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Abstract Guided imagery (GI) is a relaxation technique involving the use

of mental imagery to evoke sensory experiences, has been the subject of exten-

sive research in various fields. GI has several applications, including healthcare,

sports psychology, and stress management. Despite the overall positive find-

ings, some limitations exist in the literature on guided imagery. To address

these limitations, we utilized dense array EEG apparatus during GI sessions,

representing a novel approach that contributes valuable insights to the cur-

rent state of literature in qualitative and quantitative aspects of GI influence

on cortical activity and psychological indicators. It was demonstrated that GI

influences brain wave activity, particularly by increasing alpha power. These

changes indicate a shift towards a relaxed and attentive state. By combining

EEG data with self-report measures of imagery vividness, emotion, and subjec-

tive experiences, we were able to establish a more comprehensive understanding

of this technique. Furthermore, this approach allows for the use of Generalized

Linear Models (GLMs) in guided imagery research, offering flexibility in clas-

sifying mental states based on neural patterns associated with guided imagery

and mental task engagement, with potential implications for developing new

Human-Machine Interaction therapies. Moreover, individuals in the GI group

demonstrated improved performance on tasks involving attentional control, indi-

cating enhanced cognitive functioning. Attention tests such as the Anti-saccade,

Go/no-Go, and Stroop tasks provide a unique approach to evaluate the influence

of guided imagery on enhancing attention and cognitive performance. Under-

standing more the effects of GI enhances our knowledge of its potential benefits

for stress reduction, attentional regulation which are indispensable in the con-

temporary world characterized by rapid and incessant changes, a multitude of

stimuli, and heightened levels of anxiety exposure.
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Streszczenie Guided imagery (GI) to jedna z technik relaksacyjnych pole-

gajaca na wykorzystaniu wyobraźni do wywo lywania doznań sensorycznych,

która ma wiele zastosowań, w tym w opiece zdrowotnej, psychologii sportu i

zarzadzaniu stresem. Istnieja pewne ograniczenia w literaturze dotyczacej GI,

dlatego podjete badanie mia lo na celu sprawdzenie czy możliwy jest ilościowy

i jakościowy pomiar wp lywu GI na aktywność kory mózgu i wskaźniki psycho-

logiczne. W przeprowadzonym badaniu wykorzystana zosta la elektroencefalo-

grafia (EEG) gestej matrycy, która umożliwi la obserwacje zmian fal mózgowych

podczas interwencji GI. Zrozumienie wp lywu GI na aktywność fal mózgowych

dostarcza informacji na temat ukrytych mechanizmów neuronalnych zwiazanych

z ta praktyka. Dodatkowo dane EEG zosta ly wzbogacone o samoopisowe mi-

ary emocji i subiektywnych doświadczeń, co pozwoli lo nam uzyskać bardziej

kompleksowe zrozumienie efektów sesji GI. Zebrane dane umożliwi ly także zas-

tosowanie GLMs (ang. Generalized Linear Model) pozwalajacych na klasyfikacje

stanów mentalnych na podstawie wzorców neuronalnych zwiazanych z grupa

poddana oddzia lywaniu GI i wzorców zarejestrowanych dla grupy wykonujacej

zadania mentalne/pamieciowe. Klasyfikacja oparta na EEG i modelowaniu

GLM daje potencja l do tworzenia nowych terapii wspierajacych redukcje stresu

wykorzystujacych interakcje cz lowiek-maszyna. Uczestnicy badania poddani

zostali także trzem testom uwagowym: Antysakady, Go/no-go i Stroop, których

wyniki wskaza ly, że grupa poddana GI uzyska la lepsze rezultaty (liczone jako

mniejsza liczba b ledów w pierwszym i trzecim z wymienionych testów). Przeprowad-

zone badanie pozwoli lo na szersze zrozumienie efektów GI oraz potencjalnych

korzyści zwiazanych z regulacja uwagi i funkcjonowaniem poznawczym oraz re-

dukcja stresu, które sa niezbedne we wspó lczesnym świecie charakteryzujacym

sie szybkimi i nieustannymi zmianami, mnogościa bodźców i podwyższonym

poziomem narażenia na stres.
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1 Introduction

Relaxation techniques have long been studied for their effectiveness in reducing

stress and promoting well-being (Carrington et al., 1980; Scotland-Coogan &

Davis, 2016; Sung, Roussanov, Nagubandi, & Golden, 2000). In the wake of

the COVID-19 pandemic, the need for stress reduction strategies has become

even more critical, as individuals worldwide face not only physical health chal-

lenges but also social, psychological, and economic consequences (Mamun, 2021;

Mertens, Gerritsen, Duijndam, Salemink, & Engelhard, 2020). Among the vari-

ous relaxation methods explored, guided imagery has emerged as a valuable ap-

proach that has been extensively investigated in the fields of healthcare, sports

psychology, and stress management (Achterberg, 1985; Shafer & Greenfield,

2000).

Guided imagery involves the use of mental imagery to evoke sensory experi-

ences and has gained significant attention as one of the oldest healing resources

(Achterberg & Lawlis, 1981). It has been defined as the internal experience

of a perceptual event in the absence of actual external stimuli, encompassing

both sensory and cognitive dimensions (Heinschel, 2002). Guided imagery is

known to impact multiple physiological systems, such as the respiratory, car-

diovascular, metabolic, gastrointestinal, and immune systems, by modulating

the activity of the hypothalamic-pituitary-adrenal axis and promoting a state

of relaxation and well-being (De Paolis et al., 2019; Sabatinelli, Lang, Bradley,

& Flaisch, 2006).

Furthermore, meditation practices, including guided imagery, have shown

promise in enhancing cognitive functioning, executive function, and working

memory, as well as improving mental health conditions such as anxiety and

depression (Perich, Manicavasagar, Mitchell, & Ball, 2013; S. L. Shapiro, 2009;

Vøllestad, Nielsen, & Nielsen, 2012; Williams et al., 2014). Previous research
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by Hudetz demonstrated that relaxation induced by guided imagery resulted

in improved working memory performance and reduced state anxiety scores

(Hudetz, Hudetz, & Klayman, 2000). However, despite the extensive use of

guided imagery in various therapeutic contexts, there is limited research on its

effects on brainwave activity, particularly compared to stress response regulation

(Herman et al., 2003; McEwen & Gianaros, 2011).

2 Overview of the State-of-the-art

2.1 The Benefits of Guided Imagery in Virtual Environ-

ments for Relaxation and Well-Being

Numerous approaches, such as relaxation training (Benson, Beary, & Carol,

1974; Bernstein & Borkovec, 1973), biofeedback (Basmajian, 1982), hypnosis

(Edmonston Jr, 1977; Barber, Spanos, & Chavez, 1974), and diverse forms

of yoga meditation (Morse, Martin, Furst, & Dubin, 1977; D. A. Shapiro &

Shapiro, 1982), have proven effective in reducing tension and anxiety. Over the

past decade, there has been a surge of interest in mental imagery and its role

in promoting health and well-being, including enhancing sports performance

(Cooley, Williams, Burns, & Cumming, 2013). Over the past few years, there

has been an increasing interest in investigating the effects of meditation and re-

laxation techniques on attentional control processes. Tang’s research (Tang, Lu,

Feng, Tang, & Posner, 2015) demonstrated that only five days of mindfulness

meditation training improved attentional control in healthy young adults. Simi-

larly, Zeidan (Zeidan, Johnson, Diamond, David, & Goolkasian, 2010) observed

that brief mindfulness meditation training improved executive attentional con-

trol abilities and reduced anxiety. Furthermore, Ruedy and Schweitzer (Ruedy

& Schweitzer, 2010) found that even a brief period of relaxation exercises en-
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hanced participants’ ability to resist distractions and maintain focus on a cogni-

tive task. Various literature reviews have also analyzed the impact of meditation

on cognitive functions such as attention, memory, and executive control. For

example, Chiesa and Serretti (Chiesa & Serretti, 2010) examined the effects

of mindfulness meditation on attentional control and found that it resulted in

improvements in both selective and sustained attention. Many cognitive psy-

chology and neuroscience studies have investigated the positive effects of mind-

fulness and meditation training on cognitive functions, utilizing various tasks to

assess measures of response accuracy, response time, and associated electrophys-

iological and neuroimaging patterns, further highlighting the positive impact of

mindfulness and meditation on cognitive performance (Malinowski, 2013; Gal-

lant, 2016; Chiesa, Calati, & Serretti, 2011; Cahn & Polich, 2006; Raffone &

Srinivasan, 2017; Tang et al., 2015). Alongside the increasing interest in the in-

fluence of relaxation techniques on the human mental state, the advancements

in neuroimaging technologies provide an even greater potential to merge these

two fields. The rapid advancement of technology has led to the development of

new tools that offer computer-generated audio-visual displays and immersion in

digital 3D environments. The field of research investigating the use of virtual

reality (VR) for health and well-being is expanding. A recent study (Wirga

& DeBernardi, 2002) aimed to determine whether VR-guided meditation could

induce significant changes in EEG waveforms and alleviate pain experienced by

patients with cancer. The results showed that EEG recordings can be utilized

to investigate neurophysiological changes in brain activity during VR-guided

meditation, and demonstrated the potential of VR in pain reduction. Modern

brain imaging techniques, such as EEG, are crucial in verifying computational

models that aim to understand the relationship between cognition and brain

activity (Wójcik, Kawiak, Kwasniewicz, Schneider, & Masiak, 2019).
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One promising application of these new technologies is the use of guided

imagery to support human well-being. Guided imagery (GI) involves facilitat-

ing patients to create vivid and multisensory mental images of positive and

pleasant scenarios. It has been observed that GI has significant physiological

implications, as the body responds to mental imagery in much the same way as

it would to a physical experience (Boucsein & Boucsein, 2012). Notably, guided

imagery is among the oldest and most versatile healing practices(Achterberg,

1985). In the late 1970s, health professionals started to report using imagery

to influence the course of life-threatening diseases (Pelletier, 1977; Simonton,

Matthews-Simonton, & Sparks, 1980). The work of Simonton, an American

physician and radiation oncologist, introduced the systematic use of imagery as

an adjunct to conventional cancer treatment (H. S. Friedman, 2015; Simonton

& Matthews-Simonton, 1981). This approach has been replicated by Fawzy

(Fawzy et al., 1993), who arrived at similar conclusions regarding psychother-

apeutic intervention in the treatment of patients diagnosed with malignant

melanoma. Furthermore, researchers have expanded the study of the effects

of imagery on other physiological and psychological correlates, with GI showing

promise in reducing psychological stress and smoking behaviors among smokers

and ex-smokers (Vines, 1994). Literature also supports the effectiveness of GI in

improving health behaviors and reducing psychological distress in the worksite

setting (Vines, 1994).

Guided imagery, sometimes referred to as mental imagery or visualization

(Kwekkeboom, 2001), is commonly viewed as the mind’s language for interpret-

ing inner and outer experiences (Kabat-Zinn, 1990). Achterberg (1985) defined

guided imagery as ”the thought process that invokes and uses senses: vision, au-

dition, smell, taste. The senses of movement, position, and touch” (Achterberg,

1985) Guided imagery can be facilitated by a guide or self-directed, and some
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people use guided audio recordings. The practice of guided imagery encom-

passes the exploration of fantasies, dreams, meditations, drawings, and other

creations of the imagination” (Foote, 1996).

The versatility and relevance of guided imagery are broad. For instance,

Gruzelier (2001) found that students who used guided imagery during exams

were better able to manage stress than those in a control group (Gruzelier,

Smith, Nagy, & Henderson, 2001). Singh and Pandey (2007) found that visual

imagery helped participants solve more problems (Singh & Pandey, n.d.).

As previously described based on the literature review guided imagery in-

volves using visualization techniques to create a mental image or scenario that

promotes relaxation and stress reduction. The immersive nature of VR can

enhance the effectiveness of guided imagery (GI) by creating a realistic and en-

gaging environment for the user. For instance, a virtual nature scene can provide

a soothing environment for stress reduction or a virtual guided tour of a peaceful

location can be used for meditation. These new technologies may have poten-

tial applications in a variety of settings, including mental health treatment, pain

management, and relaxation therapy. By combining guided imagery with VR

and EEG, researchers and practitioners can gain a deeper understanding of the

neurological and psychological mechanisms underlying these interventions, and

optimize their efficacy for improving human well-being. We can imagine the VR

treatment program that was developed with the aim of improving the mental

state of oncology patients, as their poor mental state during and after treatment

can adversely affect their quality of life and prolong the treatment and recovery

processes. By using VR technology, patients can create positive experiences that

can help them build positive beliefs and attitudes toward their healing and treat-

ment process. This is particularly beneficial for those who may not have access

to specialized psycho-oncological help. However, the integration of VR tech-
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nology with existing psycho-oncological therapies presents various challenges,

including the need to ensure that the relaxation module can respond to changes

in the patient’s physiological state and breathing pattern. In addition, individ-

uals can vary in their ability to achieve deep relaxation, and future research

may investigate the pace at which specific subjects achieve this state. Plotting

their state in the function of time would provide valuable information. Machine

learning classifiers could aid in classifying biomedical signals towards therapy

support. Machine learning tools and algorithms have been used for decades in

diagnostics for various disorders such as alcoholism or depression, and advanced

modeling of biological systems’ behavior, including diagnostic purposes.

2.2 Exploring the Effects of Relaxation Practices on At-

tention and Alpha Oscillations

Attention and executive function are vital cognitive abilities in today’s complex

and demanding world. Extensive scientific research has underscored their cru-

cial roles in various aspects of cognitive processing and goal-directed behavior

(Stevens & Bavelier, 2012). Attention allows us to selectively focus on relevant

information while filtering out distractions, making it essential for concentra-

tion, information processing, and decision-making (Johnson & Proctor, 2004).

Enhanced attention and executive function have consistently been associated

with improved academic performance, job performance, and decision-making

abilities (Peterson et al., 2017; Arrington, Kulesz, Francis, Fletcher, & Barnes,

2014; Titz & Karbach, 2014; King & Haar, 2017). Consequently, the enhance-

ment of these cognitive functions is crucial in our information-rich environment

and can benefit individuals and society as a whole (Trautwein, Kanske, Böckler,

& Singer, 2020; Gao, Zhao, & Li, 2022). No literature was found on attentional

tasks after GI sessions. While the effects of meditation and relaxation tech-
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niques on attentional control have been extensively studied, the potential impact

of guided imagery (GI) on cognitive performance remains relatively unexplored

(Tang et al., 2015; Zeidan et al., 2010; Ruedy & Schweitzer, 2010; Chiesa &

Serretti, 2010). However, it is known that other relaxation techniques such as

meditation can reduce interference during the Stroop task (Chan & Woollacott,

2007), and meditators have better attentional performance in the Stroop task

compared with a meditation-näıve control group (Moore & Malinowski, 2009).

High proficiency in this task indicates good attentional control and relatively

low automaticity or impulsivity of one’s responses (Malinowski, 2013).While

studies have shown that meditation practices increase alpha brainwave activity,

indicative of relaxed and enhanced mood, little research has examined the elec-

trophysiological effects of GI on cognitive performance (Stapleton et al., 2020;

Phneah & Nisar, 2017). The transition from beta to alpha brainwaves during

meditation has been associated with higher-level cognitive processes (Hebert,

Lehmann, Tan, Travis, & Arenander, 2005; Stapleton et al., 2020). Addition-

ally, executive functions, including inhibition, working memory, and attention

shifting, are crucial components of cognitive control (N. P. Friedman & Rob-

bins, 2022; Miyake et al., 2000). Various cognitive tasks, such as anti-saccade,

Stroop, and Go/No-Go tasks, have been used to assess executive function and

provide insights into its underlying processes (Diamond, 2013; Miyake et al.,

2000; Hellmuth et al., 2012; Meule, 2017). The Stroop test, go/no-go task, and

anti-saccade task are commonly used in research because they specifically target

and assess different aspects of attention.

Researchers often choose these attention-based tasks because they offer well-

established paradigms for investigating specific attentional processes. These

tasks have been extensively studied and validated, allowing for meaningful com-

parisons across different studies and populations (MacLeod, 1991). By using

12



these tasks, researchers can assess attentional performance, identify underlying

cognitive mechanisms, and investigate factors that influence attentional control

in various contexts. Anti-saccade, Stroop, and Go/no-go tasks are three com-

monly used tests to assess executive function, which refers to a set of cognitive

processes involved in goal-directed behaviors (Diamond, 2013). While all three

tests are measures of executive function, they differ in their specific cognitive

demands and the underlying processes they assess. Anti-saccade tasks assess

inhibitory control and attentional control (Miyake et al., 2000; Hellmuth et al.,

2012), Stroop tasks assess selective attention and inhibition of irrelevant infor-

mation, and Go/No-Go tasks assess response inhibition and working memory

(Meule, 2017). It was proven that acute psychosocial stress may affect ex-

ecutive action control in a Go/No-Go task (Scholz et al., 2009). Meditation

has been found to have a positive impact on attentional processes, influencing

various cognitive mechanisms and neural networks. Scientific studies have re-

vealed several key mechanisms through which meditation enhances attention.

Firstly, meditation practices, such as mindfulness meditation, involve sustained

attentional focus on a specific object or the present moment. This training

in sustained attention helps individuals develop better attentional control and

the ability to maintain focus over time (Tang et al., 2007) It strengthens the

neural pathways involved in attention, including the prefrontal cortex and pari-

etal cortex, which play crucial roles in attentional processing (Lutz, Slagter,

Dunne, & Davidson, 2008).Secondly, meditation improves selective attention,

allowing individuals to selectively focus on relevant information while filtering

out irrelevant stimuli (Jha, Krompinger, & Baime, 2007). This enhanced se-

lective attention is attributed to the cultivation of mindfulness, which involves

non-judgmental awareness of present-moment experiences. Mindfulness medi-

tation reduces attentional bias towards negative or distracting stimuli, enabling
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individuals to redirect their attention more efficiently (Chambers, Lo, & Allen,

2008). Furthermore, meditation promotes improved cognitive flexibility, which

refers to the ability to switch between different cognitive tasks or mental sets.

This enhanced flexibility is associated with changes in the anterior cingulate cor-

tex and the executive control network, allowing individuals to adaptively shift

their attention and cognitive resources as needed (Malinowski, 2013). Medita-

tion has also been found to modulate the default mode network (DMN), a brain

network involved in mind-wandering and self-referential thinking. Mindfulness

meditation decreases DMN activity and disrupts the default mode of thought,

reducing mind-wandering and enhancing present-moment attention (Hasenkamp

& Barsalou, 2012). This shift from self-focused thinking to present-moment

awareness contributes to improved attentional performance. Moreover, medita-

tion practices impact attentional networks, such as the alerting, orienting, and

executive control networks. These networks are responsible for regulating at-

tentional processes. Meditation has been shown to increase alertness, enhance

the ability to shift attention, and improve executive control functions (Tang,

Posner, & Rothbart, 2014). These changes result in more efficient allocation of

attentional resources and better performance in attention-demanding tasks. It

was decided to explore Guided Imagery as the relaxation method, because in

opposite to meditation Guided imagery can be tailored to address specific men-

tal and emotional states, such as stress reduction, anxiety management, pain

management, or improving performance. By integrating imagery that aligns

with desired outcomes, individuals can access and cultivate the associated men-

tal and emotional states more effectively. This level of customization can make

guided imagery a useful tool for individuals with diverse needs and goals.
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3 Research description and hypothesis

3.1 Research description

Prior to the experiment, the study participants were required to provide in-

formed consent, indicating their willingness to participate. The participants

also completed various questionnaires, including the Scales of Helplessness and

Anxiety of Contracting an Infectious Disease by Rydzewska and Sedek (2020),

which were based on previous research on uncontrollability and adapted to the

context of the COVID-19 pandemic. These measures aimed to assess the poten-

tial role of maladaptive emotions in impeding rational decision-making during

the pandemic.

The participants were screened for chronic medical conditions and were asked

to disclose any such conditions, including mental disorders, during the screening

process. Individuals with chronic diseases, including but not limited to chronic

fatigue syndrome, cancer, and mental disorders, were excluded from the study.

The experimental cohort was then randomly divided into two sub-cohorts: Sub-

cohort A, which consisted of 30 subjects exposed to relaxation, and Sub-cohort

B, which consisted of 30 subjects assigned to perform the mental task. After

undergoing pre-processing and eliminating data with poor quality, only par-

ticipants who provided complete and good EEG recordings while meeting all

exclusion criteria were included in the final analysis. This resulted in a GI sub-

cohort of 20 subjects and a mental task-engaged sub-cohort of 28 subjects. The

participants in this research were male computer science students between the

ages of 17-24 from a Computer Science department at Maria Curie-Sklodowska

University in Lublin, Poland. They were required to have short hair and be

right-handed, and all participants were of Polish nationality or citizenship and

fluently spoke Polish. Males were selected for the study due to the prepon-

derance of male students in the department, as well as documented gender
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differences in electroencephalogram patterns (Wada, Takizawa, Zheng-Yan, &

Yamaguchi, 1994; Cantillo-Negrete et al., 2017) Additionally, participants had

to be healthy, not using prescribed medication, soft drugs, or hard drugs, with

no medical treatment history in the one year following the study, and with no

chronic diseases, including chronic fatigue syndrome, cancer, or any other dis-

eases or mental disorders. They were also required to be nonsmokers and were

asked not to consume alcohol or any medications at least 72 hours before partic-

ipation in the experiment. Participants were provided with information about

EEG research and technology, and they signed an agreement for participation, as

well as a declaration to ensure they fulfilled the inclusion and exclusion criteria.

EEG recordings were obtained using a 256-channel dense-array EEG amplifier

with a HydroCel GSN 130 manufactured by Electrical Geodesic Systems (EGI)

with a sampling frequency of 250 Hz. Net Station 4.5.4 and SmartEye 5.9.7

software were used for artifact removal and gaze calibration, respectively. The

laboratory was also equipped with a geodesic photogrammetry system (GPS),

which was operated using Net Local 1.00.00 and GeoSource 2.0. ERP experi-

ments were designed in PST e-Prime 2.0.8.90. Additionally participants were

also required to fill in their personal information and answer several question-

naires as outlined below:

1. Scales of Helplessness and Anxiety of Contracting an Infectious Disease

by Rydzewska, K. & Sedek, G. 2020 unpublished research materials from

SWPS University of Social Sciences and Humanities. The Scale of Help-

lessness of Contracting an Infectious Disease was based on previous re-

search on uncontrollability in the classroom, known as the Intellectual

Helplessness Scale (Rydzewska, Rusanowska, Krejtz, & Sedek, 2017). The

latter focuses on situations where individuals try to solve a task without

understanding it for an extended period, leading to intellectual helpless-
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ness in that task domain. The researchers adapted this scale to the context

of the COVID-19 pandemic, where individuals may experience feelings of

helplessness and anxiety due to the uncontrollable situation. The first

rappidly growing state of this pandemic was analyzed by Koczkodaj et al.

(W. Koczkodaj et al., 2020). These measures were used to indicate the

potential role of high levels of maladaptive emotions in impeding rational

decision-making during the pandemic.

2. The State-Trait Anxiety Inventory (STAI) is a self-report questionnaire

designed to measure anxiety in adults. The STAI questionnaire consists

of two separate scales: the State Anxiety Scale and the Trait Anxiety

Scale. The State Anxiety Scale measures the level of anxiety that a per-

son is experiencing in the present moment, and is therefore designed to

assess the intensity of a person’s emotional response to a specific situa-

tion (Spielberger, 1983). The scale contains 20 items that describe various

emotional and physical symptoms of anxiety, such as ”I feel nervous” and

”I feel shaky.” Respondents rate each item on a four-point scale, from

”not at all” to ”very much so.” The Trait Anxiety Scale, on the other

hand, measures a person’s general level of anxiety across situations and

over time. This scale contains 20 items that describe how the respon-

dent generally feels, such as ”I worry too much over something that really

doesn’t matter” and ”I feel calm.” Again, respondents rate each item on

a four-point scale. The STAI questionnaire is often used in medical and

research settings to help identify people who may need treatment for anx-

iety (Spielberger, 1983). It can also help to measure the effectiveness of

treatments designed to reduce anxiety.

3. Following both the GI and mental task sessions, participants underwent

attentional tests to test the hypothesis that GI can enhance attentional
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control.

Anti-saccade tasks require participants to inhibit a reflexive saccade to-

wards a visual target and instead make a deliberate saccade to a location

opposite to the target. This task measures the ability to inhibit auto-

matic responses and requires attentional control (Course-Choi, Saville,

& Derakshan, 2017). The Anti-Saccade test - attention control was de-

signed according to the recommendations of the Antoniades protocol. In

prosaccade trials, the object appears at the location of the cue, so the dis-

crimination of stimuli is relatively easy. In Anti-saccade trials, however,

the identification of the object is more difficult because it appears on the

opposite side of the cue. The primary indicator in this task is the average

percentage of correct responses for the anti-saccade blocks.

The numerical Stroop Test which is a variation of the classic Stroop test

that uses numbers instead of words. The test is designed to create inter-

ference between the automatic response of reading the digits and the task

of counting them, which requires more cognitive effort. The test measures

the ability to suppress automatic responses (response inhibition) and focus

attention on the task at hand (Huang et al., 2019).

The task is to count the number of digits on the screen and indicate the

answer by pressing the appropriate numeric key. In congruent trials, the

number of digits reflects their value: for example, three digits of value 3 so

providing a correct answer 3 is cognitively facilitated. In conflict-triggering

trials, the number of digits does not match their value: for example, three

digits of value 2. To provide a correct answer, the participant should

ignore the value of digit 2 and intentionally count their number. The

main indicator in this test is the average percentage of correct answers.

Additional indicators, including reaction times for congruent and incon-
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gruent trials. The magnitude of the difference in response times between

congruent and incongruent trials is a measure of interference control.

Go/no-go tasks require participants to respond to one type of stimulus

(the ”go” stimulus) but inhibit their response to another type of stimulus

(the ”no-go” stimulus). This task assesses the ability to inhibit automatic

responses and cognitive flexibility, as well as response inhibition and work-

ing memory(Meule, 2017). The tasks in the main block were arranged in

a pseudorandomized order while following the rule that No-go trials were

preceded by 2 or 5 Go trials. The main block of trials was preceded by 10

practice trials, consisting of 2 No-go and 8 Go trials. As a primary mea-

sure of Go/No-go task performance - attention control was the percentage

of correct responses for Go trials after No-go trials. Additional measures

included reaction time for Go trials, as well as the mean percentage of

correct responses for both Go and No-go trials.

4. Furthermore, both prior to and following the GI and mental task ses-

sions, the study participants were administered questionnaires developed

by the research team. These questionnaires encompassed various mea-

sures, including participants’ self-reported levels of stress and relaxation

on a 10-point scale and enabled the identification of emotions experienced

by the participants before and after the GI and mental tasks experienced

intervention.

To induce a state of relaxation, participants were seated in a comfortable

armchair with earphones and listened to a 21-minute guided imagery (GI)

recording prepared by a trained expert. The GI technique involves focusing

on a positive mental image or scene. During the mental task, participants were

asked to recall information, such as the capitals of European countries, zodiac

signs, and the states of the United States of America. They were informed that
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their performance would be evaluated, and their reward would depend on the

results. This task was chosen as it requires mental effort, leading to a high

level of mental workload. Both the guided imagery group and the mental task

group underwent the same conditions in the experiment. This included listening

to pre-recorded instructions for an equal duration. Additionally, two trained

technicians supervised each experimental session, paying careful attention to

technical aspects such as electrode placement, ensuring proper functioning, and

managing the playback of the recordings

3.2 Research hypothesis

The primary research hypothesis of this study posits that a brief GI session

can lower stress levels in healthy male individuals who lack prior exposure to

such sessions or have a history of chronic health issues. To test this hypothesis,

a cohort of 30 participants underwent a GI session, during which beta power

reductions and alpha state increases were monitored using EEG equipment, and

self-reported questionnaires were used to assess the session’s efficacy in reducing

stress. This study also aims to demonstrate the feasibility of utilizing a gen-

eral linear model (GLM) for accurately differentiating between different mental

states based on EEG signal analysis. While the GLM is a well-established clas-

sifier, its implementation in EEG signal analysis is relatively unexplored. The

novelty of this research lies in its ability to showcase the potential of EEG signal

classification with a GLM for distinguishing between two distinct mental states,

which could pave the way for developing innovative brain-computer interfaces

tailored for therapeutic applications in the future.

In addition to assessing the effectiveness of the GI session, the study aimed

to examine whether the outcomes of attentional tasks (Stroop, Go/No-Go, and

Anti-Saccades tests) can differentiate between the group of participants who
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received the GI intervention and other groups of 30 randomly selected male

participants who completed a mental task. Specifically, we compared the num-

ber of errors committed on these tasks between the two groups. Based on the

Hudetz study (Hudetz et al., 2000) after the relaxation session using guided im-

agery, participants showed a significant improvement in working-memory scores

compared to the music and control groups. The findings support the hypothesis

that guided imagery enhances working-memory performance and suggest that

relaxation techniques positively influence human information processing, thus, it

is expected that engaging in a guided imagery session will lead to improvements

in attentional control processes. Drawing from the literature on mindfulness

and the core cognitive abilities of inhibition, shifting, and updating, which are

cultivated through regular meditation practice, play a crucial role in support-

ing a mindful state (Holas & Jankowski, 2013) and studies have reported a

relationship between mindfulness and performance on Go/No-Go tasks, with

higher self-reported mindfulness scores associated with more accurate responses

(Keith, Blackwood, Mathew, & Lecci, 2017; Brown & Ryan, 2003; Feldman,

Hayes, Kumar, Greeson, & Laurenceau, 2007; Mrazek, Mooneyham, & Schooler,

2014; Moore & Malinowski, 2009; Schmertz, 2006). Therefore, it is expected

that the underlying mechanisms by which GI may enhance attentional processes

can be attributed to several factors. Firstly, the relaxation and stress reduction

induced by GI may contribute to improved attentional control, as stress and

anxiety can negatively impact attention and cognitive performance. By reduc-

ing stress levels, guided imagery may alleviate distractions and promote a state

of focused attention. Secondly, the visualization and mental imagery involved

in guided imagery exercises can enhance cognitive flexibility and cognitive re-

source allocation. Engaging in vivid sensory experiences during guided imagery

may train the brain to better allocate attentional resources, filter out irrelevant
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information, and maintain cognitive flexibility, which are crucial components

of attentional control. Lastly, guided imagery may modulate neural activity,

including changes in alpha power, which has been associated with improved at-

tentional control and cognitive performance. Previous studies have shown that

increases in alpha power are correlated with enhanced attentional processes,

including selective attention and inhibition of distracting stimuli.

Finally, we hypothesized that modifications in alpha power may mediate the

association between the employment of GI and the reduction in errors on the

attention tests. To test this hypothesis, we undertook a mediation analysis to

investigate the potential relationship between these variables.

3.3 Research limitation

In interpreting the results, it is important to take into account the study’s var-

ious limitations. The first is that the relatively small sample size used in this

study might limit the generalizability of the findings to larger populations or

other demographic groups. Because of this, care should be taken when ex-

trapolating the findings to larger contexts. Additionally, the study’s primary

focus was on healthy male participants without any prior guided imagery ses-

sion experience and no ongoing medical conditions. As a result, the results’

applicability to other populations or people with particular medical conditions

may be constrained. The study also focused mainly on the immediate results of

the guided imagery session. Future studies should look into long-term benefits.

When considered collectively, these limitations highlight the need for future re-

search using larger and more varied samples, longer follow-up times, and more

control groups. By addressing these methodological issues, a more thorough

understanding of the efficiency and potential limitations of guided imagery can

be attained, not only in the context of stress management but also in terms
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of improving attentional control test results. Such research will advance guided

imagery’s potential as a therapeutic intervention and offer insightful information

about the broader cognitive advantages of the technique.

4 Research results

This study has several notable findings that contribute to the novelty and sig-

nificance of the research. Firstly, the analysis of brainwave data during guided

imagery (GI) sessions revealed a significant increase in alpha power, indicat-

ing a state of deep relaxation. This finding supports the hypothesis that GI

can induce relaxation and promote a relaxed mental state. Additionally, the

study observed no significant differences in beta power between the GI group

and the mental task group, suggesting that the relaxation induced by GI did

not interfere with participants’ ability to maintain attention and focus.

The classification analysis using a general linear model (GLM) demonstrated

high accuracy in distinguishing between the brain states of deep GI relaxation

and engaging in a mental task. The classifier’s performance improved as the

length of the signal input increased, indicating the effectiveness of using longer

signal intervals for classification purposes. This finding highlights the potential

of machine learning techniques, such as GLM classifiers, in accurately classifying

brain states based on EEG data.

The practical implications of this research are noteworthy. The findings

support the potential application of GI as an effective intervention for stress

reduction and relaxation. The study’s results highlight the positive impact of

GI on attentional control abilities, which can be beneficial in stress-inducing

contexts. The incorporation of GI in stress management protocols and its po-

tential role in optimizing cognitive performance provide valuable insights for

therapists and practitioners. Moreover, the study opens up possibilities for the
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Figure 1: The 14th minute choice justification (Zemla et al., 2023)

development of brain-computer interfaces (BCIs) that utilize EEG recordings

and machine learning classifiers to support therapy sessions and enhance the

effectiveness of relaxation interventions.

The study’s findings on the relationship between various cognitive and emo-

tional measures, including brain wave activity, stress reduction, attentional con-

trol, and emotional well-being, provide important insights into the complex in-

terplay between these variables. These findings could inform the development

of more holistic and integrated interventions that target multiple aspects of

cognitive and emotional functioning simultaneously.

Table 1 presented in Fig. 2 shows the participants’ characteristics for sub-

jective measures in a study with two groups: GI Group (N=20) and Mental

Task Group (N=28). The measures include anxiety, helplessness, stress reduc-

tion, and relaxation increase. One-way analysis of variance (ANOVA) was

conducted to test for significant differences between the groups.

Table 2 presented in Fig. 3 presents the results of a study that compared

two different interventions, GI and mental tasks, on brain wave patterns and

attentional control measures.
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Figure 2: (Zemla et al., 2023)

Figure 3: (Zemla et al., 2023)
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Figure 4: (Zemla et al., 2023)

Pearson’s R correlations were conducted to examine the relationships be-

tween different variables. Table 3 presented in Fig. 4 presents the correlation

coefficients, which suggest that higher Alpha Power at the 14th minute was

significantly associated with better performance on the Numerical Stroop and

Anti-Saccade tasks. Additionally, higher levels of Stress Reduction were associ-

ated with lower levels of Helplessness, while higher anxiety levels were associated

with poorer performance on attentional control tasks. Interestingly, higher anx-

iety levels were also associated with lower Alpha Power at the 14th minute.

These findings underscore the need for further research to understand the com-

plex interplay between brain wave activity, attentional control, stress reduction,

helplessness, and anxiety, and their potential implications for cognitive func-

tioning and mental health.

Significant correlations were identified between various variables, including

brain wave activity, attentional control measures, stress reduction, helplessness,

and anxiety, suggesting that these variables are interrelated and may have im-

portant implications for cognitive functioning and emotional well-being. The
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Figure 5: The effect of GI on reducing erroneous reactions in the Stroop test is
mediated by Alpha Power at 14 minutes (Zemla et al., 2023)

study’s findings provide valuable insight into the potential benefits of GI as

an intervention for improving cognitive performance and emotional well-being

and may inform the development of effective interventions aimed at enhancing

cognitive and emotional functioning. Furthermore, the study’s unique aspect

is utilizing multi-sensor EEG signal classification and a GLM to classify two

mental states, providing evidence of the possibility of constructing new Human-

Machine Interaction therapies.

The study also employed mediation models to investigate the relationship

between GI, alpha power, and cognitive performance, which provided a compre-

hensive understanding of the interplay between these variables. The mediational

models shed light on the potential mechanisms through which GI can affect cog-

nitive performance and underscore the necessity for additional investigations to

gain a deeper understanding of this domain.

The mediation model presented in Figure 5 provides evidence that the re-

lationship between guided imagery (GI) and performance on the Stroop test is

mediated by alpha power in the 14th minute. Specifically, the negative coeffi-

cient between GI and the Stroop test indicates that engaging in GI is associated

with better performance on the Stroop test, and alpha power serves as a reliable

mediator in this relationship.
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Figure 6: The effect of GI on reducing erroneous reactions in the Anti-Saccade
test is mediated by Alpha Power at 14 minutes (Zemla et al., 2023)

Furthermore, the mediation analysis depicted in Figure 6 suggests that

changes in alpha power partially explain the relationship between GI and errors

in the Anti-saccade test. The analysis indicates that an increase in alpha power

is linked to a reduction in errors in the Anti-saccade test.

The significance of the t-values provides support for the relationships de-

picted in the mediation model, suggesting that the observed coefficients are un-

likely to have occurred by chance. These results indicate that the use of GI has

the potential to enhance cognitive performance, particularly in tasks requiring

inhibitory control, by promoting increased alpha power. Nevertheless, further

research is necessary to validate these findings and delve into the underlying

mechanisms of this relationship. Overall, this study highlights the potential for

combining traditional cognitive and emotional interventions with cutting-edge

technology and advanced modeling techniques to create more effective and per-

sonalized treatments for a range of disorders. It also underscores the need for

further research in this area to fully explore the possibilities and limitations of

these innovative approaches. Future research directions are suggested based on

the study’s findings. The individual pace at which participants enter a deep

state of relaxation during GI sessions should be investigated, as personal char-

acteristics and external influences can affect the timing. Plotting the state as
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a function of time would provide valuable insights into the dynamics of relax-

ation induction. Additionally, the study’s results offer possibilities for further

investigations into the characteristics of the deep state of relaxation inclination

in relation to psychological personality predictors.

In conclusion, this study contributes novel findings by examining brainwave

changes during GI, the effectiveness of machine learning classifiers in classify-

ing brain states, and the cognitive benefits of GI on attentional control. The

research sheds light on the potential advantages of GI as an intervention for

enhancing cognitive performance and emotional well-being. These findings sug-

gest that GI can enhance attentional control and cognitive flexibility, providing

a cognitive benefit compared to traditional mindfulness practices. The findings

have implications for stress management, therapy support, and the development

of innovative human-machine interaction technologies. Further research in this

area will advance our understanding of the sustained effects and interplay be-

tween cognitive and emotional domains, ultimately leading to the refinement of

interventions promoting overall cognitive and emotional well-being.

5 Conclusion and Future Directions

The researchers’ hypotheses were supported by the findings, as the GI interven-

tion resulted in increased alpha power and improved performance on attentional

tests, particularly the Stroop and Anti-saccade tests. The lack of significant im-

provement in the Go/No-Go test can be attributed to differences in attentional

demands across the various tests, each measuring a specific type of attentional

control. GI, unlike mindfulness practices, does not enhance focused attention

but involves visualizing pleasant images that have a stress-reducing and anxiety-

reducing effect, impacting alpha power. Alpha power has been found to be

positively correlated with information processing speed.
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The study’s mediational model sheds light on the relationship between GI,

alpha power at the 14th minute, and performance on attentional control tasks.

It provides a comprehensive understanding of the interplay between these vari-

ables and offers insights into the potential mechanisms through which GI af-

fects cognitive performance, particularly in the context of attentional control

tasks. Further investigations are warranted to gain a deeper understanding of

this domain, and pairwise comparisons methods can be considered for analysis

accuracy.

In conclusion, this study provides valuable insights into the potential bene-

fits of GI as an intervention for improving cognitive performance and emotional

well-being. The findings contribute to the existing literature on cognitive and

emotional interventions and have implications for the development of effective

interventions aimed at enhancing cognitive and emotional functioning. Future

research could explore the long-term effects of GI interventions and further

investigate the relationships between cognitive and emotional measures. Addi-

tionally, the study’s utilization of multi-sensor EEG signal classification and a

GLM highlights the possibility of developing new Human-Machine Interaction

therapies. Guided imagery (GI) differs from mindfulness practices in that it

does not primarily focus on enhancing focused attention but rather involves the

visualization of pleasant images, which can induce stress reduction and anxiety

reduction responses, potentially influencing alpha power. It is worth noting that

other research has shown a positive correlation between alpha power and infor-

mation processing speed (Rathee, Bhatia, Punia, & Singh, 2020). The findings

of the study suggest that the GI intervention may have had a more promi-

nent impact on cognitive flexibility, which could have contributed to improved

performance on the Stroop and Anti-saccade tasks. These results emphasize

the cognitive mechanisms involved in the GI intervention and its potential to
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enhance cognitive flexibility in a manner that is different from traditional mind-

fulness practices.

The mediational model used in this study provides a comprehensive under-

standing of the interplay among GI, alpha power in the 14th minute, and per-

formance on the Stroop and Anti-saccade tests. It sheds light on the potential

mechanisms through which GI can influence cognitive performance, particularly

in the context of attentional control tasks. In conclusion, the mediational model

presented here offers a valuable framework for comprehending the complex asso-

ciations between GI, alpha power, and cognitive performance. It highlights the

need for further investigations to deepen our understanding in this area. Specif-

ically, the consideration of pairwise comparison methods, such as those analyzed

for accuracy by Koczkodaj (W. W. Koczkodaj, 1996), can be beneficial.

In addition, the study explored the application of machine learning tech-

niques to classify brain states during relaxation and mental tasks. The results

demonstrated the feasibility of accurately distinguishing between deep relax-

ation and mental tasks using classifiers. The efficiency of the classifiers in-

creased with longer or more signal input, achieving accuracy rates of 68% with

a 3-second interval, 78% with 1-minute intervals after 13 minutes, and approx-

imately 92% for the entire 20-minute time range. The study also discussed

potential applications of machine learning classifiers in therapy support, brain-

computer interfaces (BCIs), and AI-trained robotic therapists.

The conclusions from these two aspects of the study are mutually support-

ive. The findings suggest that GI can effectively improve cognitive performance

and emotional well-being by enhancing alpha power and attentional control.

Furthermore, machine learning classifiers provide a reliable means of classifying

brain states during relaxation, with longer or more signal input leading to higher

accuracy. The study’s results have implications for the development of interven-
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tions to enhance cognitive and emotional functioning, as well as the utilization

of BCIs and real-time support systems. Future research should investigate the

long-term effects of GI interventions, explore the relationships between cognitive

and emotional measures, and further refine the application of machine learning

in this context.

6 Contribution to the science

This study aims to fill a significant research gap by investigating the quanti-

tative modeling of brainwave activities during guided imagery. What sets this

study apart from previous research is its focus on exploring brainwave patterns

associated with guided imagery relaxation, specifically the increase in alpha

power and reduction in beta power, which indicate a state of relaxation. These

patterns stand in contrast to existing studies that have predominantly examined

brainwave changes during stress, where alpha power decreases and beta power

increases (Rees, 1995; Thomas & Sethares, 2010). The novelty of this research

lies in its exploration of brainwave activity during guided imagery, shedding

light on the neural mechanisms underlying this relaxation technique.

To achieve this, the study utilizes dense array electroencephalography (EEG)

and machine learning techniques to classify and model the recorded brain signals

obtained during guided imagery and mental workload tasks. By employing EEG

signal analysis and general linear model (GLM) classifiers, this research presents

an innovative approach to understanding and differentiating brain states associ-

ated with guided imagery and mental workload. This novel methodology opens

up possibilities for the development of therapy-oriented brain-computer inter-

faces, which can accurately discern states of relaxation from mental workload.

These interfaces hold tremendous potential in providing computer-based inter-

ventions for anxiety and stress reduction.
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The application of EEG signal analysis and GLM classifiers in the context

of guided imagery research represents a significant advancement in the field.

It allows researchers to delve deeper into the intricacies of brainwave activity

during guided imagery and explore the potential correlations with relaxation

and cognitive processes. By capturing and analyzing brainwave data, this study

offers valuable insights into the underlying neural mechanisms of guided imagery,

contributing to the growing body of knowledge on the efficacy of this relaxation

technique.

Furthermore, this research has practical implications for the development

of computer-based interventions aimed at anxiety and stress reduction. Accu-

rately distinguishing brain states associated with relaxation can facilitate the

creation of therapy-oriented brain-computer interfaces that deliver personalized

interventions to individuals in need. This innovative approach has the potential

to revolutionize the field of mental health by providing accessible and effective

tools for anxiety and stress management.

Additionally, the study expands on previous research that has examined the

effects of relaxation techniques on attention and executive functions. While

studies have shown improvements in attentional control and executive function

with mindfulness practices, there is a lack of research specifically focusing on

the effects of GI on attentional tasks. By investigating attentional performance

using established tests such as the Stroop task, anti-saccade task, and go/no-go

task, the study aims to shed light on the impact of GI on cognitive inhibition,

selective attention, and response inhibition.

In summary, this study’s novelty lies in its exploration of brainwave patterns

during guided imagery relaxation, offering a fresh perspective on the neural

mechanisms underlying this relaxation technique. By employing EEG signal

analysis and GLM classifiers, this research aims to accurately classify and model
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brain states associated with guided imagery and mental workload. The findings

have the potential to pave the way for the development of therapy-oriented

brain-computer interfaces, contributing to anxiety and stress reduction through

computer-based interventions. This study represents a significant advancement

in the field, bridging the research gap and expanding our understanding of the

impact of guided imagery on brainwave activity and relaxation plus this research

contributes to the field by uncovering the potential benefits of GI in improving

attentional control and executive functions, and it paves the way for future

studies on the development of therapy-oriented interventions for anxiety and

stress reduction.
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7 A chapter and articles comprising the thesis

7.1 Investigating the lnfluence of Guided lmagery Relax-

ation on the Selected Electrophysiologic’al Parame-

ters of Human Body
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1 Research background and the existing state of
knowledge

Hypnosis, hypnotherapy and techniques like Guided Imagery (GI) are widely
recognised as method supporting a wide range of therapies, including oncotherapies
and mental disorders.

The primary objective of this paper is to present the literature review of the
relaxation techniques appliance in supporting the health recovery programs is pre-
sented.

The secondary objective of this paper is to conduct the pilot study aimed at
measurement of electrophysiological parameters: EEG brain cortical activity, pulse
and blood saturation of the patient exposed to Guided Imagery hypnosis.

There are numerous examples of using hypnotherapy in the treatment of pa-
tients affected by HIV, ARC, or AIDS, among others [21]. For example, Auerbach
demonstrated a meaningful reduction in physical symptoms associated with HIV,
such as fever, pain, nausea, and a significant increase in activity and resilience
in case of patients with ARC and AIDS who participated for 8 weeks in a group
program that used biofeedback, imagery, and hypnosis, as compared to a control
group [1]. Gochros used hypnosis in simultaneous individual and group therapy of
seropositive patients in order to strengthen their ability to cope with the diagnosis
and reduce the resulting stress [21]. His results showed a positive effect of hypnosis
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on anxiety and helplessness. Mentioned 8-week-long group program of Kelly, which
included self-hypnosis and meditation training, was shown to help reduce stress
and improve self-control and the daily quality of life of patients [14].

Newton and Marx used imaginal hypnosis in the Simonton approach with 4 men
(10 individual sessions) and 22 men (10 group sessions) in order to improve the
long-term survival of the patients [19]. Significant reduction of stress decreased
anxiety related to their condition, and increased activity was observed in the case
of patients who received the individual therapy.

The abovementioned Simonton method was first used in 1971 by Carl Simonton,
an American physician and radiation oncologist. It had been then developed for
more than 30 years. Simonton introduced the systematic use of psychotherapeutic
interventions as a necessary extension of conventional cancer treatment [9, 29,
30]. Criticism of his studies and his reports on the positive therapeutic results
of his approach to the treatment of patients affected by cancers initiated long
series of standardized clinical trials. For instance, David Spiegel [33] confirmed the
effectiveness of this approach.

Patients with distant metastases of advanced breast cancer were divided into
two groups. Patients who additionally participated in a cognitive-behavioral ther-
apy program as an adjunct to standard cancer therapy showed significantly better
outcomes than patients in the control group who were only treated according to the
current standards. Fawzy [8] came to similar conclusions regarding psychotherapeu-
tic intervention in the treatment of patients diagnosed with malignant melanoma.
And despite the clinically proven beneficial results of the use of cognitive-behavioral
therapy increasing the level of coping with the situation after diagnosis, reducing
the stress experienced, and having a beneficial effect on life expectancy after di-
agnosis has not resulted so far to attach such a standard of treatment support to
all patients although it is known that the lifespan of the included participants in
Fawzy’s study was statistically twice as long [8]. The innovative concept to help
patients using VR methods has the potential to change that and enable patients to
support their treatment from the psychological edge. It is known and proven that
when patients “think healthy” it supports recovery because they are able to:

• Enter a state of relaxation and relaxation as often as possible. Before and
after, but also, if possible, during medical procedures.

• Put the brain into an alpha state and imagine positive scenarios of how my
body, organs, and cells are healing under the influence of the applied therapy.

• Understand that these visualizations and alpha state are the way to support
the immune system, as well as a pathway in its conditioning process.

• On the grounds of experiences (including those from virtual reality) build
realistic and positive beliefs about one’s condition, the medical procedures
used, and the processes of treatment and recovery.

From the neuroscientific perspective adopted by Rossi [24], it is the patient’s
creative activity that generates, through the neuroplasticity of the brain, new neu-
ronal connections so-called “miracle of healing based on the body-mind relation-
ship.” This deeply meaningful, internal creative mental process produces a hypnotic
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experience for problem-solving problems and healing. Healing is located within the
patient. The therapist has no secret powers to control or heal. Patients heal them-
selves if they are lucky enough to receive the right “therapeutic suggestions” and
psychological support which is described as “implicit heuristics of processing.”

Research on implicit processing heuristics should take advantage of the current
level of neuroscience and computer data processing and available technologies to
build upon that [7]. For this purpose, our EEG study allows, among other things,
the analysis of the amplitude and frequency of brain waves under hypnosis.

Several basic waves can naturally appear in the EEG recordings:

• Alpha waves (frequency 8–13 Hz, amplitude 30–100 µV) — are the rhythmic
activity of the cerebral cortex in the 8–12 Hz range. This is one of the earliest
observed structures (graphemes) of the EEG. The occurrence of the frequency
of the rhythm alpha is attributed to the state of relaxation with eyes closed.
Alpha waves are best seen in the posterior (occipital) leads, that is, from
around the part of the cortex responsible for processing visual information.
The alpha rhythm is of fundamental importance in EEG analysis of sleep.
Although it does not occur during actual sleep it is indicative of the patient’s
“pre-sleep” wakefulness, and its disappearance signifies the transition from
the waking state to shallow sleep. They are also attributed to a state of rest.
Reduced alpha wave amplitude is noted in stressed individuals and those with
an elevated state of anxiety.1.

• Beta waves (frequency 12–30 Hz, amplitude >30 µV) In the beta spectrum,
the following compartments are distinguished: slow beta waves (12–15 Hz),
the proper intermediate beta band (15–18 Hz), and fast beta waves, with
frequencies above 19 Hz. This unsynchronized neuronal activity characterizes
the usual daily activity of the cerebral cortex in humans. The range of this
frequency is observed during the state of active functioning, wakefulness, and
alertness. It increases during logical thinking when attention is directed to
cognitive tasks and the external world.2

• Theta waves (frequency 3.5–8 Hz) — activity in the frequency band from 3 to
7 Hz and a spread of several tens of µV. Characteristic theta waves occur, for
instance, during the period of shallow sleep — it is assumed that during this
time the assimilation and consolidation of learned content take place. Theta

1
Low alpha (8–10 Hz) — is the range of waves with a frequency below the peak of alpha in the

test person, with the eyes closed. With age, a decrease in the peak frequency of this wave. The

higher peak frequency of this wave is found in more cognitively fit individuals. This frequency

band is associated with meditation, with maintained calmness and relaxation. Low alpha is subject

to diurnal fluctuations and we can note its higher amplitudes between the hours of 11 a.m. to

3 p.m. Significant fatigue of the subject can also affect the spectrum of this waveform [38]. High

alpha (11–12 Hz or 11–13 Hz) — this frequency occurs when the state of high awareness of the

environment. In this state, the brain can react quickly a precisely to changes in the environment.

Waves of this band are a state of mental and physical calm, also known as the “zona” state.

The mind is focused on the given moment “here and now,” It is a state associated with high

concentration and certainty of action [11].
2
SMR sensory rhythm (13–15 Hz) — is observed in the sensory band of the cortex cerebral

cortex. It is a spindle-shaped waveform. It determines the state of alertness, but without muscle

tension muscles. It is a state in which high concentration is achieved. An understated amplitude

of this wave may indicate problems with maintaining focused attention [11].
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waves are the most common present brain waves during meditation, trance,
hypnosis, intense dreaming, and intense emotions. It is mainly observed In
the medial part of the front part of the cerebrum.3

• Delta waves (frequency 1–3 Hz) are high-amplitude activity with a low fre-
quency (0–4 Hz) and a duration of at least 1/4 s. For practical purposes, the
lower limit of frequency was assumed to be 0.5 Hz. Appearing during deep
sleep, delta waves with an amplitude of more than 75 µV are called slow
waves (SWA). Their appearance is due to the high synchronization of cor-
tical neurons (a higher one is encountered only during an epileptic attack).
Delta waves are also recorded during deep meditation in young children and
the case of certain types of brain damage.4

• Gamma waves (frequency 25–100 Hz) — activity in the Hz frequency band is
referred to instead referred to as high-frequency (high) gamma. The gamma
rhythm accompanies motor activity and motor functions. Gamma waves are
also associated with higher cognitive processes, including sensory perception,
and memory, among others. It is speculated that gamma rhythms modu-
late perception and consciousness and that the greater appearance of gamma
waves relates to expanded consciousness and spirituality [11].

Regardless of culture, race, upbringing, religion, and political views, all peo-
ple with biologically intact brains experience stress in the same stereotypical way.
The basis of such a stereotypical response to life-threatening situations are neu-
rophysiological processes, related to the stimulation of the relevant areas of the
central nervous system, which influences the immune system through the auto-
nomic nervous system (sympathetic and parasympathetic), the endocrine system,
and a direct effect on the limbic-hypothalamic system secreting immunomodulat-
ing neuropeptides [43]. This allows one to measure how even stagnant stress levels
may change when applying stress reduction factors such as relaxation and visual-
ization. Knowing that study conducted in 1987 by Kempthorne-Rawson, Persky,
and Shekelle proves that pessimism and depression contribute to higher mortality
among patients with cancer such methods to reduce its level should be included
in standard treatment. In the 1950s, West, Blumberg, and Ellis showed that the
rate of tumor growth is more related to psychological factors than to the degree of
tumor differentiation found on histopathological examination [42].

Knowing how the body behaves in a relaxed or stressed state, it is possible to
construct tests and use such measurements that will collect signals from heart, skin,

3
Theta waves are associated with the extraction of information from memory and the ability

to control reactions to stimuli. At this frequency, we are aware of our surroundings while the body

is in a state of deep relaxation. They are associated with conscious observation of the environment

(thalamic nuclei of the brain). In the state of theta waves, very creative thoughts, inspirations,

and imaginations. This frequency helps recall memories, fantasies, and associations. In contrast,

excessive amounts of theta waves have been reported in people with attention deficit disorder [11].
4
Delta waves are the slowest of all brain waves. They occur during deep sleep and account for

more than 50% of recorded brain activity. They have also been observed during transcendental

meditation. Information received at this level is usually unavailable at the level of consciousness.

Delta waves dominate the QEEG spectrum in infants up to 6 months of age. age. They are also

recorded in brain damage and in brain tumor diagnoses [11].
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or brain activity, so that researchers will be able to prove that hypnosis brought ex-
pected changes within the patient’s body. For example, using measurements such
as respiratory rate per minute, duration of inspiration and expiration, tidal vol-
ume (in ml), heart rate HR (in beats/minute), respiratory sinus arrhythmia RSA
(difference between the maximum and minimum heartbeat interval, in ms,) log-
arithm of HFHRV-transformed power in the high-frequency band of heart rate
variability, LF-HRV-transformed power in the low-frequency band of heart rate
variability can quantitatively demonstrate how appropriately timed relaxation by
modifying breathing patterns can put subjects into a relaxed state [39]. It is often
assumed that cardiorespiratory changes induced by breathing instructions trigger
a relaxation response [5]. Psychologically, breathing techniques usually induce an
increased focus on internal sensations and comparatively disregard external stimuli
[40]. Physiologically, most breathing exercises are designed to decrease sympathetic
activity and increase the parasympathetic activity of the nervous system [2]. Re-
sults from a study at the University of Leuven strongly suggest that voluntary
changes in the length of inhalation in comparison to exhalation are an important
determinant of participants’ reported relaxed states [39].

EEG studies on relaxation, on the other hand, show that a decrease in total
power in the entire cerebral cortex during the relaxation state means that the
brain activity of individuals during the relaxation process gradually decreases [36].
Physiological indicators of responses to relaxation introduced by Foster [17] include
reductions in oxygen consumption, respiration and heart rate, as well as an increase
in the production of alpha brain waves. Increased power of alpha and theta fre-
quencies and interhemispheric synchronization, especially frontal alpha coherence
[37] are usually considered as neurophysiological indicators of sensorimotor state
and mental rest.

Regular relaxation practice can affect various physiological and psychological
parameters related to aging, digestion, general well-being, and psychosomatic dis-
eases. Consequently, there is a growing need to monitor physiological processes
related to relaxation and stress response [25]. From the current literature on the
subject, it can be concluded that deep relaxation is most often led to by slow, deep
breathing at a frequency of 0.1 Hz.

In an article [25], the authors confirm that 6 breaths per min promote relax-
ation. In a book entitled “Relaxation, Meditations & Mindfulness” [31] mentions
techniques to achieve a state of deep relaxation. These include Yoga classes, where
progressive muscle relaxation and deep breathing occur. The author points out that
the breath should be slow and even, and sometimes deep or shallow. Relaxation
breathing has a rhythm in which the exhalation is slow and steady. At first, it may
be deep and later shallow without effort. In general, relaxed exhalation takes twice
as long (6 seconds) as inhalation (3 seconds).

We can divide the breathing process itself into:

• normal breathing (eupnoe) with a frequency of 0.25 Hz or 25 breaths per
min,

• slow breathing (bradypnoe) with a frequency of 0.1 Hz or 6 breaths per min,

• fast breathing (tachypnoe) with a frequency of 0.5 Hz.
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In the paper [4], researchers examined the effect of the respiratory cycle on
EEG. W order to do so, they compared the spectral analysis of the EEG signal
during inspiration and expiration.

Normal, slow, and fast breathing were checked. The researchers noted that
during inhalation with normal breathing, delta wave activity in the parietal region
and total activity in the frontal region. With fast breathing during inspiration,
there is a decrease in beta wave activity in the central region and activity in the
theta in the posterior temporal and occipital regions. Compared with the EEG
in eupnoe, bradypnoe and tachypnoe, there was a decrease in the spectral power
of all spectral bands except delta during faster respiration rates and vice versa,
with a significant difference found mainly between bradypnoe and tachypnoe, less
frequently between eupnoe and tachypnoe.

In another article [10], researchers examined the effect of breathing patterns on
EEG activity. They conducted the study on healthy participants. Each examined
had to breathe deeply and slowly (6 breaths per min), hold their breath, and
breathe quickly and deeply (30 breaths per min). The EEG signal was read from
the frontal, parietal and occipital regions of the head. The researchers detected
an increase in alpha and beta activity in the frontal region during deep and slow
breathing. In contrast, there was a process of decrease in the activity of these waves
in all regions during breath-holding. In the case of slow and deep breathing, only
alpha decreased.

The pace of speech we know from studies on the subject is that a healthy person
utters about 10–15 sounds per second. In the case of uttering a greater number of
them, i.e. 20 (or more), understanding the speaker’s speech is much more difficult.

Three modes of speaking tempo can be distinguished [34]:

• lento (slow, slow tempo),

• moderato (moderate),

• allegro (fast, English quick tempo).

Usually, texts are spoken at a moderato tempo. For longer speeches, as a rule,
there are different speaking tempos. Their interplay is a characteristic feature of
spoken language. a person pronounces an average of 10–15 vowels per second. The
pronunciation of 21 vowels per second is on the verge of speech intelligibility. The
time taken to pronounce syllables and vowels is measured in milliseconds. For ex-
ample, the duration of shortness consonants is about 40 milliseconds, while the
duration of an average syllable is 200–300 milliseconds. In fast speech, the average
duration of a vowel is 60–70 milliseconds, and in slow speech — 150–200 millisec-
onds. If only in connection with this knowledge, it would be necessary to adjust the
recording in such a way that the speaker speaking to the patient pronounces the
voices at a rate that is within the 150–200 millisecond range. Science is studying
also the effect of sound on our mood. Human responses to sound are experienced
on several different levels: physical, mental, cognitive, and behavioral [38].

Nevertheless, there are still relatively few studies that document the relevance
of this factor, especially at the level of interpersonal communication. Instead, we
know that one of the elements of effective psychotherapy is empathy, which also
expresses itself in non-verbal ways [17]. That’s why it’s so important to lean into
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the importance of speech characteristics, to consciously use the right sounds, tone
of voice, or tempo, as this translates into the reactions of physiological and mental
reactions that are induced in the recipient especially by using VR tools.

In the professional exchange of information, for example, in the psychotherapeu-
tic process, communication takes place simultaneously at the verbal and nonverbal
levels. Verbal communication without nonverbal transmission is practically non-
existent. Thus, there are areas where the way information is communicated is of
great importance not only for the quality of the future relationship such as patient
and doctor but also to trigger a psychosomatic response, which can be translated
into the functioning of the patient’s immune system. Indeed, it should be pointed
out that, for example, an appropriate tone of voice can allow for stress reduction
when communicating a diagnosis. A study from 2011 funded by the National Can-
cer Institute shows that nonverbal information revealed in a lower tone of voice and
a slower rate of speech gives the impression of being more empathetic [18]. This
has a direct bearing on the patient’s mental state, who feels better understood and
embraced with compassion [56]. And although more research has been conducted
within the realm of verbal empathic communication it is indicated that non-verbal
based on the tone of voice and rate of speech is equally important [28]. How the
message is conveyed is of particular importance important in the case of oncology
patients, who face high levels of stress, tension, and fears for their lives as they face
dealing with the disease [22].

Another study that confirms the importance of voice tone and tempo on levels
of relaxation was conducted in 2006 in the biofeedback research laboratory of the
Department of Behavioral Medicine and Psychiatry at West Virginia University. It
investigated the effectiveness of progressive relaxation training (PRT) on selected
vocal characteristics and its impact on the treatment process [15]. In the study
[15], the goal was to see how the volume, pitch, timbre of the voice, and intensity
of speech could affect the therapeutic process. As early as 1979, Ryan and Moses
showed [26] that a soft, melodious voice can translate into treatment effectiveness.
In addition to subjective assessment of the relaxation state or the subjects’ percep-
tion of speech characteristics, participants in the experiment had their heart rate
(HR) measured, and EMG signals were collected, verifying the electrical function
of the electrical activity of muscles and peripheral nerves. The intensity of the voice
conducting the relaxation training was measured in decibels, the tone of voice in
Hz, and the number of syllables per second of tape was calculated. The results
of the study clearly show that a voice that lowered and became more monotonous
during the session caused a significant reduction in EMG levels (electromyography)
which translated into a reduction in muscle tension. At the same time, the subjec-
tive feelings of the subjects confirmed that the way they used, and modulated their
voice in therapy had an impact on their level of relaxation.

Muscle tension, like other vegetative autoregulatory processes (body tempera-
ture, heart rate, blood pressure, intestinal motility, etc.) sweat secretion cannot be
controlled consciously. Since 1972, more than 1,500 articles have been published in
professional publications on GSR (cutaneous-galvanic response) is considered the
most popular method for studying the phenomena of human psychophysiological
phenomena [3]. Although GSR is an ideal measure for tracking emotional arousal,
it is unable to reveal the emotional valence i.e., the quality of the emotion. The
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true power of GSR unfolds when combined with other data sources to measure
complex dependent variables and provide a complete picture of emotional behav-
ior. Often, this test is performed in experiments involving games, or reactions to
images or videos presented [32]. This opens the way to seek quantitative answers
based on skin responses to further questions related to the mode of communication
used in the VR treatment program so that the solution can best serve to reduce
the patient’s stress level and support relaxation, to enhance the healing processes.

In research on voice analysis during discussions of bad news in oncology [18],
the author also states that no study analyzed verbal content, speech analysis, and
other related nonverbal behavior, and notes that this is a desirable research topic.
Most studies focus on listening to music and not the voice itself, these studies show
that relaxation music (e.g. Bach, Vivaldi, Mozart) results in a slowing of the heart
rate [6].

Music can strongly evoke and modulate emotions and mood, as well as changes
in heart function, blood pressure (BP), and respiration. In the various studies on
the effects of music on the heart, there is a wide variety of methods and quality,
but can be established that: heart rate (HR) and respiratory rate (RR) are higher
in response to exciting music compared to calming music [16]. W a study of music
therapy to help treat children with cancer, music reduced pain ratings, heart rate,
respiratory rate, and feelings of anxiety, during lumbar puncture, when children
had headphones with music, they felt less pain and were calmer and relaxed during
and after the procedure. All of these children wanted headphones with music when
they next undergo the procedure [20]. This proves that listening to music already
has its applications during medical therapies. There are not many publications that
talk about listening to the voice itself, but studies show that people already in the
womb can recognize the mother’s voice, which has been observed to reduce the
fetal heart rate [41]. Hypnosis (a recording with a slow breathing command) has
also been shown to reduce heart rate, even in stressful situations such as dental
procedures [6].

Thus, the VR treatment program’s assumption that listening to a calming voice
reduces heart rate appears to be true [23], and the creation of a device to monitor
heart rate and attempt to lower it using a voiceover and guided relaxing trance will
make it possible to study more closely how initially rhythmically spoken words at
the same rate as the initial heartbeat rhythm heart rate affects the heart rate after
the words are slowed down and whether the patient will calm down.

“The real power of understanding lies in not allowing our knowledge to be
fettered by what we do not know.” — stated Ralph Waldo Emerson — which is
why it is important to continue research and see what combinations between the
breath, the voice of the speaker, the rate of speech will bring the best effects thru
VR treatment.

2 Experiment description
The EEG laboratory (Fig. 1) in the Department of Neuroinformatics and

Biomedical Engineering at the Maria Curie-Skłodowska University in Lublin is
equipped with apparatus that allows the precise study of bioelectrical changes oc-
curring in the patient’s brain thanks to an EGI dense matrix amplifier (Electrical
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Figure 1: EEG laboratory in the Department of Neuroinformatics and Biomedical
Engineering at Maria Curie-Sklodowska University in Lublin, Poland

Geodesic Systems, Oregon, USA), to which caps equipped with 256 electrodes (Hy-
droCel GSN 130 Geodesic Sensor Nets) can be connected. The lab offers the ability
to record signals at frequencies up to 1000 Hz (with simultaneous measurements
by all 256 electrodes). The laboratory has a GPS photogrammetric station with
GeoSource software that enables the application of source localization algorithms
and the precise generation of a model of the subject’s brain.

For a trial approach aimed at designing a research protocol to answer the for-
mulated questions formulated by the Ordering Party, a relatively simple test was
proposed involving putting the patient (in this case, the Department Head) into
a state of deep relaxation by a qualified therapist (Katarzyna Zemla, M.Sc, SWPS
doctoral student, Master of Cognitive Behavior BIK ), and then recording the elec-
trical activity of his brain in four main activity bands (alpha, beta, theta, delta) and
measuring his heart rate and hemoglobin saturation throughout the entire study.

Hemoglobin saturation (SpO2) in the blood was measured using a Kermed A310
pulse oximeter. Heart rate was measured using a Xiaomi Mi Band 5. After the test,
the patient was measured at a photogrammetric station. During the main part of
the study, only the patient and the therapist were in the laboratory room, and
twilight prevailed. The lab technicians were present only during the preparation
of the patient and during the geodetic measurements. The study conducted on
December 11, 2020, lasted 30 minutes.
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Figure 2: Percentage of each wave during the experiment

3 Experiment description

The percentage of each band of the electrical activity of the patient’s cerebral
cortex during the test is shown in Fig. 2. Changes in the subject’s heart rate during
the experiment are presented in Fig. 3. A graph of changes in hemoglobin saturation
is shown in Fig. 4.

We can observe an increasing and then relatively high proportion of delta waves
starting from about 870 seconds of the test (see. Fig. 2). This is accompanied by
a relatively high proportion of alpha and theta waves at the beginning of the study
with a low level of beta waves throughout the experiment. Starting at 870 seconds
of the survey, there is a slight decrease in the contribution of alpha and theta waves
as delta activity increases (see. Fig. 2).

The increase in delta activity is accompanied by an increase in pulse rate
(see. Fig. 3) and a slight but observable increase in hemoglobin saturation (SpO2)
(see. Fig. 4).

As is well known, the more than 50% contribution of delta waves to brain
activity is associated with the phase of deep meditation or deep sleep. It can be
presumed that an increase in the patient’s delta brain activity above 60% in the
study was related to the therapist’s attempt to by the therapist to obtain the
phenomenon of dreaming in sleep, which took place at that time. time. On the
other hand, the increase in pulse rate may indicate a correlation between this
phase with the visualizations occurring in the patient’s state at the time of the
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Figure 3: Pulse variations during the experiment

Figure 4: Hemoglobin saturation level (SpO2) during the experiment
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examination. Theta waves at relatively high levels (about 30% on average) confirm
the state of hypnosis into which the patient was put, also a state associated with
shallow sleep; their decrease starting at 870 seconds indicates a rapid transition of
the patient into a state resembling deep sleep.

It is difficult to conclude a single case. However the study pilot study was
intended to show that we have the possibility of reliable quantitative recording of
the electrical activity of the cerebral cortex and combined with a relatively simple
to use and inexpensive apparatus, we can look for correlations of this activity
with pulse rate and blood hemoglobin saturation (SpO2). After connecting the
galvanometer it will be possible to study stress levels changes.

4 Recommendations

4.1 The rationale behind the VR treatment concept
The originators of the project rightly point out that the poor mental state in

which most oncology patients find themselves reduces their quality of life during
and after the various stages of treatment and can delay the processes of treatment
and recovery. Therefore, the goal of the VR treatment program is to improve the
mental state of patients so that they can experience positive emotional states even
if they do not have the exceptional mental strength and are not able to control their
thoughts and negative states. Patients by putting on the goggles and headphones
could create new experiences and build positive beliefs and attitudes toward the
healing and treatment process and reinforces and stabilizes a positive emotional
state. In contrast, the poor mental state in which most oncology patients prolongs
and impedes the treatment and recovery processes, and above all, reduce the quality
of life during treatment. VR solution would allow the solution even if we face
difficulty with access to specialized psycho-oncological help.

Carl Simonton’s therapy, mentioned earlier, is based on activities in the follow-
ing areas: behavior (relaxation, creating new habits), beliefs (changing unhealthy
beliefs to ones that give us peace of mind and energy to act), emotions (maintaining
hope, dealing with emotions that harm us, learning to cope with everyday stressful
situations), spirituality, communication with supportive people (building a support
system, learning healthy communication), and physicality (diet, movement, the role
of play in the recovery process).

The many assumptions not only of selecting the most effective method but also
of how to combine it with technology, which today offers the possibility of creating
virtual worlds, cause many hypotheses and unknowns to arise, which need to be
further investigated and verified. The relaxation module itself, for it to respond
to changes in the patient’s physiological state as well as the therapist must be
designed to respond to his breathing, pulse, or measuring changes in the skin’s
electrical resistance.

When relaxation is led by a therapist, he or she often sees and adjusts the
guidance of the body relaxation and visualization to the patient’s breathing. The
hypnotherapist can see when the patient’s chest is on the inhale and lowers on the
exhale. So the open question remains how to map this alignment when the patient
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puts on the goggles and receives instructions from the VR treatment program in
the most effective way?

4.2 Recommended research
To extend current phase of conducted pilot study it is recommended to proceed

with further steps such as:

• In-depth research on the susceptibility of patients to relaxation intervention
depending on a set of variables obtained from psychological questionnaires:
anxiety, depressiveness, introverted, extroverted personality types which may
determine natural attitude toward diagnosis.

• Conducting experiments to build classifiers capable of suggesting the most
appropriate pace and method of conducting the relaxation intervention.

• Conducting experiments to test the performance of the constructed clarifiers.

This is the initial stage of our project.
Depending on the personal properties and external influence each patient can

have an individual ability to be exposed to relaxation, varying in time and other
conditions.

In future, it will be useful to investigate the pace at which particular subjects
get into a deep state of relaxation. It was only our expectation that they ought to
do this in around 14 minutes. However, each individual can be characterised and
most probably is by his own pace. Plotting their state in the function of time would
be recommended.

Using machine learning classifiers is expected to find application in the classifi-
cation of biomedical signals towards therapy support citedylkag2021pilot, mikola-
jewska2014non. Machine learning tools and algorithms have been used for decades
also for lots of disorders diagnostics like alcoholism or depression [27, 12] and others
[47] using new measures like those defined in [46] as well as advanced modelling of
biological systems behaviour [35] including diagnostics purposes [13, 44, 45].
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Abstract: Coronavirus disease 2019 (COVID-19) has caused everything from daily hassles, relation-
ship issues, and work pressures to health concerns and debilitating phobias. Relaxation techniques
are one example of the many methods used to address stress, and they have been investigated
for decades. In this study, we aimed to check whether there are differences in the brain cortical
activity of participants during relaxation or mental workload tasks, as observed using dense array
electroencephalography, and whether these differences can be modeled and then classified using a
machine learning classifier. In this study, guided imagery as a relaxation technique was used in a
randomized trial design. Two groups of thirty randomly selected participants underwent a guided
imagery session; other randomly selected participants performed a mental task. Participants were
recruited among male computer science students. During the guided imagery session, the electroen-
cephalographic activity of each student’s brain was recorded using a dense array amplifier. This
activity was compared with that of a group of another 30 computer science students who performed
a mental task. Power activity maps were generated for each participant, and examples are presented
and discussed to some extent. These types of maps cannot be easily interpreted by therapists due
to their complexity and the fact that they vary over time. However, the recorded signal can be
classified using general linear models. The classification results as well as a discussion of prospective
applications are presented.

Keywords: guided imagery; relaxation; EEG; GLM

1. Introduction

A handful of relaxation techniques are used to reduce stress, and they have been the
subject of scientific investigation for decades [1–3]. Relaxation techniques can be widely
used for stress reduction in the post-COVID-19 reality and may become one of the most
often used psychological or pharmacological therapies. Although the COVID-19 pandemic
has been associated with physical conditions, social, psychological, and economic conse-
quences are also being observed globally; changes to normal life may lead people to suffer
from a higher degree of mental health problems, including fear of infection, uncertainty,
stress, anxiety disorders, sleep problems, mood disorders, and suicidal ideation [4–6].

Many methods, including relaxation training [7–9], biofeedback [9], hypnosis [10,11],
and various forms of yoga meditation [12,13], have been successfully used to reduce
tension and anxiety. Guided imagery is one of the world’s oldest healing resources [14].
Interest in the practice of mental imagery and the role of imagination in health and well-
being has dramatically increased, as mental imagery has become a popular approach
for treating a wide variety of psychiatric and medical concerns and for enhancing sports
performance [15]. In medical and scientific research, guided imagery has been defined
by some researchers “as the internal experience of a perceptual event in the absence of
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the actual external stimuli”, where imagery refers to the awareness of sensory (physical)
and perceptual (cognitive) experiences [16]. Some guided imagery is also referred to
as guided visualization [17,18]. Guided imagery (GI) is a cognitive, behavioral, mind–
body, evidence-based technique that is employed to manage pain, including cancer pain,
which affects and/or modifies the psychophysiological state of patients [19]. GI affects a
variety of systems, including the respiratory, cardiovascular, metabolic, and gastrointestinal
systems, and immune responsiveness. Psychoneuroendocrinoimmunology (PNEI) research
has demonstrated that the psychological response to GI can modulate the activity of the
hypothalamic–pituitary–adrenal axis, reducing the stress response and increasing the
feeling of well-being. Central and immune nervous system modulation through the release
of enkephalins, endorphins, cholecystokinin, and cortisol may be among the mechanisms
mediating these effects [20].

Meditation practices are associated with enhanced executive function and working
memory together with improvements in mental health condition severity (e.g., anxiety,
depression, and eating disorders [21–25]. Hudetz’s finding is that relaxation from 16 min of
guided imagery significantly increased post-test working memory performance in healthy
volunteers, and this improvement paralleled a significant reduction in the state–anxiety
scores as a result of relaxation training and EEG activity [26].

No findings other than Hudetz’s on guided imagery and brainwave activity have been
published, even though this is one of the oldest relaxation techniques, and many studies
have proven its positive impact during life-threatening disease treatment [27,28]. This
research is novel in this field as our main objective was to revise if quantitative modeling
can predict if and when participants enter a relaxation state, meaning alpha power increases
and beta power decreases, when exposed to guided imagery. Our original prediction
was that the pattern of brainwave activity reverses in comparison with that reported the
existing research on brainwave activity during stress response regulation [29,30]. Changes
in the EEG brainwave activity, specifically alpha power (8–13 Hz), are thought to decrease
because of the association of alpha power with relaxation, with an inverse relationship with
cognitive activity [31], whereas beta power (13–30 Hz) is thought to increase in response to
stress [32] due to its association with information processing and anxiety [33]. A number of
studies have confirmed this hypothesis: oscillatory changes in frontal alpha (decrease) and
beta (increase) power during or after applying stressors such as exam stress [34] and during
cognitive stressors such as the Stroop task [35]. In contrast, studies on relaxation techniques
such as meditation techniques have noted increased alpha power with the use of these
techniques [36–39]), which has been linked to improved cognitive performance [40,41].

In this research, we aimed to check if guided imagery (in comparison with a mental
workload task) could produce the predicted and observed changes in brainwave activities
(mainly an increase in alpha power and, to some extent, a reduction in beta power) as
observed using dense array electroencephalography, and whether such differences could
be modeled and then classified using a machine learning classifier. This study is innovative
because such pattern was found using a guided meditation technique but not (with the
exception of [42]) applying the relaxing technique of guided imagery.

With technological advances, new tools can provide computer-generated audio–visual
displays and produce immersion in digital 3D environments. The literature in this field is
expanding. In a study [43], the authors verified whether a VR-guided meditation experience
for patients with cancer would produce significant changes in EEG waveforms and whether
any changes would occur in the pain experienced during VR-guided mediation. This study
demonstrated the feasibility of using EEG recordings in exploring neurophysiological
changes in brain activity during VR-guided meditation and its effect on pain reduction.
Such modern brain imaging techniques are valuable as they provide data for the verifi-
cation of the computational models focusing on understanding the relationship between
cognition and the brain [44]. Eduardo Perez-Valero created a stress level classification
via electroencephalography (EEG) and machine learning on twenty-three volunteers [45].
Participants were subjected to stressful interactions alternating with phases where they
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were able to relax. After quantitative assessment of the stress level through individual-
ized regression algorithms, the researchers developed stress classifiers that indicated that
regression models could quantitatively predict stress levels with noteworthy performance.

In this study, we wanted to verify whether obtaining such quantitative prediction but
on relaxation level is possible. Therefore, the two main objectives of the study were: to
record and visualize the brain cortical activity of subcohorts exposed to guided imagery
relaxation and mental tasks and to train a general linearized model (GLM) classifier to
classify the recorded signal into one of the two classes: relaxation or mental workload.
Such a classifier might allow high-probability identification of when a patient is in a state
of relaxation, which will provide the opportunity to create computer-based devices that
can help with anxiety and stress reduction.

For this study, 60 computer science students at Maria Curie-Sklodowska University in
Lublin, were recruited for a randomized trial. Half of the randomly selected students were
exposed to relaxation, as recorded by an experienced trainee in guided imagery, whereas
the remaining students solved mental tasks.

In this paper, we show that it is possible to build a general linear model that can
be used to accurately distinguish the state of a participant’s brain. Although the GLM is
a commonly known classifier, its application to EEG signal analysis is uncommon. The
novelty of this study is the evidence of the possibility of classifying two mental states using
EEG signal classification and a GLM, which, in the future, may lead to the construction of
new therapy-oriented brain–computer interfaces.

2. Materials and Methods
2.1. Cohort Recruitment

We recruited 60 participants from among computer science students at Maria Curie-
Sklodowska University in Lublin.

They were 60 right-handed men aged from 17 to 24 years; the average age was 20.38
with a standard deviation of 1.52.

The experimental cohort consisted of two subcohorts:

• A: 30 subjects who were exposed to relaxation.
• B: 30 subjects who were asked to perform a mental task.

2.2. Inclusion and Exclusion Criteria

To ensure the repeatability of the study, we defined the inclusion and exclusion criteria
as follows.

2.2.1. Inclusion Criteria

The age of participants should be in the range of 17–24, as this was the typical age
of the computer science students at the university where the experiment was conducted.
They should be short-haired, right-handed men, because long hair hinders the recording of
signals without noise. The number of women studying computer science was still low, so
building a balanced cohort including an equal number of left-handed and right-handed
men and women for the experiment would have been difficult. In addition, most of the
women studying computer science had long hair. Notably, differences have been reported
in electroencephalograms between men and women [46,47], and we wanted to have a
relatively equal cohort response.

We also assumed that, due to lateralization, handedness may play a significant role in
classification. All students selected for the cohort were white men of Polish nationality or
citizenship, fluently speaking Polish.

Another inclusion criterion was being healthy; not using prescribed medication, soft
drugs, or hard drugs; with no medical treatment history in the one year following the
study; and with no chronic diseases, including chronic fatigue syndrome, cancer, or any
other diseases or mental disorders. Participants had to have the ability to attend study
appointments with no technological requirements.
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The participants were nonsmokers and asked not to consume alcohol or any medica-
tions at least 72 h before participation in the experiment.

2.2.2. Exclusion Criteria

Mean younger than 17 or older than 24 years, left-handed, or with long-hair and
all women were automatically excluded from the cohort recruitment process due to the
reasons explained above.

Participants that did not fluently speak the Polish language were excluded from the
cohort because the GI session was recorded in Polish and mental tasks were formulated
in Polish. To replicate the study, we suggest choosing the same language for GI sessions,
mental tasks, and cohort members.

Candidates even nonseriously ill (flew, cold, running nose, etc.) were excluded from
the cohort recruitment process.

Candidates taking prescribed medications, soft drugs, or hard drugs were excluded
from the cohort recruitment process.

Candidates with a medical treatment history in one year following the study or with
chronic diseases, including chronic fatigue syndrome, cancer, or any other diseases or
mental disorders diagnosed were excluded from the cohort recruitment process.

Candidates who could not attend study appointments could not be included in the cohort.

2.3. Information for Participants

Before participating in the study, participants received information about EEG re-
search and technology and their role in the project. Then, they signed the agreement
for participation.

They also filled and signed the declaration fulfilling the requirements of inclusion and
exclusion criteria in an attempt to determine that none of our participants suffered from
chronic diseases. The participants were asked to declare serious diseases such as chronic
fatigue syndrome, cancer, and all other chronic diseases, including mental disorders. If
they declared so, they were automatically excluded from the cohort.

2.4. EEG Recordings

All EEG recordings were obtained using a 256-channel dense-array EEG amplifier with
a HydroCel GSN (geodesic sensor net) 130 manufactured by Electrical Geodesic Systems
(EGI) (500 East 4th Ave. Suite 100, Eugene, OR 97401, USA), and the sampling frequency
was 250 Hz. The amplifier worked with Net Station 4.5.4 and SmartEye 5.9.7 software
for gaze calibration and eye-blinking or saccadic artifact removal. The laboratory was
also equipped with a geodesic photogrammetry system (GPS), which was operated using
Net Local 1.00.00 and GeoSource 2.0. The event-related potential (ERP) experiments were
designed in PST e-Prime 2.0.8.90.

2.5. Deep State of Relaxation

During relaxation, each participant sat in a comfortable armchair with earphones on
his head, and the relaxation procedure was played through the earphones from the record.
The record was prepared by a trained expert, which is the typical method used in guided
imagery (GI) [48–50]. Guided imagery is a relaxation technique that involves dwelling on a
positive mental image or scene. The length of the record was 21 min and 7 s; however, for
this research, the first 21 min were taken into consideration. It was assumed that sooner or
later, each member of this subcohort would be relaxed enough to manifest brain cortical
activity that could be classified.

2.6. Mental Task

During the mental task, participants were asked to recall facts from memory as much
as possible. These facts included the capitals of European countries, zodiac signs, and the
states of the United States of America. The participants were told that they would be asked
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to write these answers down after the experiment and that their reward was dependent on
the results. We assumed that such a task would require some mental effort, leading to a
high level of mental workload.

2.7. Preprocessing Pipeline

The collected signal was preprocessed using the following procedures and parameters
set on Net Station software: filtration with 1 Hz high-pass and 45 Hz low-pass filters. Then,
the standards for Net Station interpolation and noisy channel removing algorithms were
applied as well as automatic and, in some cases, manual artifact removal. Then, the signal
was divided into 1 s epochs, and noisy epochs were removed in Net Station using the
AutoReject toolbox. See Figure 1.

Figure 1. Data analysis pipeline for the experiments. For details, see the text.

3. Results

Examples of 3-min time interval plots are presented in Figure 2 for a selected student
in subcohort A, who experienced GI relaxation, and in Figure 3 for a student in subcohort B,
who performed the mental workload task. These maps, however, are too similar and cannot
be easily interpreted using the naked eye. For example, in Figure 2 (state of relaxation), we
can see increased activity in the β band, and in Figure 3, considerably α-band activity can
be observed. However, Figures 2 and 3 present particular student cases and a specific 3-min
time interval from a 21 min recording of brain cortical activity. As expected, plots such as
those in Figures 2 and 3 change over time, and quickly analyzing them would be difficult.
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Nevertheless, differences in activity are visible, even though they are not easily interpretable.
An appropriately trained machine learning classifier can be used for this task.

Figure 2. Power activity in the δ, θ, α, and β bands for participant s299392 exposed to guided imagery.
Each row, one-by-one, represents a 3-min slot, for 21-min in total. For details, see the text.

Machine Learning Data Analysis

The signal was classified using generalized linear models (GLMs) using the imple-
mentation included in the h2o library available for Python. Model tests based on different
time windows were conducted in Python version 3.7.5.

The quality of the classification was tested for the same time intervals in the two
data groups.

Group A: Signals with less than 10% erroneous epochs; Group B: all signals included
in the dataset (60 signals). According to the documentation of the h2o library, using
generalized linear models, balanced data were not required.

In the case of Group B, the signals removed due in noisy epochs were interpolated by
the library mentioned above.
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Figure 3. Power activity in the δ, θ, α, and β bands for participant s303840 exposed to mental task.
Each row, one-by-one, represents a 3-min slot, for 21-min in total. For details, see the text.

The training and validating sets were divided into proportions of 80% and 20%,
respectively.

Table 1 shows the results of the GLM classifier for Group A. The 3 s long time intervals
were investigated around the 5th, 10th, 13th, 14th, and 15th minutes. The choice of these
probing times was arbitrary based on the experience of the GI relaxation therapist.

The results of the GLM classifier for Group B are shown in Table 2, where a 60 s time
interval was chosen because we suspected that the signals were of worse quality in this
group. The probing was investigated around the 5th, 10th, 13th, 14th, and 15th minutes
and the following 1 min after each probe.

Table 3 shows the results of the GLM classifier for Group B, and the whole 20-min
signal recordings were classified without any signal probing.

In Figure 4, the ROC curve for the GLM applied to Group B using the full-length
20-min signal recordings is presented. The set of statistical characteristics for this case are
presented as follows: For the training set: MSE: 0.0634, RMSE: 0.2518, LogLoss: 0.2021,



Appl. Sci. 2023, 13, 4472 8 of 13

AUC: 0.9748, AUCPR: 0.9834; For validation set: MSE: 0.05227, RMSE: 0.2286, LogLoss:
0.1676, AUC: 0.9823, and AUCPR: 0.9877.

Table 1. GLM classifier results for Group A: all signals and 3 s time intervals.

Group dT (s) ACC
Train F1 Train AUC

Train
ACC
Valid F1 Valid AUC

Valid

A 299–301 0.6559 0.7165 0.7255 0.6252 0.7027 0.6808

A 599–601 0.6578 0.7156 0.7291 0.6401 0.7051 0.7006

A 779–781 0.6853 0.7326 0.7672 0.6693 0.7279 0.7451

A 839–841 0.6842 0.7336 0.7663 0.6629 0.7221 0.7355

A 899–901 0.6660 0.7177 0.7441 0.6506 0.7167 0.7252

Table 2. GLM classifier results for Group B: all signals and 60 s time intervals.

Group dT (s) ACC
Train F1 Train AUC

Train
ACC
Valid F1 Valid AUC

Valid

B 299–359 0.7785 0.8337 0.8620 0.7804 0.8360 0.8602

B 599–659 0.7884 0.8407 0.8678 0.7955 0.8478 0.8727

B 779–839 0.8097 0.8532 0.8926 0.8113 0.8578 0.8929

B 839–899 0.7830 0.8367 0.8628 0.7827 0.8409 0.8631

B 899–959 0.7812 0.8345 0.8634 0.7839 0.8410 0.8625

Table 3. GLM classifier results for Group B: all signals and full signal length.

Group dT (s) ACC
Train F1 Train AUC

Train
ACC
Valid F1 Valid AUC

Valid

B 1–1200 0.9258 0.9370 0.9822 0.9077 0.9238 0.9748

Figure 4. The ROC curve for the results presented in Table 3.

Table 1 shows that the best results, with approximately 68% accuracy, were achieved
near the 13th and 14th minutes using the GLM classifier. A 3 s time interval was sufficient
for analyzing and estimating the state of the brain during the time in which it was recorded.

Figures 5 and 6 show topographical maps of participants from Figures 2 and 3 for five
frequency bands of the time window where the classifier was performing best.
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delta power theta power alpha power beta power gamma power

Guided Imagery subject, time: 779 - 839 (s)

Figure 5. Power activity in the δ, θ, α, and β bands for participant s299392 exposed to guided imagery.

delta power theta power alpha power beta power gamma power

Mental Task subject, time: 779 - 839 (s)

Figure 6. Power activity in the δ, θ, α, and β bands for participant s303840 exposed to the mental task.

4. Discussion
4.1. Signal Classification

According to our experience and expectations, most of the patients were sufficiently
relaxed in the 14th minute. The best results of the classifier at this time confirmed our
expectations, to some extent. To examine the hypotheses about the substantial increase
in alpha power and decrease in beta (to some extent) power in the estimated phase of
deepest relaxation, we carried out the two one-way ANOVAs comparing the individual
scores in brainwaves between group conditions (guided imagery or mental task) during
the time phase of 14 min. We found predicted, significant effect of group (F (1, 53) = 4.01,
p = 0.05, p2 = 0.070), indicating that the alpha power in the guided imagery group (M = 0.24,
SD = 0.14) was significantly higher than that in the mental task group (M = 0.17, SD = 0.12).
However, we found no significant effect of group for beta power scores (F (1, 53) = 0.53,
p = 0.47, p2 = 0.010), and beta power in the guided imagery group (M = 0.08, SD = 0.03) was
very similar to that in the mental task group (M = 0.07, SD = 0.03). However, only the best
signal (with less than 10% excluded epochs) was considered. Table 1 presents the GLM
results obtained for both the training set and validation set, and the values of the obtained
parameters confirmed the classifier’s high level of stability in the considered time range.

As an accuracy of 68% was achieved by the classifier when using a 3 s time interval,
we wondered if inputting more signal would increase the efficiency. The answer to this was
yes, and in Table 2, the results with respect to classifier efficiency for 1-min-long intervals
of time are shown. After 13 min, the efficiency of the GLM increased to 78%, which is a
satisfactory result, especially because, in this case, we took all the signals recorded instead
of the best ones. Notably, poor epochs were interpolated by the software and used for
analysis, as described in the Methods section. Similarly, Table 2 presents the GLM results
obtained on both the training and validation sets, and the values of the obtained parameters
indicate the classifier’s high level of stability in the discussed time range.

Table 3 presents the results obtained for the GLM classifier for all collected signals in
the whole 20-min-long time range. An accuracy of approximately 92% with a similar F1
score proved its high efficiency for the whole collection of data, both on the training and
validation sets. Th ROC curve presented in Figure 4 confirms its stability.

The software libraries discussed in the Methods section provided us with overtraining
and data leakage incidents.
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The aim of this study was to check whether machine learning can be used to classify
the state of the participant’s brain and distinguish engaging in deep GI relaxation from
performing a mental task. The results presented herein confirm this possibility.

The other conclusion that can be derived from this study is that the more signal (or
the longer signal) the classifier obtains, the higher the accuracy.

4.2. Future Research

This study is part of the initial stage of our project.
Depending on personal characteristics and external influence, each patient has their

own ability to enter into relaxation, which varies with respect to time and other conditions.
In the future, the pace at which particular subjects enter a deep state of relaxation.

should be investigated. We expected that this could be achieved in approximately 14 min.
However, each individual can be characterized by their own pace. Plotting the state as a
function of time would be recommended.

The use of machine learning classifiers is expected to be applied in the classification of
biomedical signals at therapy support sites [51,52]. Machine learning tools and algorithms
have also been used for decades for the diagnosis of many disorders, such as alcoholism or
depression [53,54], among others [55], using new measures such as those defined in [56],
as well as advanced modeling of biological system behavior [57–60], including diagnostic
purposes [61–63].

Our findings are useful for the construction of brain–computer interfaces (BCIs) that
have been known for half a century [64,65] and can support therapists in running GI
relaxation sessions. In the next step, we can imagine AI-trained robotic therapists that are
able to instantaneously treat their patients at an appropriate pace based on EEG recordings
and classifiers applied. Although BCIs have been known for such a long time, some ethical
dilemmas may arise when using them [66], especially with children [67]. Thus, another
interesting aspect is the investigation of the characteristics of the deep state of relaxation
inclination as a function of psychological personality predictors.

In the future, patients provided with simple EEG equipment will be able to use it
during relaxation to support a trainee during brain monitoring. This type of approach
could increase the effectiveness of therapy, and the study presented here can be the first
step toward achieving this goal.

Another aspect leading to the possible application of this finding, especially when
considering therapist support, is the design of tools that can be used to instantaneously
process the collected data. Although the use of 256 electrodes can be too power-consuming,
in practical applications, fewer electrodes may be sufficient. The data analysis pipeline
may also consist of an Apache Spark Streaming-based engine, such as in [68], which, due
to in-memory processing and the Python interface, seems to be a suitable candidate for
pipeline implementation.

This will, however, require the analysis of several additional tests. After meditation vs.
control manipulation, we examined the effectiveness of attentional processes (accuracy and
reaction time) using three classical tests: the antisaccade test, Stroop test, and go/no-go test.
They did not affect the EEG recordings, but their analysis was not the goal of this study.
This type of approach will broaden our knowledge concerning relaxation interventions and
will be reported in future papers.

Author Contributions: K.Z.: meaningful participation in the key phases of research and publication
process, research project conceptualization, verification of results and analysis, manuscript writing,
responses to reviewers, literature review, and implementing guided imagery relaxation technique;
G.M.W.: head of the project, experiment idea and coordination, data science pipeline design, and
manuscript writing; K.W.: EEG recordings, work in the laboratory, and data analysis; F.P.: EEG
recordings, work in the laboratory, and data analysis; A.K.: classifier construction advise and
evaluation; G.S.: research idea, selection of participants to the cohort, and statistical analysis. All
authors have read and agreed to the published version of the manuscript.



Appl. Sci. 2023, 13, 4472 11 of 13

Funding: Research presented herein was supported by the City of Lublin as a part of cooperation of
Lublin City Hall and Maria Curie-Sklodowska Univeristy towards pilot study for VRMed project.

Informed Consent Statement: The studies involving human participants were reviewed and ap-
proved by the Maria Curie-Sklodowska University Bioethical Commission (MCSU Bioethical Com-
mission permission 9 July 2021). The patients/participants provided their written informed consent
to participate in this study. Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The raw data supporting the conclusions of this manuscript will be
made available by the authors without undue reservation to any qualified researcher.

Acknowledgments: The authors would like to thank Ewa Lewandowska and Marek Rudziński of
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Abstract: The aim of this study was to investigate the potential impact of guided imagery (GI)
on attentional control and cognitive performance and to explore the relationship between guided
imagery, stress reduction, alpha brainwave activity, and attentional control using common cog-
nitive performance tests. Executive function was assessed through the use of attentional control
tests, including the anti-saccade, Stroop, and Go/No-go tasks. Participants underwent a guided
imagery session while their brainwave activity was measured, followed by attentional control tests.
The study’s outcomes provide fresh insights into the influence of guided imagery on brain wave
activity, particularly in terms of attentional control. The findings suggest that guided imagery has the
potential to enhance attentional control by augmenting the alpha power and reducing stress levels.
Given the limited existing research on the specific impact of guided imagery on attention control, the
study’s findings carry notable significance.

Keywords: guided imagery; relaxation; stress reduction; cognitive performance; EEG; GLM

1. Exploring the Impact of Relaxation Techniques on Brain Wave Activity and
Attentional Performance: A Review of Relevant Research

Improving attention and executive functions is of great importance in our current
world due to the complex and demanding nature of daily tasks and the challenges posed
by our modern reality. Scientific research has shown that attention and executive functions
play crucial roles in various aspects of cognitive processing and goal-directed behavior [1].
Attention is the cognitive process that allows us to selectively focus on relevant information
while filtering out irrelevant stimuli [2]. It is essential for tasks that require concentration,
information processing, and decision making. In our information-rich environment, where
we are constantly bombarded with stimuli and distractions, the ability to maintain focused
attention is vital for productivity and task performance. Scientific studies have consistently
demonstrated the positive impact of enhanced attention and executive function on various
aspects of individuals’ lives [3]. Improved attentional control and executive function have
been associated with a better academic performance [4–6] and job performance [7] and
professional success. Additionally, they contribute to effective decision making, problem
solving, and conflict resolution. Hence, improving attention and executive functions is
vital in our current world, given the cognitive demands and challenges we face, ultimately
benefiting individuals and society as a whole in wide range of EEG experiments designed
to quantitatively measure cognitive functions like those in [8]. In recent years, there has
been a growing interest in studying the effects of meditation and relaxation techniques
on attentional control processes. Tang [9] conducted a study that demonstrated how
just five days of mindfulness meditation training improved attentional control in healthy
young adults. Similarly, Zeidan [10] found that brief mindfulness meditation training
improved executive attentional control abilities and reduced anxiety. Furthermore, Ruedy
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and Schweitzer [11] found that a brief period of relaxation exercises enhanced participants’
ability to resist distractions and maintain focus on a cognitive task. Several reviews
have also analyzed the impact of meditation on cognitive functions, including attention,
memory, and executive control. For instance, Chiesa and Serretti [12] examined the effects
of mindfulness meditation on attentional control and found that it led to improvements
in both selective and sustained attention. Many studies in cognitive psychology and
neuroscience have explored the positive impact of mindfulness and meditation training on
cognitive functions. These studies have utilized a wide range of tasks to assess measures of
response accuracy, response time, and associated electrophysiological and neuroimaging
patterns, highlighting the positive impact of mindfulness and meditation on cognitive
performance [9,13–17].

Despite being recognized as a healing resource for centuries [18], the potential impact
of guided imagery (GI) on cognitive performance remains largely unexplored. In recent
years, there has been increased interest in the role of GI in health and well-being [19].
GI has also been found to be effective in enhancing sports performance [20]. In the late
1970s, health professionals reported using imagery for altering the course of life-threatening
diseases [21,22]. Studies have shown that GI can reduce psychological stress and smok-
ing behaviors among smokers and ex-smokers [23], and can facilitate improved health
behaviors and reduce psychological distress in the workplace [23]. GI involves external
instructional guidance to allow the internal generation of images [24], and it is defined as
the mental process that employs the senses of sight, hearing, smell, and taste. Sensations of
motion, position, and contact are experienced by GI practitioners [25]. GI has wide-ranging
relevance and applicability, and is effective in reducing test anxiety [26], coping with
stress [27–35], and improving problem-solving abilities [36].

Given the evidence of both anxiety reductions and immune system enhancements,
GI has not been studied during brain behavior and brainwave changes while patients are
conducting GI sessions. However, the ever-growing neuroscience literature relating to
the phenomena of mindfulness sessions is trying to incorporate EEG quantitative mea-
surements to describe brain wave changes during mindfulness sessions [37]. For example,
in the research led by Peta Stapleton, the brainwave data of a group of 468 meditation
novices with limited previous exposure to forms of guided meditation were recorded, and
researchers observed a global increase of 16% (95% HDI = [0.13, 0.19]) in alpha power due
to meditation [38]. A range of mindfulness-based techniques has been created to reduce
stress and enhance the quality of life [39]. Meditation is a complex conscious cognitive
process requiring concentration and receptive attention [9,40]. Meditation practices are also
associated with enhanced executive function and working memory [41–45]. However, little
research has provided an electrophysiological examination of the meditative experience in
people with limited meditation experience, particularly from a GI perspective. However, it
is known that alpha activity in EEG signals during meditation is a form of brain integration
that leads to higher-level cognitive processes [46]. Researchers hypothesized that the transi-
tion from beta brainwaves (high, medium, and low range) to alpha brainwaves could take
place relatively quickly [38]. This result is consistent with the findings of a study in which
participants achieved proficiency in the attentional training aspect of meditation practice
relatively swiftly [47]. An increase in alpha wave levels indicates that the participants are
in a relaxed mood or their mood is enhanced [48]. Under stress, the alpha brain waves
tend to decrease, which can indicate a state of heightened arousal and anxiety. The alpha
frequency is also positively correlated with the speed of processing information [49]. On
the other hand, the beta wave power indicates that humans are in an alert condition [50].
An increased beta activity can interfere with the ability to relax and can make it difficult to
focus attention on a single task. Research has shown that stress can interfere with attention
control by reducing our ability to filter out distractions and interfering with our ability
to shift our focus from one task to another [51]. Zoefel proved [52] that an increase in
EEG alpha wave activity is linked to an improvement in cognitive performance. Cognitive
control (CC) and executive function (EF) are defined in relation to goal-directed behavior
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versus habits and controlled versus autonomic processing, as well as the functions of the
prefrontal cortex (PFC) and associated regions and networks [53]. Executive functions (EFs)
consist of a family of three, interrelated core skills: (1) inhibition or active suppression
of stimuli and automatic responses that are irrelevant to the task at hand, (2) updating
and monitoring of information in the working memory to include only the most relevant
material, and (3) shifting or switching attention between multiple mental representations
or operations [54].

Anti-saccade, Stroop, and Go/no-go tasks are three commonly used tests to assess
executive function, which refers to a set of cognitive processes involved in goal-directed
behaviors [55]. These tasks have been extensively studied and validated, allowing for
meaningful comparisons across different studies and populations [56]. Although all three
tests are measures of executive function, they differ in their specific cognitive demands
and the underlying processes they assess. Anti-saccade tasks assess inhibitory control and
attentional control [54,57], Stroop tasks assess selective attention and inhibition of irrelevant
information, and Go/No-go tasks assess response inhibition and working memory [58].
It was proven that acute psychosocial stress may affect executive action control in a Go/No-
go task [51].

No research was found on attentional tasks after GI sessions. However, it is known
that other relaxation techniques such as meditation can reduce interference during the
Stroop task [59], and meditators have better attentional performance in the Stroop task
compared with a meditation-naïve control group [60]. High proficiency in this task indi-
cates good attentional control and relatively low automaticity or impulsivity of one’s
responses [13]. The study titled “Mindfulness-of-breathing exercise and its effect on
EEG alpha activity during cognitive performance in an attentional Stroop task” inves-
tigates the relationship between a mindfulness-of-breathing exercise and EEG alpha ac-
tivity during cognitive performance, specifically in the context of an attentional Stroop
task [61]. The study results showed a significant increase in alpha power during the inter-
vention among the mindfulness-of-breathing exercise group compared to the control group.
The mindfulness-of-breathing exercise group also demonstrated a trend toward enhanced
performance in the Stroop attentional blink task after the intervention. The authors sug-
gest that the increased alpha power may potentially facilitate cognitive performance [61].
Another study “Short Term Integrative Meditation Improves Resting Alpha Activity and
Stroop Performance” [62] provides evidence that a short-term integrative meditation pro-
gram can improve the resting alpha activity and cognitive performance in the Stroop
task. Another commonly used measure of cognitive inhibition is the anti-saccade (AS)
task, which requires suppression of a visually guided saccade toward a target and the
generation of voluntary saccades in the opposite direction. In was concluded in [57,63]
that more accurate and more consistent AS performances were present in meditators in
comparison to the non-meditators group. Go/No-go tasks can provide objective evidence
of attention lapses in the form of target omission errors and response time variability.
In [64], the authors reported that mindfulness is related to errors on Go/No-go tasks with
high self-reported mindfulness scores are related to more accurate responses [60,65–68].
Inhibition, shifting, and updating are core abilities that support a mindful state and are
facilitated via regular meditation [69]. For example, inhibition of unrelated mental repre-
sentations and reactions is required to maintain a mindful state, with inhibitory control
increasing once a mindful state is achieved via implicational intentions (e.g., if the mind is
wandering, then disengage and refocus attention). Shifting is necessary to mentally clear
distractions and unrelated representations back to the present-moment experience. Finally,
updating the working memory is required to continually stay focused on an ever-changing
present moment [70].

However, there is no research on GI and its impact on the results of attention tests.
Only [71,72] verified and proved that relaxation induced by GI significantly enhanced work-
ing memory performance, but there is no other research on the topic that this
research investigates.
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2. The Potential Benefits of Guided Imagery for Executive Function and Attentional
Control and Research Hypotheses

Guided imagery offers a distinct experiential approach to mindfulness and men-
tal well-being. Although meditation primarily focuses on cultivating present-moment
awareness and detachment from thoughts, guided imagery involves actively engaging the
imagination to create vivid sensory experiences. This approach can be particularly helpful
for individuals who find it challenging to quieten the mind or those who benefit from more
structured practices. A further exploration of guided imagery is interesting as it broadens
our understanding of mindfulness, offers customization, and provides a complementary
practice to enhance mental health.

Overall, mindful meditation and GI practices can be effective for improving attention
control and cognitive performance; however, the specific benefits and mechanisms of action
differ depending on the practice. Mindfulness meditation develops greater awareness
and control over the mind [73] and GI promotes positive emotions and reduces stress
and anxiety, whereas anxiety impairs the cognitive performance by increasing cognitive
interference [74]. Effective stress management strategies, such as relaxation techniques, may
be helpful in mitigating the negative effects of stress on attention and cognitive functions.
Attentional control theory posits that for goal-directed behavior to occur, attentional control
is necessary, involving inhibiting competing demands to concentrate on the current task
and being able to switch or shift attention as necessary [75]. Attentional control theory
specifies that deficits in these aspects of attentional control are central to the development
and maintenance of anxiety [75]. In support of this assumption, a recent meta-analysis
of 58 studies testing the association between measures of attentional control and anxiety
found that participants with high anxiety showed a deficit in attentional control compared
to participants with low anxiety [76].

The main research hypothesis of this study was that a short-term GI session would
reduce stress levels in healthy male participants without prior experience with such sessions
or a history of chronic medical conditions. To test this hypothesis, 30 participants were
randomly selected to undergo a GI session, and the effectiveness of the session in reducing
stress was assessed through monitoring beta power reductions and alpha state increases
using EEG data recordings and self-reported questionnaires.

In addition to evaluating the effectiveness of the GI session, this study aimed to
investigate whether the results of attentional tasks (Stroop, Go/No-go, and anti-saccades
tests) could differentiate between the group of participants who underwent the GI session
and another group of 30 randomly selected male participants who completed a mental
task. Specifically, the number of errors made on these tasks between the two groups
was compared.

Furthermore, the study hypothesized that changes in alpha power might mediate the
relationship between the utilization of GI and the decrease in errors on the Stroop and
anti-saccade tests. To test this hypothesis, a mediation analysis was conducted to explore
the possible relationship between these variables.

3. Materials and Methods
3.1. Materials

Before the experiment, the participants were required to sign a consent form con-
firming their willingness to participate. The participants were also required to fill in their
personal information and answer several questionnaires as outlined below:

1. Scales of Helplessness and Anxiety of Contracting an Infectious Disease by Ry-
dzewska, K. and Sędek, G. 2020 unpublished research materials from SWPS University
of Social Sciences and Humanities. These measures were used to indicate the potential
role of high levels of maladaptive emotions in impeding rational decision making
during the pandemic.

2. The State-Trait Anxiety Inventory (STAI) is a self-reporting questionnaire designed
to measure anxiety in adults. The STAI questionnaire is often used in medical and
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research settings to help identify people who may need treatment for anxiety [77].
It can also help to measure the effectiveness of treatments designed to reduce anxiety.

3. Following both the GI and mental task sessions, participants underwent attentional
tests to test the hypothesis that GI can enhance attentional control.
The anti-saccade test—attention control was designed according to the recommenda-
tions of the Antoniades protocol. In prosaccade trials, the object appears at the location
of the cue, so the discrimination of stimuli is relatively easy. The primary indicator in
this task is the average percentage of correct responses for the anti-saccade blocks.
The numerical Stroop Test is a variation of the classic Stroop test that uses numbers
instead of words. The test is designed to create interference between the automatic
response of reading the digits and the task of counting them, which requires more cog-
nitive effort. The test measures the ability to suppress automatic responses (response
inhibition) and focus attention on the task at hand [78].
The main indicator in this test is the average percentage of correct answers.
Go/no-go tasks require participants to respond to one type of stimulus (the “go”
stimulus) but inhibit their response to another type of stimulus (the “no-go” stimulus).
This task assesses the ability to inhibit automatic responses and cognitive flexibility,
as well as response inhibition and working memory [58]. The tasks in the main block
were arranged in a pseudorandomized order while following the rule that No-go
trials were preceded by two or five Go trials. The main block of trials was preceded by
ten practice trials, consisting of two No-go and eight Go trials. As a primary measure
of Go/No-go task performance, the attention control was the percentage of correct
responses to Go trials after No-go trials.

4. Furthermore, both prior to and following the GI and mental task sessions, the study
participants were given questionnaires developed by the research team.
These questionnaires encompassed various measures, including participants’ self-
reported levels of stress and relaxation on a 10-point scale, and enabled the iden-
tification of emotions experienced by the participants before and after the GI and
mental tasks.

The experimental group underwent a recorded GI session, in which participants
were provided with a series of instructions to visualize a calming and peaceful scenario.
The session began with simple breathing exercises and progressive muscle relaxation
techniques. The mental task group listened to a pre-recorded session consisting of mental
tasks that involved recalling the names of voivodeships in Poland, zodiac signs, and other
similar tasks. The inclusion of a mental task in the second group, rather than a resting
state condition, was designed to simulate the experience of stress. Stress is known to elicit
negative thoughts and worry, leading to cognitive rumination [79]. This repetitive thinking
about stressors, problems, or potential threats can be mentally exhausting and hinders the
ability to achieve a state of relaxation. The cognitive load associated with stress-related
thoughts keeps the mind engaged, making it difficult to enter a restful state. Therefore,
the use of a mental task was aimed to replicate the cognitive demands and stress-related
cognitive processes often experienced in real-life stressful situations.

Both experimental groups, including the guided imagery group and the mental task
group, were subjected to identical conditions, which involved listening to pre-recorded
instructions for the same duration. Furthermore, each experimental session was supervised
by two trained technicians who diligently attended to technical aspects, ensuring proper
electrode placement and functioning, including the playback of the recordings.

To determine whether participants in the guided imagery and mental task group
were actively engaged in the experiment and not sleeping, researchers employed several
strategies to minimize the likelihood of participants falling asleep during the session sum-
marized in the following. Monitoring: Researchers were present during the session and
monitored participants during the guided imagery session and mental task session. This
allowed to visually confirm whether participants remained awake and actively participated
throughout the session. Instructions: Clear instructions were provided to participants
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before the guided imagery session and mental tasks session, emphasizing the importance
of staying awake and engaged. Post-session debriefing: After the guided imagery session
and mental task session, researchers conducted a debriefing via a survey with participants
to ask about their experience and level of engagement. These measures, combined with the
researchers’ direct observations and vigilance, can provide valuable evidence to ascertain
whether participants in the guided imagery group remained awake and actively partici-
pated in the experiment. However, it is important to note that despite these efforts, it is
challenging to completely eliminate the possibility of some participants unintentionally
falling asleep during a session. However, the study conducted by Yaxin Fan “Short Term
Integrative Meditation Improves Resting Alpha Activity and Stroop Performance” [62]
provides evidence that, in contrast to the significant changes observed in the meditation
training group, no significant alterations in alpha power or performance on attention tasks
are observed even during a resting state in the control group.

3.2. Experimental Facilities

The EEG Laboratory located within the Department of Neuroinformatics and Biomed-
ical Engineering is equipped with a dense array amplifier that can capture brain electrical
activity at a frequency of 500 Hz using a 256-channel HydroCel GSN 130 Geodesic Sensor
Net. This complete and compatible system is manufactured by Electrical Geodesic Sys-
tems, and it utilizes a Geodesic Photogrammetry System (GPS), which uses 11 cameras
placed in its corners to create a model of the subject’s brain based on its size, proportion,
and shape. This system is able to accurately superimpose computed activity results onto
the brain model. The amplifier works in conjunction with the Net Station 4.5.4 software,
while the GPS is controlled by Net Local 1.00.00 and GeoSource 2.0. Eye tracking was
achieved through the use of a SmartEye 5.9.7 system, which allows for gaze calibration and
the elimination of eye blinks and saccades. PST e-Prime 2.0.8.90 was used to design the
ERP experiments.

3.3. The Cohort

The Bioethical Commission of Maria Curie-Sklodowska University in Lublin, Poland,
granted permission for all the experiments described below. During the relaxation exper-
iment, each participant in the cohort sat in a comfortable armchair with earphones and
listened to a recording of a relaxation procedure. The recording was prepared by a trained
expert using a typical method of GI, which as explained above in detail is a relaxation
technique that involves focusing on a positive mental image or scene. The recording was
21 min and 7 s long, but for this research, only the first 20 min were considered. It was
assumed that each member of the sub-cohort would eventually become relaxed enough to
manifest brain cortical activity that could be classified.

We utilized our dense array amplifier to capture the signals across all 256 electrodes.
However, considering our prior expertise [80–82] in analyzing cognitive processing EEG sig-
nals, we anticipated detecting variations specifically ion the designated cognitive electrodes.
These electrodes are designated as optimal for observing cognitive activity according to the
EGI 256-channel cap specifications. They were strategically positioned across the scalp, and
they are sequentially numbered as follows: E98, E99, E100, E101, E108, E109, E110, E116,
E117, E118, E119, E124, E125, E126, E127, E128, E129, E137, E138, E139, E140, E141, E149,
E150, E151, and E152. The topographical map of these electrodes as places on the scalp can
be found in Figure 1 in the EGI documentation [83,84].

The research protocol for both types of sessions is presented in Figure 1.
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Figure 1. Research protocol used for data processing of both types of sessions: GI and mental
task workloads.

After the signal was recorded, we exposed it to low and high pass filtering, removed
artefacts, and continued with the so-called interpolation of electrodes. Next, the signal was
divided into 1 min long segments and Fourier transforms were applied to the calculation
of the power spectrum densities (PSDs) to be averaged over this 1 min long time interval.
Next, the data were divided into training and testing sets (80%/20%) and the classifier
worked on the signals that it has never seen before.

During the mental task experiment, participants were asked to recall as many Euro-
pean country capitals, zodiac signs, and United States states from memory as possible.
They were told that they would be asked to write down their responses after the experiment
and that their reward depended on the results. It was assumed that this task would require
mental effort, leading to a high level of mental workload and a stressful situation.

Initially, 60 participants were recruited from the students of Computer Science at
Maria Curie-Sklodowska University in Lublin. These were all right-handed males aged
17 to 24, with an average age of 20.38 and a standard deviation of 1.52. Only men were
chosen for the experiment because mainly male students of Computer Science attend the
University where the research was conducted, and differences in electroencephalograms
between men and women have been reported [85,86]. This was done to achieve a relatively
equal cohort response.

It was ensured that the participants did not suffer from chronic diseases. They were
asked to declare any serious diseases such as chronic fatigue syndrome, cancer, and other
chronic diseases, including mental disorders, and if they did, they were automatically
excluded from the cohort. The experimental cohort was divided into two sub-cohorts:
A consisted of 30 subjects exposed to relaxation, and B consisted of 30 subjects asked to
perform the mental task.

3.4. Inclusion and Exclusion Criteria

The inclusion criteria for the cohort in this experiment include being a short-haired,
right-handed, healthy, Polish-speaking male between the ages of 17 and 24, with no history
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of chronic diseases, no current use of prescribed medication, soft drugs, or hard drugs, and
the ability to attend study appointments with no technological requirements. Participants
were also asked not to consume alcohol or any medication at least 72 h before participation
in the experiment.

Exclusion criteria included being younger than 17 or older than 24 years, being left-
handed, having long hair, not fluently speaking the Polish language, being seriously or
chronically ill, currently taking prescribed medication, soft drugs, or hard drugs, having a
medical treatment history in one year following the study, or being unable to attend study
appointments. Participants who did not meet the inclusion criteria or declared any serious
diseases, including mental disorders, were automatically excluded from the cohort. Prior
to participating in the experiment, participants received information about EEG research
and technology and signed an agreement for participation.

The proportion of women pursuing a computer science education remains low, making
it challenging to create a well-balanced group for the experiment that included an equal
number of left-handed and right-handed men and women. Additionally, it was observed
that a significant majority of women studying computer science had long hair. It is worth
mentioning that studies have documented variances in electroencephalogram readings
between men and women [85,86], and we aimed to ensure a relatively equal response from
the cohort.

3.5. The 14th min Choice Justification

In summary, the choice of the 14th min for analysis was based on a previous postulation
that it is the most likely time for the participants to be experiencing a deep state of relaxation.
To confirm this, the generalized linear model classifier (GLM) was used to distinguish
between relaxation and mental state with an approximately 80% accuracy.

The generalized linear model enhances the general linear model by introducing a
specified link function to establish a linear association between the dependent variable and
the factors and covariates. The advantage over the general linear model is that there is no
need for the data distribution to be normal. In the case of the presented research, the link
function was logit. The dependent variable was the Mental Workload or Guided Imagery
group. The factors were band (alpha, beta, and theta) powers from every minute of the
recordings.

Generalized linear models (GLMs) are often used for time series analyses [87] and it is
not aim of this paper to explain in detail all its cases and formulas. However, the idea of
GLM consists of three components:

1. An exponential family of probability distribution (this means it is not necessary for a
normal distribution);

2. A linear predictor η = Xβ;
3. A link function g such that E(Y) = µ = g−1(η)

where Y is the dependent variables vector (in our case GI/Mental task workload), E(Y) is
the expected value of Y (it is either GI or MT), g is the so-called linking function (in our
case logit), X is a matrix of the independent variables (in our case values collected from the
EEG bands), and β represents model factors and is set by the model while training. In our
case, the model is expressed by:

g(E(Y)) = Xβ (1)

and g is a function expressed by:

logit(p) = σ−1(p) = ln
p

1− p
(2)

for p ∈ (0, 1).
To further validate the choice of the 14th min, the GLM accuracy was tested on each

one-minute-long interval of time, from the beginning to the end of the recordings. The
results showed a local maximum in the 14th min for both GI and Mental task sessions,
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followed by a falling slope until the 16th min. After the 17th min, the waking up process
started, and the classifier’s accuracy increased, indicating a different and distinguishable
state of brain activity. Therefore, the 14th min was chosen as the appropriate time for
further analysis (Figure 2).

Figure 2. The 14th min choice justification.

The intention behind using machine learning classifiers was to help in the classifica-
tion of biomedical signals for therapy support [88,89]. These tools and algorithms have
been used for a long time for the diagnosis of various disorders, such as alcoholism or
depression [90,91]. Additionally, they have been used to measure various biological system
behaviors and for diagnostic purposes [92]. Advanced modeling techniques have also been
employed to better understand these systems [93,94]. The use of new measures, such as
those defined in recent research [95,96], has further advanced the accuracy of these models.

3.6. The Final Cohort

Finally, after pre-processing the signal and eliminating the poor quality, as well as
leaving only the participants who provided as with a full set of data and good EEG
recordings and taking into account all the exclusion criteria, we had 20 subjects left in the
GI sub-cohort and 28 subjects in the mental task engaged sub-cohort.

4. Statistical Analysis of the Data

The current study aimed to compare the effects of GI and a mental task intervention
on cognitive and emotional measures, as well as to explore potential correlations between
these measures. A group of participants were randomly assigned to either the GI or mental
task group and completed a series of tests, including brain wave measures, attentional
control tasks, and anxiety and affective measures.

Table 1 shows the participants’ characteristics for subjective measures in a study with
two groups: the GI group (N = 20) and the mental task group (N = 28). The measures
include anxiety, helplessness, stress reduction, and relaxation increase. A one-way analysis
of variance (ANOVA) was conducted to test for significant differences between the groups.

In neuroscience research, longitudinal data are often analyzed using an analysis
of variance (ANOVA) and a multivariate analysis of variance (MANOVA) for repeated
measures (rmANOVA/rmMANOVA) [97]. MANOVA is an extension of ANOVA, which
measures the impact of independent categorical variables upon numerous dependent
continuous variables. It is a process used for comparing the sample means, which are
multivariate in statistics. MANOVA is mostly used in a population with more than two
variables. It is a non-parametric test. However, these analyses have special requirements:
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The variances of the differences between all possible pairs of within-subject conditions
(i.e., levels of the independent variable) must be equal. They are also limited to fixed
repeated time intervals and are sensitive to missing data [97]. In contrast, other models
such as the generalized estimating equations (GEE) suggest another way to consider
the data and the studied phenomenon. Instead of forcing the data into the ANOVAs
assumptions, it is possible to design a flexible/personalized model according to the nature
of the dependent variable.

We decided to use an ANOVA for our data analysis due to its balance and neuroscien-
tific character.

Table 1. Participants’ characteristics for subjective measures. Bold means statistical significance.

Guided Imagery
Group (N = 20)

Mental Task Group
(N = 28) Statistical Test

Measures M SD M SD F p η2

Anxiety measures
(pre-test)

STAI Trait 45.00 7.91 45.93 33,117 0.12 n.s. n.s.

STAI State 39.85 9.98 40.29 31,959 0.15 n.s. n.s.

Motivational and
affective measures

Helplessness
(pre-test) 18.00 5.48 17.3 4.94 0.41 n.s. n.s.

Stress reduction
(before–after) 2.25 5.27 1.00 1.52 5.12 0.03 0.102

Relaxation increase
(after–before) 2.25 5.17 1.15 2.67 2.28 0.14 0.048

For the anxiety measures (STAI Trait and STAI State) at pretest, there were no sig-
nificant differences between the groups. For helplessness, there was also no significant
difference between the groups. However, there was a significant difference in the stress
reduction. An ANOVA showed a significant difference between the two groups (p < 0.05,
η2 = 0.102), indicating that the GI group had a greater reduction in stress levels compared
to the mental task group. Finally, there was a marginally significant difference in the
relaxation increase between the two groups, with the GI group showing a greater increase
in relaxation.

The 14th min of the GI session was chosen for analysis using the general linear model
(GLM) classifier because it was found to be the time when participants were in the deepest
state of relaxation. The GLM was able to distinguish between relaxation and mental states
with 80% accuracy [98], and the results showed that the 14th min had a local maximum
for both GI and mental task sessions, making it an appropriate time for further analysis
to find if a higher alpha power was significantly correlated with a better performance in
attentional tests such as the numerical Stroop, anti-saccade, and Go/No-go tasks.

Table 2 presents the results of a study that compared two different interventions, GI
and mental tasks, on brain wave patterns and attentional control measures.

The participants were 48 individuals, with 20 randomly assigned to the GI group and
28 to the mental task group. The following measures were collected for both groups: alpha
power and Beta power brain wave activity at the 14th min of the intervention, attention
control, numerical Stroop task (% errors), anti-saccade task (% errors), and Go/No-go task
(% errors).

Table 2 presents the results of comparing the GI group and the mental task group in
terms of brain waves and attentional control measures. The table includes the means and
standard deviations of the alpha and Beta power in the 14th min of the GI and mental task
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groups, as well as the scores in the attention control measures. The ANOVA results include
F-values, p-values, and effect sizes (η2) for each measure. The results indicate a significant
difference in the GI group, where we can observe a higher alpha power compared to the
mental task group, which was statistically significant (F = 5.23, p = 0.023). However, there
was no significant difference in beta power between the two groups. Referring to attentional
control measures, the GI group had lower errors on the numerical Stroop task compared to
the mental task group, and this difference was statistically significant (F = 8.06, p = 0.007,
η2 = 0.146). Similarly, the GI group had lower errors in the anti-saccade task compared
to the mental task group, and this difference was also statistically significant (F = 7.31,
p = 0.010, η2 = 0.135). Although the GI group did not show significant improvements in the
Go/No-go task, it is possible that this discrepancy can be explained by differences in the
cognitive demands of the tasks. The Go/No-go task requires both response inhibition and
working memory, whereas GI may not enhance the working memory to a sufficient degree.

Table 2. Participants’ characteristics for brain waves and attentional control measures. Bold means
statistical significance.

Guided Imagery
Group (N = 20)

Mental Task Group
(N = 28)

Statistical
Test

Measures M SD M SD F p η2

Brain waves

Alpha power (14th min) 0.25 0.13 0.17 0.12 5.23 0.023 0.105

Beta power (14th min) 0.08 0.03 0.07 0.03 1.23 n.s. n.s.

Attention control

Numerical Stroop task
(% errors) 1.35 1.92 3.24 2.51 8.06 0.007 0.146

Anti-saccade task
(% errors) 1.87 3.16 4.42 3.16 7.31 0.010 0.135

Go/No-go task
(% errors) 7.33 6.72 8.85 5.93 0.70 n.s. n.s.

The results suggest that GI may be more effective for enhancing attentional control in
specific contexts, as it increases the alpha power and reduces stress levels through mental
rehearsal and visualization, rather than through sustained focus practice like meditation.

The final analysis that was conducted in the described study is the Pearson’s R correla-
tions, verifying the strength and direction of the relationships between different variables.

Table 3 presents the correlations between seven variables measured in the study.
Variable 1 represents alpha power at the 14th min, while variables 2 and 3 represent errors
in the numerical Stroop and anti-saccade tasks, respectively. Variable 4 represents stress
reduction, variable 5 represents helplessness, and variables 6 and 7 represent the STAI Trait
and STAI State anxiety measures, respectively. The correlation coefficients range from −1
to 1, with −1 indicating a perfect negative correlation, 0 indicating no correlation, and
1 indicating a perfect positive correlation. For example, the correlation between the alpha
power and numerical Stroop error is −0.35, which indicates a negative correlation. As the
alpha power increases, the numerical Stroop error tends to decrease.

The results indicate that there was a significant negative correlation between alpha
power at the 14th min and errors on the numerical Stroop task and anti-saccade task,
suggesting that a higher alpha power was associated with better performance in these tasks.

Additionally, there was a significant positive correlation between stress reductions
and helplessness, indicating that higher levels of stress reduction were associated with
lower levels of helplessness. Furthermore, the anxiety measures (STAI Trait and STAI State)
were positively correlated with each other and with the anti-saccade task and the numerical
Stroop task. This suggests that higher levels of anxiety were associated with poorer perfor-
mances in these attentional control tasks. Notably, the correlation between the STAI State
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anxiety measure and the alpha power at the 14th min was also significant, indicating that a
higher anxiety was associated with a lower alpha power. Overall, these findings highlight
the complex relationships between brain wave activity, attentional control measures, stress
reduction, helplessness, and anxiety. Further research is needed to better understand these
relationships and their potential implications in cognitive functioning and mental health.

Table 3. Correlations between measures. Note: * p < 0.05, ** p < 0.01. Bold means statistical
significance.

Variable 1 2 3 4 5 6 7

1. Alpha power 14 min -

2. Num. Stroop (% errors) −0.35 ** -

3. Anti-Saccade (% errors) −0.45 ** −0.38 ** -

4. Stress Reduction 0.29 * −0.03 −0.22 -

5. Helplessness 0.24 −0.12 −0.04 0.29 * -

6. STAI Trait −0.12 0.10 0.27 0.10 0.48 ** -

7. STAI State 0.14 0.01 0.12 0.21 0.37 ** 0.74 ** -

Two mediation models were employed to investigate how GI affects erroneous re-
sponses in the Stroop and anti-saccade tasks via alpha power at the 14th min. The findings
indicate that alpha power at the 14th min acts as a dependable mediator between GI and
the number of errors made in both attentional tasks, namely Stroop and anti-saccade tasks.

The mediation model (Figure 3) suggests that the relationship between GI and the
Stroop test is mediated by the alpha power at the 14th min. Specifically, the significant
negative coefficient between GI and the Stroop test suggests that GI leads to a better
performance in the Stroop test and GI is a reliable mediator of the relationship.

Based on a mediation analysis (Figure 4), the model suggests that the relationship
between GI and errors in the anti-saccade test is partially explained by changes in the alpha
power. A mediation analysis suggests that an increase in the alpha power is associated
with a reduction in errors in the anti-saccade test.

Figure 3. The effect of GI on reducing erroneous reactions in the Stroop test is mediated by the alpha
power at 14 min. * p < 0.05, ** p < 0.01.

The significance of the t-values indicates that the coefficients are unlikely to have
occurred by chance, supporting the relationships between the variables in the medi-
ation model. These results suggest that the use of GI may improve cognitive perfor-
mance, particularly in tasks requiring inhibitory control, by increasing the alpha power.
However, further research is needed to confirm these findings and explore the underlying
mechanisms of this relationship.
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Figure 4. The effect of GI on reducing erroneous reactions in the anti-saccade test is mediated by the
alpha power at 14 min. * p < 0.05, ** p < 0.01.

5. Limitations of the Study

The study is subject to several limitations that should be considered in the interpreta-
tion of the findings. Firstly, the relatively small sample size employed in this study may
constrain the generalizability of the results to larger populations or different demographic
groups. Consequently, caution should be exercised when extrapolating the findings to
broader contexts. Furthermore, the study primarily focused on healthy male participants
with no prior experience with guided imagery sessions and no chronic medical conditions.
Consequently, the extent to which the results can be applied to other populations or indi-
viduals with specific health conditions may be limited. Additionally, the study primarily
examined the short-term effects of the guided imagery session, with limited investigations
into the long-term or sustained benefits. Future research should address this limitation by
investigating the durability of the observed effects over an extended period. It is worth
considering for future studies the inclusion of an additional control group that receives
either no intervention or an alternative intervention. The absence of such a control group
in this study poses challenges in isolating the specific effects of guided imagery from other
potential factors.

Taken together, these limitations underscore the need for future research with larger
and more diverse samples, longer follow-up periods, and additional control groups.
By addressing these methodological considerations, a more comprehensive understanding
of the effectiveness and potential limitations of guided imagery can be achieved, not only
in the context of stress management but also in terms of enhancing attentional control
test results. Such investigations will provide valuable insights into the broader cognitive
benefits of guided imagery and further enhance its potential as a therapeutic intervention.

6. Conclusions

This study investigated the effects of the GI relaxation technique on cognitive and
emotional measures and explored potential correlations between these measures. Guided
imagery offers a distinct experiential approach to mindfulness and mental well-being.
While meditation primarily focuses on cultivating present-moment awareness and detach-
ment from thoughts, guided imagery involves actively engaging the imagination to create
vivid sensory experiences [99]. This approach can be particularly helpful for individuals
who find it challenging to quieten the mind or those who benefit from more structured
practices. A further exploration of guided imagery is worthwhile as it broadens our un-
derstanding of mindfulness, offers customization, and provides a complementary practice
to enhance overall mental health [100]. The robust findings from this research provide
compelling evidence supporting the efficacy of guided imagery (GI) as an intervention for
stress reduction and relaxation, surpassing the effects observed in the mental task group.
Notably, the GI group exhibited significantly higher levels of alpha power, a key indicator
of brain wave activity associated with improved attentional control. The strong correlation
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between alpha power and enhanced performances in attentional tasks further reinforces the
potential benefits of GI in optimizing cognitive functioning. These findings underscore the
significance of incorporating the GI technique in stress management protocols and highlight
its promising role in enhancing attentional control abilities. The findings obtained in this
study align with the existing literature, providing consistent evidence that an increase in
alpha power is associated with an improved performance in attentional tests. Moreover,
the observed reduction in stress levels resulting from the guided imagery (GI) interven-
tion contributes to enhanced attentional processes by mitigating the distraction caused by
anxiety-related thoughts or worries. These results highlight the beneficial impact of GI on
attentional functioning and support its potential as an effective strategy for optimizing
cognitive performance in stress-inducing contexts.

Based on the findings of this study, the formulated hypotheses put forth by the
researchers were supported. The guided imagery (GI) intervention resulted in an increase
in alpha power and improved performances in attentional tests, specifically the Stroop
and anti-saccade tasks. It is worth noting that the lack of significant improvements in the
Go/No-go task can be attributed to the varying attentional demands across different tests.
As previously described, these attentional tests assess distinct types of attentional control.
For instance, the numerical Stroop task measures attentional inhibition, which involves
suppressing irrelevant information and focusing on relevant stimuli. The anti-saccade task
assesses attentional shifting, which pertains to the ability to shift attention from one target
to another. On the other hand, the Go/No-go task evaluates attentional vigilance, which
involves sustaining attention over time and responding selectively to relevant stimuli while
ignoring irrelevant ones.

In contrast to mindfulness practices, GI does not enhance focused attention but rather
involves the visualization of pleasant images which elicit stress- and anxiety-reducing
responses, potentially influencing the alpha power. It is noteworthy that the alpha power
has been found to be positively correlated with information processing speeds [101]. The
results suggest that the GI intervention may have had a more pronounced effect on cogni-
tive flexibility, which could have contributed to the improved performances in the Stroop
and anti-saccade tasks. These findings highlight the unique cognitive mechanisms engaged
during GI intervention and its potential to enhance cognitive flexibility in a manner distinct
from traditional mindfulness practices. The mediation model examining the relationship
between GI, alpha power at the 14th min, and performance on the Stroop and anti-saccade
tests provides a comprehensive understanding of the interplay between these variables. It
sheds light on the potential mechanisms through which GI can affect cognitive performance,
particularly in the context of attentional control tasks. In summary, the mediation model
presented here offers a valuable structure for comprehending the intricate associations
between GI, alpha power, and cognitive performance. It underscores the necessity for addi-
tional investigations to gain a deeper understanding of this domain. In particular, pairwise
comparisons methods (analyzed for accuracy by Koczkodaj [102]) can be considered.

In conclusion, this study offers valuable insights into the potential advantages of
guided imagery (GI) as an intervention for enhancing cognitive performance and emotional
well-being. The findings contribute to the expanding body of research on cognitive and
emotional interventions, providing valuable knowledge that can inform the development
of effective interventions targeting cognitive and emotional functioning. Further investiga-
tions are warranted to examine the long-term effects of GI interventions and delve deeper
into the potential associations between these cognitive and emotional measures. Such
research endeavors would help advance our understanding of the sustained effects and
the intricate interplay between cognitive and emotional domains, ultimately contributing
to the refinement of interventions aimed at promoting overall cognitive and emotional
well-being.

Moreover, a notable feature of this research involved the application of multi-sensor
EEG signal classification and a GLM for the categorization of two mental states.
These findings offer compelling evidence regarding the potential for developing innovative
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therapies in the domain of human–machine interactions like in [103] and that EEG is not
the only medium that can be used to support human–machine interaction control [104,105].
For instance, the study titled “Golden Subject Is Everyone: A Subject Transfer Neural Net-
work for Motor Imagery-based Brain Computer Interfaces” [106] explores the use of neural
networks to transfer knowledge between individuals in the context of motor-imagery-based
brain–computer interfaces. The researchers propose a new approach that allows data from
one participant to be used to train a neural network, which can then be applied to predict
and interpret brain signals from a different participant. The findings indicate that this
method has potential and could lead to the development of more inclusive and widely
applicable brain–computer interfaces.
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