, Fabrizio
Silvestri, Hamed Firooz, Preslav Nakov, and Giovanni Da San Martino.
SemEval-2021 task 6: Detection of persuasion techniques in texts and
images. In Proceedings of the 15th International Workshop on Semantic
Evaluation (SemEval-2021), pages 70–98, Online, August 2021. Associa-
tion for Computational Linguistics.

[47] Dawid Jurkiewicz, Łukasz Borchmann, Izabela Kosmala, and Filip Gral-
iński. ApplicaAI at SemEval-2020 task 11: On RoBERTa-CRF, span CLS
and whether self-training helps them. In Proceedings of the Fourteenth
Workshop on Semantic Evaluation, pages 1415–1424, Barcelona (online),
December 2020. International Committee for Computational Linguistics.

[48] Kyle Hamilton. Towards an ontology for propaganda detection in news ar-
ticles. In The Semantic Web: ESWC 2021 Satellite Events: Virtual Event,
June 6–10, 2021, Revised Selected Papers 18, pages 230–241. Springer,
2021.

[49] Giovanni Da San Martino, Shaden Shaar, Yifan Zhang, Seunghak Yu,
Alberto Barrón-Cedeño, and Preslav Nakov. Prta: A system to support
the analysis of propaganda techniques in the news. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, pages 287–293, Online, July 2020. Association
for Computational Linguistics.

[50] Nikolaos Nikolaidis, Nicolas Stefanovitch, and Jakub Piskorski. On ex-
periments of detecting persuasion techniques in Polish and Russian on-
line news: Preliminary study. In Proceedings of the 9th Workshop on
Slavic Natural Language Processing 2023 (SlavicNLP 2023), pages 155–
164, Dubrovnik, Croatia, May 2023. Association for Computational Lin-
guistics.

[51] Joel Young, Craig Martell, Pranav Anand, Pedro Ortiz, Henry Tucker
Gilbert IV, et al. A microtext corpus for persuasion detection in dialog.
In Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelli-
gence. Citeseer, 2011.

[52] Mesut Erhan Unal, Adriana Kovashka, Wen-Ting Chung, and Yu-Ru Lin.
Visual persuasion in covid-19 social media content: A multi-modal charac-
terization. In Companion Proceedings of the Web Conference 2022, pages
694–704, 2022.

[53] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

http://www.deeplearningbook.org

112 BIBLIOGRAPHY

[54] Graham Neubig. Neural machine translation and sequence-to-sequence
models: A tutorial, 2017.

[55] Virginia Teller. Speech and language processing: An introduction to nat-
ural language processing, computational linguistics, and speech recogni-
tion daniel jurafsky and james h. martin (university of colorado, boul-
der) upper saddle river, nj: Prentice hall (prentice hall series in artificial
intelligence, edited by stuart russell and peter norvig), 2000, xxvi+934
pp; hardbound, isbn 0-13-095069-6, $64.00. Computational Linguistics,
26(4):638–641, 2000.

[56] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
Introduction to Statistical Learning: With Applications in R. Springer
Publishing Company, Incorporated, 2014.

[57] Zellig S. Harris. Distributional structure. WORD, 10(2-3):146–162, 1954.

[58] Daniel Jurafsky and James H. Martin. Speech and Language Processing
(2nd Edition). Prentice-Hall, Inc., USA, 2009.

[59] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
introduction to statistical learning, volume 112. Springer, 2013.

[60] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[61] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory, pages 144–152, 1992.

[62] George Cybenko. Approximation by superpositions of a sigmoidal func-
tion. Mathematics of control, signals and systems, 2(4):303–314, 1989.

[63] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jau-
vin. A neural probabilistic language model. Journal of machine learning
research, 3(Feb):1137–1155, 2003.

[64] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their composition-
ality. In NIPS, pages 3111–3119. Curran Associates, Inc., 2013.

[65] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[66] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543, 2014.

[67] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. Transactions of the
Association for Computational Linguistics, 5:135–146, 2017.

BIBLIOGRAPHY 113

[68] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learn-
ing Representations by Back-Propagating Errors, page 696–699. MIT
Press, Cambridge, MA, USA, 1988.

[69] Paul J Werbos. Backpropagation through time: what it does and how to
do it. Proceedings of the IEEE, 78(10):1550–1560, 1990.

[70] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735–1780, 1997.

[71] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using rnn encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[72] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backprop-
agation applied to handwritten zip code recognition. Neural computation,
1(4):541–551, 1989.

[73] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate, 2014.

[74] Sebastian Raschka, Yuxi Hayden Liu, Vahid Mirjalili, and Dmytro Dzhul-
gakov. Machine Learning with PyTorch and Scikit-Learn: Develop ma-
chine learning and deep learning models with Python. Packt Publishing
Ltd, 2022.

[75] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective ap-
proaches to attention-based neural machine translation. Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Process-
ing, 2015.

[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is
all you need. In Advances in neural information processing systems, pages
5998–6008, 2017.

[77] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language un-
derstanding. In Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[78] Stephan Raaijmakers. Deep Learning for Natural Language Processing.
Simon and Schuster, 2022.

[79] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

114 BIBLIOGRAPHY

[80] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[81] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learners.
OpenAI blog, 1(8):9, 2019.

[82] TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Nee-
lakantan, P Shyam, G Sastry, A Askell, et al. Language models are few-
shot learners. arxiv 2020. arXiv preprint arXiv:2005.14165.

[83] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Man-
ning. Electra: Pre-training text encoders as discriminators rather than
generators. arXiv preprint arXiv:2003.10555, 2020.

[84] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhut-
dinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural information processing
systems, pages 5753–5763, 2019.

[85] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Dis-
tilbert, a distilled version of bert: smaller, faster, cheaper and lighter.
arXiv preprint arXiv:1910.01108, 2019.

[86] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaud-
hary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott,
Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual rep-
resentation learning at scale. arXiv preprint arXiv:1911.02116, 2019.

[87] Michal Marcinczuk, Jan Kocon, and Maciej Janicki. Liner2 - a customiz-
able framework for proper names recognition for polish. In Robert Bem-
benik, Lukasz Skonieczny, Henryk Rybinski, Marzena Kryszkiewicz, and
Marek Niezgodka, editors, Intelligent Tools for Building a Scientific In-
formation Platform, volume 467 of Studies in Computational Intelligence,
pages 231–253. Springer, 2013.

[88] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences
and documents. In ICML, volume 32 of JMLR Workshop and Conference
Proceedings, pages 1188–1196. JMLR.org, 2014.

[89] Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Yasufumi Taniguchi,
and Xu Liang. doccano: Text annotation tool for human, 2018. Software
available from https://github.com/doccano/doccano.

[90] Vikas Bhardwaj, Rebecca Passonneau, Ansaf Salleb-Aouissi, and Nancy
Ide. Anveshan: A framework for analysis of multiple annotators’ labeling
behavior. In Proceedings of the Fourth Linguistic Annotation Workshop,
pages 47–55, Uppsala, Sweden, July 2010. Association for Computational
Linguistics.

BIBLIOGRAPHY 115

[91] Gabriel Domingos de Arruda, Norton Trevisan Roman, and Ana Maria
Monteiro. An annotated corpus for sentiment analysis in political news.
In Anais do X Simpósio Brasileiro de Tecnologia da Informação e da
Linguagem Humana, pages 101–110. SBC, 2015.

[92] Maria Pontiki, Dimitris Galanis, John Pavlopoulos, Harris Papageorgiou,
Ion Androutsopoulos, and Suresh Manandhar. SemEval-2014 task 4: As-
pect based sentiment analysis. In Proceedings of the 8th International
Workshop on Semantic Evaluation (SemEval 2014), pages 27–35, Dublin,
Ireland, August 2014. Association for Computational Linguistics.

[93] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[94] Duyu Tang, Bing Qin, Xiaocheng Feng, and Ting Liu. Effective
lstms for target-dependent sentiment classification. arXiv preprint
arXiv:1512.01100, 2015.

[95] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan
Funtowicz, and Jamie Brew. Huggingface’s transformers: State-of-the-art
natural language processing. ArXiv, abs/1910.03771, 2019.

[96] Fabio Souza, Rodrigo Nogueira, and Roberto Lotufo. Portuguese named
entity recognition using bert-crf. arXiv preprint arXiv:1909.10649, 2019.

[97] Zhengjie Gao, Ao Feng, Xinyu Song, and Xi Wu. Target-dependent sen-
timent classification with bert. IEEE Access, 7:154290–154299, 2019.

[98] Youwei Song, Jiahai Wang, Zhiwei Liang, Zhiyue Liu, and Tao Jiang.
Utilizing bert intermediate layers for aspect based sentiment analysis and
natural language inference. arXiv preprint arXiv:2002.04815, 2020.

[99] Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda,
Yoshiyasu Takefuji, and Yuji Matsumoto. Wikipedia2Vec: An efficient
toolkit for learning and visualizing the embeddings of words and entities
from Wikipedia. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations, pages
23–30. Association for Computational Linguistics, 2020.

[100] Jakub Piskorski, Nicolas Stefanovitch, Giovanni Da San Martino, and
Preslav Nakov. Semeval-2023 task 3: Detecting the category, the framing,
and the persuasion techniques in online news in a multi-lingual setup. In
Proceedings of the 17th International Workshop on Semantic Evaluation,
SemEval 2023, Toronto, Canada, July 2023.

[101] Johannes Bjerva. Will my auxiliary tagging task help? estimating aux-
iliary tasks effectivity in multi-task learning. In Proceedings of the 21st
Nordic Conference on Computational Linguistics, pages 216–220, 2017.

116 BIBLIOGRAPHY

[102] T Zhang, X Gong, and CLP Chen. Bmt-net: Broad multitask trans-
former network for sentiment analysis. IEEE Transactions on Cybernetics,
52(7):6232–6243, 2022.

[103] Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel Dahlmeier. An inter-
active multi-task learning network for end-to-end aspect-based sentiment
analysis. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 504–515, Florence, Italy, July 2019.
Association for Computational Linguistics.

[104] Victor Sanh, Thomas Wolf, and Sebastian Ruder. A hierarchical multi-
task approach for learning embeddings from semantic tasks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 6949–
6956, 2019.

[105] Xinyi Wang, Guangluan Xu, Zequn Zhang, Li Jin, and Xian Sun. End-to-
end aspect-based sentiment analysis with hierarchical multi-task learning.
Neurocomputing, 455:178–188, 2021.

[106] Clayton Hutto and Eric Gilbert. Vader: A parsimonious rule-based model
for sentiment analysis of social media text. In Proceedings of the interna-
tional AAAI conference on web and social media, volume 8, pages 216–225,
2014.

	I Background
	Introduction
	Aim and scope
	Motivation
	Contents of the thesis
	Main contributions
	Software and Hardware

	Related work
	General media bias
	Visibility and Agenda bias
	Tonality
	Persuasion detection

	Theoretical background
	Basic text representations
	Bag-of-words model
	Tf-idf
	N-grams

	Shallow machine learning
	Logistic regression
	Support vector machines

	Neural networks
	Feed-forward Neural Networks
	Word Embeddings
	Recurrent Neural Networks
	LSTM
	GRU
	CNN
	Autoencoders
	Attention
	Transformers
	Bidirectional Encoder Representations from Transformers (BERT)

	II Experiments
	Visibility and Agenda bias
	Entity timelines experiments
	Problem Specification
	Experiments
	Experimental results of entity occurrences analysis

	News similarity
	Problem Specification
	News similarity detection
	Towards news bias detection
	Experimental Setup
	Experimental Results on Articles Similarity Detection
	Experimental Results on News Article Source Detection

	Summary

	Entity-based news sentiment analysis
	Motivation
	The SEN dataset
	Collecting and selecting the data
	Data preprocessing, cleansing and annotation
	Outlier annotator detection
	General entity bias detection

	Experiments on entity-level sentiment classification on the SEN dataset
	Models and techniques used in the experiments
	The issue of entity sentiment bias

	Comparison with state-of-the-art approach
	News-mtsc dataset
	Gru-tsc model
	Results

	Example application of sentiment detection for news analysis
	Summary

	Persuasion techniques
	Motivation
	Problem description
	Multitask Hierarchical Networks for persuasion techniques identification
	System overview
	Model architecture

	Experimental Setup
	Data preprocessing

	Results
	Error analysis

	Summary

	III Summary and conclusions

