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Abstract. A rapidly developing world brings up a progressively increasing need for professions which 

require: high qualifications, strong intellectual capabilities and abilities of coping with intensive 

cognitive workload. Roles such as those of pilots, professional drivers or air traffic controllers are related 

to significant cognitive workload and a mistake caused by mental fatigue can cause irreversible damage. 

Due to this the importance of estimating cognitive workload becomes especially significant. The most 

valuable data for analysis can be gathered directly in the process of carrying out professional activities. 

Hence, a practical tool convenient for collecting data for analysis is needed. The most frequently applied 

method of data collection for cognitive workload estimation is electroencephalography, which is 

complicated, prone to noise and time consuming. In my research I suggest the application of an  

eye-tracking technique for data collection combined with explainable machine learning methods for 

cognitive workload estimation as the solution to these issues. 

The aim of my research was to investigate whether features based on eye-tracking and user performance 

can be used to classify cognitive workload and aid the development of an interpretable machine learning 

model allowing to classify cognitive workload levels. The improvement of the quality of cognitive 

workload level classification was also the goal of my study. In order to achieve the goals I have collected 

the experimental data, developed the processing procedure, and tested it on the collected data. 

A cognitive workload assessment was performed using machine learning methods using binary and 

multiclass approaches. All of the machine learning models were developed on the basis of a subject-

independent approach. This approach is more general and enables the creation of a more flexible 

classification model allowing to predict the cognitive workload of any participant. The model is trained  

on the data of several participants and can be used on another participant. 

I have performed a series of cognitive workload studies and I have conducted the following analyses: 

appliance of interpretable machine learning, appliance of fuzzy aggregation functions and calculation 

of new features. Interpretable machine learning was used in a multiclass classification task which 

allowed to analyze the importance of features and to understand the mechanism accompanying 

the processes related to cognitive load. In the next studies, fuzzy aggregation functions were used, which 

improved the results of classifying levels of cognitive load. This approach is based on a set of classifiers 

and the use of aggregation functions made it possible to improve the results in the case of initially 

weaker results of separate classifiers. An ex-Gaussian distribution was used to calculate new features 

for a model predicting cognitive load levels. The use of ex-Gaussian modeling was valuable in detecting 

dissimilarities. In all of the tested approaches, highly accurate classification results of over 96% were 

achieved. In conclusion, this dissertation may be useful to researchers looking for ideas and techniques 

for studying cognitive load. 
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Streszczenie. Szybko rozwijający się świat powoduje coraz większe zapotrzebowanie na zawody 

wymagające wysokich kwalifikacji, zdolności intelektualnych oraz umiejętności radzenia sobie 

z intensywnym obciążeniem poznawczym. Stanowiska takie jak pilot, kierowca zawodowy 

czy kontroler ruchu lotniczego wiążą się ze znacznym obciążeniem poznawczym, a błąd spowodowany 

zmęczeniem psychicznym może mieć wysoką cenę. W związku z tym znaczenie oszacowania 

obciążenia poznawczego staje się szczególnie istotne. Najcenniejsze dane do analizy można zebrać 

bezpośrednio podczas wykonywania pracy zawodowej. Potrzebne jest więc praktyczne narzędzie do 

wygodnego zbierania danych potrzebnych do analizy. Standardową, najczęściej stosowaną metodą 

zbierania danych do szacowania obciążenia poznawczego jest elektroencefalografia, która jest 

skomplikowana, czuła na szumy i czasochłonna. W swoich badaniach jako rozwiązanie proponuję 

zastosowanie techniki eye-tracking do zbierania danych w połączeniu z wyjaśnialnymi metodami 

uczenia maszynowego do szacowania obciążenia poznawczego. 

Celem moich badań było zbadanie, czy cechy oparte na śledzeniu wzroku i wydajności użytkownika 

mogą być wykorzystane do klasyfikacji obciążenia poznawczego oraz opracowanie interpretowalnego 

modelu uczenia maszynowego pozwalającego na klasyfikację poziomów obciążenia poznawczego. 

Celem moich badań była również poprawa jakości klasyfikacji poziomów obciążenia poznawczego. 

Aby osiągnąć założone cele, zebrałam dane eksperymentalne, opracowałam procedurę przetwarzania 

i przetestowałam ją na zebranych danych. Ocena obciążenia poznawczego została przeprowadzona 

metodami uczenia maszynowego w podejściu binarnym i wieloklasowym. Wszystkie modele uczenia 

maszynowego zostały opracowane w oparciu o podejście niezależne od badanej osoby. Takie podejście 

jest bardziej ogólne i pozwala na stworzenie elastycznego modelu klasyfikacji pozwalającego 

przewidzieć obciążenie poznawcze każdej badanej osoby. Model jest uczony na danych kilku 

uczestników i może być użyty dla innego uczestnika. 

Wykonałam serię badań obciążenia poznawczego oraz przeprowadziłam następujące analizy: 

zastosowanie interpretowalnego uczenia maszynowego, zastosowanie rozmytych funkcji agregacji oraz 

obliczenie nowych cech. Interpretowalne uczenie maszynowe zostało wykorzystane w zadaniu 

klasyfikacji wieloklasowej, pozwoliło na analizę ważności cech oraz zrozumienie procesu 

towarzyszącego procesom związanym z obciążeniem poznawczym. W kolejnych badaniach 

wykorzystano rozmyte funkcje agregacji, które poprawiły wyniki klasyfikacji poziomów obciążenia 

poznawczego. Podejście to opiera się na zbiorze klasyfikatorów, a zastosowanie funkcji agregujących 

umożliwiło poprawę wyników w przypadku początkowo słabszych wyników poszczególnych 

klasyfikatorów. Rozkład ex-Gaussa wykorzystano do obliczenia nowych cech modelu przewidującego 

poziomy obciążenia poznawczego. Wykorzystanie modelowania ex-Gaussa jest cenne w wykrywaniu 

odmienności. We wszystkich testowanych podejściach osiągnięto wysokie wyniki klasyfikacji, 

przekraczające 96%. Podsumowując, rozprawa może być przydatna badaczom poszukującym 

pomysłów i technik badania obciążenia poznawczego. 
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1 Introduction 

Understanding cognitive workload is of great importance in monitoring human mental fatigue. 

Cognitive workload is described as a quantitative measure of the amount of mental effort 

necessary to perform a task [1, 2]. Work is divided into two groups: physical and mental. In case 

of physical work, it is quite simple to say that someone is exhausted; this is not the case for 

mental activity. Failure to recognize fatigue caused by excessively high levels of cognitive 

workload can be extremely dangerous. Mental fatigue has a negative influence on reaction time, 

and decreases the cognitive system performance of the brain in terms of perception, attention, 

analyzing and planning. Estimation of cognitive workload is an essential part of  professions 

such as pilots, traffic controllers or drivers, on whom the life and health of many people 

depends. Mistakes made by such professionals might cause huge material losses as well. 

What is more, the assessment of cognitive workload capacity might be useful in the process of 

modeling information processing capabilities. An automatic cognitive workload determination 

mechanism can help to prevent negative effects of exhaustive mental effort and develop 

learning techniques.  

The presented method is based on artificial intelligence models that enable the classification of 

cognitive workload levels using eye-tracking signals. Previously, electroencephalography 

signals were applied in cognitive workload science. Nowadays, eye-tracking signals are used 

more and more frequently in many fields, not only in detecting cognitive workload levels. 

The proposed non-invasive method can be easily adopted. This approach develops  

subject-independent classification regardless of age or habits of an examined person. 

Interpretable machine learning was applied, which made it possible to understand the studied 

phenomenon more deeply, while achieving a high-quality estimation of the cognitive workload 

level. This increased understanding is of fundamental importance in the development of the 

state of knowledge about cognitive workload processes, which is of interest to other fields of 

science dealing with the study of human mental activity. 

In contrast to physical effort, which may manifest as pain in the muscles, cognitive fatigue 

might have various symptoms, varying from person to person. The challenge is to detect the 

physiological process on the basis of which it will be possible to determine the level 

of cognitive fatigue. The proposed approach provides a new point of view on the problem of 

classification of cognitive workload. The development of interpretable machine learning and 

aggregation functions allows for a more efficient processing of data. Additionally, analysis of 

the importance of processed features using interpretable machine learning techniques allows 
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for a deeper understanding of mental processes and ensures better performance. This approach 

enables the analysis of individual components of the model along with the selection of features 

that best distinguish each level of cognitive workload. Moreover, the application of a group of 

classifiers, the results of which are calculated with the use of fuzzy aggregation methods such 

OWA and Choquet, allow to improve the accuracy of the classification results.  

In order to carry out the analysis and classification process of cognitive workload, a dedicated 

experiment was designed and conducted. 

1.1 Research Problem 

In order to explore the research problem I have formulated the following three research 

objectives. 

1. Investigating whether features based on eye-tracking and user performance can 

be used to classify cognitive workload levels. 

The research goal focuses on an attempt to detect the absence or presence of mental 

fatigue and obtain the satisfying results using a subject-independent approach. Another 

aim is to check if the feature selection process allows to obtain better results in the 

classification of cognitive levels. 

2. Development of an interpretable machine learning model which allows 

the classification of  cognitive workload levels.  

The research goal is to perform a multiclass subject-independent classification 

of cognitive workload based on eye-tracking and user performance data using feature 

selection based on interpretable machine learning models. 

3. Improvement of the quality of cognitive workload level classification.  

The research goal is to improve the classification model by applying fuzzy aggregation 

methods. The probabilities of belonging to each class are treated as input to aggregation 

functions. Ex-Gaussian statistics can be applied in the feature extraction step. Feature 

analysis is possible through the use of interpretable machine learning models. 
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2 Overview of the State-of-the-art 

2.1 Cognitive workload definitions and application 

Understanding cognitive workload gives a great opportunity in understanding human mental 

fatigue [3]. Cognitive workload is described as the quantitative measure of the amount of 

mental effort needed to perform tasks [1, 2]. Tasks vary in complexity and require different 

levels of concentration. In [4, 5] the authors describe mental workload as the relation between 

the resources required by the task and those available to the human. In [6] mental workload is 

defined as the cognitive demand of a task. A person can experience cognitive overload when 

the mental activity performed requires more resources than they have [7]. The assessment of 

mental effort might be useful in the process ofmodelling information-processing capabilities. 

The cognitive workload process helps in explaining mental fatigue and its influence on the 

brain’s cognitive system performance in terms of perception, attention and target detection 

failure [8]. The increase of intensity in work causes mental overload. A high level of cognitive 

workload requires the participant to use extra resources which can lead to a decrease 

of efficiency and performance [9]. Edith Galy et. al published their studies [9] where they tested 

the influence of factors which affect cognitive workload: task difficulty, time pressure and 

alertness. Both task difficulty and time pressure have an influence on cognitive workload [10]. 

Another stressful factor in work is time pressure. If several tasks are performed simultaneously 

and relay on the same source, they interfere with each other and compete for the resource. The 

brain cannot process all of the information and it could be dangerous in the real world. Each 

day people may experience several workload levels such as underload, medium and overload 

but keeping a balanced workload allows people to work safely and effectively [11]. 

The presented cognitive workload descriptions show that there is not only one proper 

definition. In general, cognitive workload theory says that people have  limited cognitive and 

attentional capacity and that different tasks require different resources to be processed.  

The knowledge of cognitive workload is very important in professions such as those of drivers 

[12, 13], pilots [14, 15] or traffic controllers [16]. In [12], Patten et al. evaluated the driver 

experience on cognitive workload in the context of real-driving. The authors were focused on 

the ability of drivers to manage the additional cognitive workload. Dehais and colleagues 

monitored pilots’ cognitive workload simulating low load when participants were only 

watching a flight and high load when the participants were piloting an airplane [14]. In [16] the 

authors presented factors enabling the assessment of cognitive workload in a real traffic 
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controller environment. Cognitive workload recognition is applied in education as well. 

The assessment of cognitive workload during the learning process helps to understand the 

complexity of learning [17]. Mental workload studies allow us to understand and improve work 

conditions in a field of ergonomics [9]. Zhang and colleagues developed a system allowing the 

development of driving skills in people on the autism spectrum [18]. The assessment of 

cognitive workload might also be used in a medical context e. g. in [19] the authors conducted 

an experiment which allowed to estimate the cognitive load among people who were diagnosed 

with cancer. Ensuring appropriate levels of cognitive workload of surgeons during their work 

is essential – this fact was shown in the research of Ortega-Moran and colleagues. They 

examined the cognitive workload of surgeons during surgical interventions and concluded that 

it should be monitored [20].  

Cognitive workload is multidimensional and can be widely applied to assess and understand 

human resources and to help the quality of work and wellbeing. The terms cognitive workload 

and mental workload are synonymous in the literature [21]. 

2.2 Cognitive workload assessment 

Mental workload can be measured using different types of tools, which can be divided into three 

main groups: subjective measures, performance and psychophysiological measures [9]. In order 

to assess the effectiveness and the difficulty of tasks the following subjective measures can be 

used: the NASA Task Load Index (NASA-TLX) [22], the Subjective Workload Assessment 

Technique (SWAT) [23] and the Rating Scale Mental Effort (RSME) [24]. The NASA-TLX 

scale is an assessment tool which contains six subscales: Mental Demand, Physical Demand, 

Temporal Demand, Overall Performance, Effort, and Frustration Levels. Each subscale 

contains the questions which enable to give a correct and true answer. The subscales are rated 

using a 100 point scale with a 5 point step. In [25, 26, 27] the authors applied the NASA-TLX 

scale by asking drivers to assess their mental workload. In [13] the authors also applied the 

NASA-TLX scale to assess the cognitive workload during driving. The SWAT scale contains 

three aspects of cognitive workload: Time Load, Mental Effort Load and Psychological Stress 

Load. A participant has to assign 1, 2 or 3 points to each aspect. Zulfany and colleagues [28] 

applied the SWAT scale to analyze the mental workload of software engineers who work 

remotely. In [29] the authors applied the SWAT scale in the assessment of cognitive workload 

in a military environment. The RSME is similar to the NASA-TLX and consists of a line with 

a 150 points range with a 10 point-step containing nine labels indicating a degree of effort: 

Absolutely No Effort, Almost No Effort, A Little Effort, Some Effort, Rather Much Effort, 
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Considerable Effort, Great Effort, Very Great Effort, Extreme Effort. A participant is asked to 

mark how much effort was needed to finish the task. Ghanbary et al. [30] published their 

research where they applied the RSME scale in the assessment of cognitive workload of nurses. 

The authors use various questionaries for self-evaluation in their cognitive workload 

researches, one of them is  the Instantaneous Self Assessment (ISA) [31, 32]. In [33] the 

subjective techniques enabling cognitive workload assessment were compared. Some of the 

measures were originally designed for air traffic control but nowadays they are widely used in 

ergonomics, driving or education. 

The second way of cognitive workload measurement is to take into consideration 

the performance of tasks, for instance: responses [34], reaction time, the Inverse Efficiency 

Score [35] defined as a mean of reaction time by percentage of correct answers. 

If the requirements for the speed of task execution increase, the accuracy of task execution 

decreases. Zarjam et al. used responses obtained during arithmetic tasks in their cognitive 

workload estimation [36]. In [37] the authors used driving performance and psychological 

measures for cognitive workload analysis. Lobo et al. used performance related features such 

as correctness of performed tasks [38]. Ktistakis and colleagues measured reaction time and the 

Inverse Efficiency Score during cognitive workload tasks [39]. 

Different types of tasks are applied in cognitive workload experiments such as arithmetical 

tasks [36], silent reading of texts [40] or playing games [41] and simulated driving [42]. In [43] 

the authors designed a dataset including cognitive load tasks: intelligence test and memory test. 

The N-back tasks are used to measure  working memory capacity and cognitive workload  

[44, 45, 56]. The N-back approach is based on presenting a sequence of stimuli 

and the participant is asked to indicate if the current stimulus is the same as the stimulus N steps 

earlier. The secondary task approach is applied to simulate cognitive workload [39] as well. 

The participants perform a secondary task while performing a primary task keeping the 

efficiency of the primary task. In order to induce cognitive workload a modified version of the 

paced auditory serial attention test [47] (mPASAT) can be applied [48]. It requires a working 

memory, attention and arithmetic capabilities. In [48] the authors reported that the mPASAT 

evokes cognitive workload. The Multi-Attribute Task Battery (MATB) [49] is employed in 

cognitive workload studies. The MATB includes analogous tasks to activities which a pilot 

performs during a flight [50]. In [51] the authors proposed the Oculo-Cognitive Addition Test 

(OCAT), which tracks eye movements when users carry out mental addition tests in three levels 

of cognitive workload: low, medium and high.  
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The Digital Symbol Substitution Test (DSST) is a cognitive tool which allows to understand 

human associative learning [52]. Originally this tool was created in a paper-and-pencil version. 

It is a well-known tool which enables to check and verify memory, a patient’s processing speed 

and the executive functioning of the examined people. It is widely applied in clinical 

neuropsychology to measure cognitive dysfunction [53, 54]. 

Physiological measures are widely applied in mental effort estimation enabling contiguous 

monitoring and measurement of cognitive workload. However, physiological measures are 

sensitive to physical effort and it is recommended to use them in case of a small physical  

effort [55]. 

The literature review has shown that cognitive workload can be measured based on  

bio-signals such as brain-activity [56, 57], eye activity [25], pupillometry [58], functional 

galvanic skin response (GSR) [59], heart activity and blood pressure [60, 61]. Brain activity 

can be measured using electroencephalography (EEG) [62] or  functional near-infrared 

spectroscopy (fNIRS) [63]. In the EEG technique the brain activity is recognized when 

the difference between electrode and neural signal appears while in the fNIRS method, it is 

recognized by using near-infrared light to measure the concentration change of oxygenated and 

de-oxygenated hemoglobin which is immune to electrical noise. Electroencephalography has 

been proven to be useful in cognitive-related sciences:[14, 40, 44, 46]. In [64] the authors 

reviewed the EEG-based cognitive workload recognition using machine learning.  

Eye-activity is a non-invasive method which may be measured by using an electrooculograph, 

an eye-tracker or a pupilometer [65, 66]. The EOG technique reflects eye-movement using the 

electrodes commonly placed above and below the eye. When the eye moves, the potential 

difference appears and the signal called electrooculogram can be observed [65]. An eye-tracker 

allows to monitor eye-movements while a pupillometer enables to measure the size and 

reactivity of the pupil (pupillometry) which are considered to be the indicators of mental 

workload as well [37, 66, 67]. In [68] the authors examined the cognitive workload of 

firefighters during searching and rescuing. The metric of task performance was the number of 

victims found by the crew and the time needed to rescue them. Eye-tracking data were analyzed 

to find gaze patterns and assess cognitive workload. In [67] the authors conducted studies by 

using the measurement of pupil oscillation data to estimate cognitive workload levels. 

Duchowski et al. [67] conducted studies where participants had to solve arithmetic tasks of 

three different levels. The authors measured the working memory capacity for each participant 

using the Digit SPAN task (DSPAN) [69]. The DSPAN task is based on recalling the digits in 

the order in which they appeared (forward-span) or in the reverse order (backward-span).  
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The task is considered to be completed when the participant makes mistakes in two sequent 

trials. The authors asked the participants to fill in two questionaries: the NASA-TLX and  

the Self-Assessment Manikin (SAM), which enabled to assess their emotional valence [70]. 

The authors [67] proposed a metric called the Index of Pupillary Activity (IPA) and wrote that 

the IPA can discriminate between task difficulty in the context of cognitive workload. They 

suggest that the IPA could be sensitive to task difficulty independently of the working memory 

capacity. 

The GSR measurements relay on detecting changes in electrical activity coming from changes 

in the sweat gland. The GSR technique uses electrodes which must be sensitive to these changes 

[71]. The sweat gland activity reflects the intensity of the emotional state of the examined 

person. Nourbakhsh et al. [72] examined temporal and spectral features of the GSR againsttasks 

of varying difficulty. On the other hand the authors in [73] used the GSR as a cheap tool for 

measuring mental workload in their research but claimed that it is non sensitive in 

distinguishing different levels of cognitive workload. Cardiac activity measures are applied in 

the assessment of cognitive workload because they are relatively inexpensive, do not require 

advanced training to collect data and they are resistant to the participants’ movement [74]. 

Cardiac activity measures include, among others, heart rate, heart period which is defined as 

the average time in milliseconds between heartbeats, and blood pressure [74]. The researchers 

sometimes apply more than one type of bio-signals to measure cognitive workload [75, 76, 77]. 

Additionally, they use subjective measures in combination with task performance or bio-signals 

[78, 79]. In [80] the authors used the fNIRS signals and eye-tracking signals to examine 

cognitive workload during driving. 
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2.3  Eye-tracking 

Eye-tracking is a powerful tool in measuring the point of gaze and eye motion [81]. Charles Bell 

is the pioneer of eye-tracking research who first described that a physiological connection 

between the eyes and the nervous system connected eye movement with neurological and 

cognitive processes [82]. An eye-tracker allows to measure where and in what order 

a participant is looking during a specific task. Cognitive processes such as perception, memory, 

language and decision making stimulate where a person looks [83]. Eye-tracking enables to 

observe the whole cognition in real time and not only the final result of cognition. People 

usually cannot control eye movements constantly and are not good at remembering where they 

looked [84]. Due to that eye-tracking is widely applied in studies dedicated to mental processes. 

The use of eye-tracking has been widespread within the last 20 years and it found its 

applications in psychology, medicine, neuroscience, computer science, education [85], 

linguistics and other areas [83]. The literature overview shows examples of the use of  

eye-tracking in various fields of life such as medicine [86, 87, 88], spelling disorders [89, 90], 

user experience design [91], consumer research [92], aviation [93], transportation [94], 

navigation [95], education and software engineering studies [96, 97]. One of the research areas 

where eye-trackers are often used is related to car driving [98]. In [89] the authors used eye 

movements to examine the disorder of spelling awareness. In [99] the authors performed 

a literature overview covering the applications of eye-tracking studies in aviation, maritime and 

construction. The eye-activity data turn out to be useful in cognitive workload analysis  

[20, 65, 100].  

An eye-tracker can be used by disabled people to control a wheelchair [101] as well.  

Eye-tracking data are useful in analyzing cognitive workload [102] allowing to detect 

neuropsychological diseases or mental fatigue [103, 104, 105]. Moon et al. examined cognitive 

workload of people with Parkinson’s disease using eye-activity [106].  

In [107] the authors conducted a literature review about surgery where eye-tracking was used 

to assess the cognitive workload of the participants. The studies showed that eye movements 

such as pupil responses, gaze patterns and blinks are indicators of cognitive workload from the 

viewpoint of surgery. Gil and Amalia [108] presented a literature review about application of 

an eye-tracker in surgery [108]. 

Nowadays, eye-trackers usually have the form of video-based tools identifying pupil 

parameters. Eye-trackers usually use near-infrared light which is invisible to people.  

An eye-tracker sends near-infrared light which is reflected from the eye and then captured by 
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the cameras on the device. The data are processed using dedicated algorithms that capture the 

details of a participant’s eyesight and calculate the focus point on the screen. A calibration 

procedure has to be carried out before the measurement of the eye-position. It is a process 

which allows to estimate the characteristic of a participant’s eyes and optimize the eye tracking 

algorithm [83]. In [109] the authors showed that a webcam could be used as a low-cost 

alternative to an eye-tracker. Eye-tracking data in raw form are a series of samples. Raw eye-

tracker data are rarely processed by themselves. More often the measures describing eye 

movement are extracted for further analysis [97]. 

The eye-tracking feature set consists of fixation related features, saccade related features, blink 

related features, and pupil related features [83]. According to [110] fixations are defined as the 

period of uptake of visual information when a participant’s eyes are in a stable position. Single 

fixation appears between two sequent saccades. Fixations vary in length depending on visual 

stimuli, difficulty of the task, skills and attention. They usually last 180-330 milliseconds [110]. 

The eye cannot obtain visual information from single fixations so the eyes have to move 

frequently and the fixations are relatively short [111]. Even during fixations, eye movement 

can cause drift and microsaccades [112]. In [110] saccades are described as a rapid movement 

between two sequent fixations. The gaze moves from one point to another bringing the part of 

visual information. Similarly to fixations, the size and duration of saccades can be different 

depending on the tasks being performed [111]. Typically they last 30-50 milliseconds. Other 

types of eye-movement are smooth pursuit or vergence which can be made deliberately like 

saccades [83].  

An eye-tracker enables to register changes in diameter of the pupil as well. Pupillometry is the 

measurement of pupil size which can change as the response to illuminance and cognitive 

processes [113, 114]. Blinks also appear in the eye-tracking process [115] and they are 

identified as zero data occurring in two saccadic events [116]. In [117] the authors presented 

eye-tracking indicators and their role in cognitive workload measurement. Joseph and 

Murugesh published a very clarified description of eye-tracking related metrics, such as 

saccades, pupil dilation, and scan path and their applications in cognitive workload estimation 

[117]. In [118] the authors compared microsaccade metrics to pupillometric measures. 

The authors reported that the microsaccade magnitude could be related to the task difficulty in 

cognitive workload. 

Features related to fixations and saccades are commonly used in eye-tracking analysis applied 

in psychology and neuroscience [119]. In [104, 120, 121], the authors use these features to 

analyze mental fatigue, behavior patterns and disorders such as schizophrenia and autism. 
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The following features related to fixations and saccades can be presented: total number of 

saccades, mean duration of saccades, total number of blinks and mean duration of a blink. 

Kardan at al. used standard deviation, mean and skewness of fixation duration as well as 

saccade amplitude in their classification of mental states [122]. Standard deviation of saccades 

was calculated by Dowiasch and colleagues in eye-movement analysis depending on the 

participants’ age [123]. In [98] the authors examined a method based on fixation-aligned 

pupillary response averaging in a driving context. Li and colleagues [124] carried out 

a literature review about eye-tracking parameters and methods allowing the assessment of 

mental states. In [125] the authors presented a summary of eye-tracking related features applied 

in emotional and cognitive process detection. Guo et al. [126] wrote that fixation duration, 

saccade frequency, saccade duration, pupil diameter and pupillary activity can be considered 

as features to estimate cognitive workload. Blink related features have also been proven to be 

an indicator of cognitive processes [25]. Pupil related features such as pupil dilation are 

considered as cognitive workload measure as well [78]. 
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2.4 Ex-Gaussian statistics in eye-tracking data 

Ex-Gaussian statistics are used in order to model the process of reaction to a stimulus.  

The ex-Gaussian distribution allows to calculate three parameters: μ – corresponding to 

the mean of the normal component, σ – corresponding to the symmetric standard deviation of 

the normal component and τ – corresponding to the exponential part of the distribution [127].  

The Ex-Gaussian method is a common in reaction-time studies. Otero-Millian et al. conducted 

one of the first studies using the ex-Gaussian method for eye-tracking data [128]. The 

distribution of variables such as fixation length and intersaccadic intervals were close to the ex-

Gaussian distribution. A literature overview about the application of distributional analyses to 

fixation durations based on the ex-Gaussian method was presented in [129]. The authors [129] 

have shown the advantages of ex-Gaussian modeling in fixation duration modeling. It can be 

said that the ex-Gaussian distribution is a proper model for fixation distribution. Guy at al. 

[129] presented the parametric mean of fixation duration and published evidence that show that 

empirical distribution of fixation duration is sensitive to task input. The authors [129] reported 

that the parameter τ is associated with repetitive exposures to the same images but parameter μ 

is associated with stimuli familiarity and efficiency of solving tasks. Components of the  

ex-Gaussian distribution can reflect cognitive processes. The increase of parameter τ might be 

related to attentional lapses regarding repetitive presentation of a stimulus. Luke and colleagues 

[130] applied the ex-Gaussian modelling to examine the differences between fixation duration 

distributions and working memory capacity. Ex-Gaussian statistics seems to be a good tool 

for dissimilarity detection in groups [131]. 
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2.5 Cognitive workload classification 

Cognitive workload is a subject of numerous studies especially in the aspect of classification 

of cognitive workload levels [38, 64, 132]. A literature overview shows that the majority of 

cognitive workload studies concern binary classification problems [104, 133, 134], and that 

multiclass classification studies are less common. The presented models distinguish between 

low and high levels of cognitive workload [135]. In addition to binary classification, 

a multiclass classification can be found, e.g. a three-class classification distinguishing between 

low, medium and high levels of cognitive workload [38, 136, 137].  

Researchers  conduct their classification process in two ways: subject-dependent [133, 132] 

and subject-independent approaches [136, 135]. In the subject-dependent approach 

the classification model is trained on the data of a given participant. The results of [132] show 

that the subject-dependent model allows to obtain higher classification performance than the 

subject-independent approach. However, a subject-independent approach is more general and 

enables to create a more flexible classification model allowing to predict the workload level of 

any participant. The development of the subject-independent approach called cross-subject 

allows to classify the levels of cognitive workload regardless of age or habits of the examined 

person [136]. The model is trained on the data of several participants and can be used on another 

participant. The subject-independent approach seems to be more attractive nowadays [104] 

because this approach allows to create a general model to estimate cognitive workload. 

Examples of combining  the subject-dependent and the subject-independent approaches can be 

found in the literature as well [132, 138, 139]. In [140] the authors claim that the benefit of 

using the cross-participant approach seems to outweigh the better efficiency in the subject-

dependent approach because it requires less effort in calibration and training. 

Researchers  apply both classical models such as the Support Vector Machine (SVM) [104, 34], 

Linear Discriminant Analysis (LDA) [141], k – Nearest Neighbors (KNN) [38, 141, 142], 

Random Forest [34, 137], Multilayer Perceptron (MLP) [143], Regression models [139], Naive 

Bayes [136] and deep neural networks such as convolutional deep neural networks [134, 144]. 

Researchers often report accuracy [143, 145] in their studies. 

In terms of classification of cognitive workload levels, the training data have to be labeled as 

in supervised learning. The most known approach is to define the difficulty of tasks by an expert 

[133, 19]. Another approach is to use a Rash model [146] or a stress-strain model [147, 148] 

which allow to adjust the cognitive workload level to each participant separately [137]. Baldwin 

at. al. [149] mention that two people might be able to perform tasks but with a different 
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workload. However, most of cognitive workload research studies apply an approach based on 

difficulty split by an expert [36, 39, 141, 150]. 

Classification of cognitive workload can be carried out based on psychophysiological signals 

such as electroencephalographic data (EEG) [64, 136], eye-tracking data [104], galvanic skin 

response (GSR) [59] or heart rate [141]. The studies of classification of cognitive workload 

with the combination of two bio-signals such as EEG and eye-tracker can be found in the 

literature as well [135]. In [141] the EEG, EOG and ECG signals were used in the classification 

of drowsiness levels. Wobrock and colleagues [57] tested a model predicting mental effort 

using the EEG, ECG and GSR methods.  

Cognitive workload classification studies have two purposes. The first goal is to find an 

indicator of cognitive workload, for example, cognitive or psychological while the second goal 

is to verify and develop computational methods allowing to predict the levels of cognitive 

workload. 

2.6 Cognitive workload classification based on non-eye-activity data 

The literature overview shows that the estimation of cognitive workload levels can be 

performed based on non-activity data [59, 133, 136, 141] especially based on EEG signals. 

In [136] the authors presented a subject-independent approach in cognitive workload 

classification based on EEG signals using hierarchical Bayes. The three-level classification of 

cognitive workload: low, medium and high was performed. Eight participants took part in the 

experiment. They were asked to perform the Multi-Attribute Task Battery.  

A feature selection process was done using discrete-time short-term Fourier transform (STFT). 

The authors reported mean classification accuracies for separate people from 0.42 to 0.8. 

Khushaba et al. [141] examined 31 people to study the drowsiness of drivers. They asked them 

to perform a driving simulation task. Based on features extracted from the EEG, EOG and ECG 

signals, they created the classification model which is able to estimate one of five drowsiness 

levels. The authors mentioned that EEG is an essential element of their analysis because EEG 

helps in detecting drowsiness. The author tested four different classifiers: LDA, kNN and SVM 

in two implementations (LIBLINEAR and LIBSVM). The researchers published that they 

obtained 95%-97% of accuracy across all subjects. Based on EEG signals the authors in [143] 

created a multiclass classification model to predict one of seven cognitive workload levels using 

the Multilayer Perceptron. 12 participants took part in the experiment. Their task was to solve 

arithmetical tasks [36]. The authors tested the model by using the leave-one-out technique, 

across all participants and obtained 97.53%-98.62% of accuracy. The authors used extracted 
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features based on wavelet-based features. Supler and colleagues [139] published another 

scientific work, presenting the application of EEG signals for prediction of cognitive workload 

levels. They asked 10 participants to perform arithmetical tasks with increasing levels 

of difficulty using Q-value [151] which is used to assess the difficulty of arithmetic tasks. They 

tested the subject-independent and the subject-dependent approaches using the Linear 

Regression Model. The classification accuracy for three defined difficulty levels: easy, medium 

and difficult based on all datasets was accordingly 44.8%, 74.2% and 30.4%. These results 

were reported for classification across all of the participants. The authors tested different 

electrode subsets obtaining the average accuracy between 45.5% and 55.8%. The authors 

conducted within-participant estimation using 10-fold cross-validation and reported the 

average correlation coefficient (CC) 0.9, root mean squared error (RMSE) 0.95 while the  

cross-participant prediction CC was equaled to 0.82 and the RMSE to 1.34. 

Hefrom et al. applied convolutional recurrent neural networks to predict cognitive workload: 

low and high. They tested four approaches based on the subject-independent approach using 

six models such as Long Short-Term Memory (LSTM), multi-Path Convolutional Recurrent 

Neural Network (MPCRNN) etc. The models were trained based on EEG data gathered from 

eight participants during MATB tasks. The author reported the best accuracies for MPCRNN 

from 79% to 86.8% [134]. In [152] Hajinoroozi et al. proposed a channel-wise neural network 

(CCNN) dedicated to EEG signals to predict the  cognitive performance of drivers: good or 

poor. They tested their algorithm based on data gathered from 37 participants performing 

cognitive tasks related to driving  in a simulator. The authors tested their proposed algorithm 

with others classifiers such as SVM, LDA, Convolution Neural Network (CNN) on raw EEG 

data, time-frequency power spectrum and Independent Component Analysis  

(ICA)-transformed data. Within-subject and cross-subject approaches were tested. The authors 

reported 86.08% of accuracy for subject-dependent and 63.39% for subject independent 

approaches for CCNN, trained based on raw EEG data. Wobrock et al. [59] created a model 

which allows to estimate cognitive workload during 3D modelling. They wrote that applying 

combined physiological signals: EEG, EMG, ECG and GSR may cause poor performance, 

most probably due to the curse of dimensionality. They applied the subject-dependent approach 

and obtained an average accuracy of 88.6% for the combination of EEG and EMG in a binary 

classification [59]. Almogbel et al. published two scientific works [133, 153] related to 

detection of cognitive workload of drivers based on EEG signals. The authors tested binary and 

multiclass classifications based on recordings of 24 hours from 1 participant. The participant 

was asked to play a computer racing game. The convolutional neural networks were applied 
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and enabled to obtain a promising accuracy from 93.4% to 97.6%. In [154] the authors 

published a model based on the cross-subject approach which allows to detect the difficulty of 

arithmetic tasks. The publicly available dataset MIT PhysioNet containing recordings from 

36 participants while performing arithmetical tasks was used in studies. The difficulty level: 

easy or difficult was considered on the basis of correct answers per minute. The feature set 

consists of entropy, energy and mean of all the sub-bands. The three classifiers : SVM, Decision 

Tree and Quadratic Discriminant (QD) were tested, achieving the best accuracy of 92% for QD.  

Chakladar et al. [155] also conducted a two-class classification based on EEG data from 

publicly available datasets. The model predicts two states: arithmetical tasks or rest state 

achieving 87% of accuracy. The authors used Long Short-Term Memory (LSTM) and Filter 

Bank Common Spatial Pattern (FBCSP). In [156] the authors created models based 

on the subject-independent approach to predict one of two cognitive workload levels: low 

or high. Becerra-Sánchez and colleagues [156] collected EEG data from eight participants who 

were using a driving simulator. They asked the participants to fill in the NASA scale TLX 

and the Instantaneous Self-Assessment (ISA). In [156] the authors proposed a new feature 

selection model for pattern recognition based on information from EEG – Genetic Algorithms 

and Logistic Regression for Structuring of Information (GALoRIS). The authors reported over 

96% of accuracy using SVM. Han et al. [157] were focused on detecting one of the mental 

states of pilots: distraction, workload, fatigue and normal state. They took into consideration 

not only EEG data but also ECG, respiration and electrodermal activities gathered from eight 

participants. The authors tested several classifiers such as kNN, SVM, LDA, LSTM as 

a benchmark and proposed a method based on multimodal deep learning with convolutional 

neural network and long short-term memory achieving 85.2% of accuracy. 

The following other scientific works [158, 159, 160] have been published recently and are 

related to cognitive workload classification based on EEG data. In [158] the authors conducted 

binary classification of cognitive workload obtaining the best results for Deep Recurrent Neural 

Network (RNN) achieving 92.8% of accuracy. Taori et al. [159] reported up to 97.8% of 

accuracy in multiclass classification using the hidden Markov model (HMM). In [160] the 

authors applied neural networks proposing a multilayer autoencoders ensemble to estimate 

cognitive workload.  
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2.7 Cognitive workload classification based on eye-activity data 

In recent years, the analyses of cognitive workload based on eye-activity data have become 

progressively more popular [117, 135, 161]. In [104] the authors published studies 

of classification of cognitive workload based on eye-tracking data. The eye-tracking data were 

gathered from 20 participants: young and older adults. The authors asked participants to fill in 

questionaries asking questions concerning the feeling about mental and physical fatigue using 

a numerical rating scale. Yamanda and collegous [104] argued that changes in eye-tracking 

processes in older adults have been reported by other researchers. The participants were asked 

to perform cognitive tasks based on a modified version of the paced auditory serial attention 

test [162] (mPASAT). Before and after performing cognitive tasks, the participants watched 

some video clips. The extracted features consisted of saccade related features, fixation related 

features, blink related features, pupil diameter related feature, time-series of gaze allocation 

related features, eye-movement direction related features and saliency-based features [38], in 

total 181 features. The authors created a classification model which predicts one of two levels 

of cognitive workload: fatigue and non-fatigue states. The various feature sets were tested and 

a feature extraction was applied using the Support Vector Machine Recursive Feature 

Elimination (SVM-RFE) [145]. In order to distinguish between fatigue and non-fatigue states 

the Support Vector Machine classifier was applied. The best model based on the subject-

independent approach achieved 91% of accuracy. Appel and colleagues [163] discussed the 

subject-dependent approach and mentioned that classifiers are usually too customized to 

participants based on which were trained. The authors applied the group of the trained 

classifiers which allow to classify cognitive workload of new participants. These classifiers are 

used in a weighted voting system. The researchers used a dataset of stimulus based on n-back 

tasks published in [164]. The authors attempted two and three class classification of cognitive 

workload levels applying cross and within subject approaches based on pupil data gathered 

from 25 participants. The following features were extracted: median and maximum of pupil 

diameter, average blink duration, number of blinks per minute, and the index of Cognitive 

Activity-events per minute. The index of Cognitive Activity (ICA) was described in [165] as 

the measure for detecting changes in pupil diameter. In classification studies Extra-Trees were 

applied because of lower overfit tendency and less computational complexity. Additionally, 

this model enables to obtain feature importance. The authors wrote that the highest feature 

weight had median pupil diameter and the least feature weight was assigned to average blink 

duration. The low and high cognitive workload levels are the most distinguishable in subject 
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dependent and independent approaches. The results of classification of two levels of cognitive 

workload are 69.8% - 82.4% of accuracy for the subject-dependent approach and 54%-76.8% 

of accuracy for the subject-independent approach. 

In [161] the authors classified cognitive workload of drivers under critical situations. 

They created a model which predicts one of two cognitive levels: low and high, based on the 

cross-participant approach. 16 participants took part in an experiment, where the participants 

were  asked to drive in a simulator based on virtual reality (VR) and augmented reality (AG) 

technology reflecting real driving. The authors labelled the cognitive workload levels: low or 

high based on defined critical time frames. The set of extracted features included pupil 

diameters and performance measures such as inputs of accelerator pedal, brake pedal and 

steering wheel. A two class classification was tested with various classifiers: SVM, Decision 

Tree, Random Forest and kNN. Each participant was evaluated on a trained model based on the 

rest of the participants. The best classification result was obtained by SVM – 80.7% of 

accuracy. The authors reported not only accuracy but also precision, recall and F1-score. 

Fridman et al [166] carried out an extensive experiment including 92 participants. Data in the 

form of face images were collected during an on-road experiment based on N-back tasks on 

a highway. Two models in the subject-independent approach were trained: Convolutional 

Neural Network 3D (3D-CNN) based on an image and the Hidden Markov Model (HMM) 

based on pupil position and blink state extracted from an image. In the three class classification 

the model based on 3D-CNN obtained better results, the accuracy reached 86.1% [166].  

In [142] the authors performed three class classification based on 9 features extracted from an 

eye-tracker. The feature set includes features such as pupil diameter change, number of 

saccades, saccade duration, number of fixations, fixation duration, number of blinks, blink 

duration, 2D entropy, 3D gaze entropy. They created a model based on  

the cross-participants approach which enables to predict one of three cognitive levels: low, 

medium and hard level of cognitive workload during driving in a simulator. 36 participants 

took part in the experiment. The participants were asked to perform three scenarios prepared 

by The Society of Automotive Engineers and three multi-modality secondary tasks. The 

NASA-TLX scale was used in the experiment to show the influence on mental workload and 

based on this scale after each scenario the data were labelled with one of three labels: low, 

medium or high. Chen at el. applied the kNN classifier to create a model achieving 88.9% of 

accuracy based on 5 features: pupil diameter change, number of saccades, saccade duration, 

number of fixations and 3D gaze entropy. Farha and colleagues [167] published a study about 

using eye-tracking data in the assessment of cognitive vigilance. The model predicts one of two 
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levels: alertness and vigilance during Stroop Color Word Task (SCWT). Various classifiers 

were tested and the higher accuracy of 76.8% was reported for SVM. The author proposed 

a preprocessing pipeline to process the eye-tracking data: baseline and artifacts correction. 

The set of extracted features consists of fixation duration, pupil size, saccade duration, saccade 

amplitude, saccade velocity and blink duration. In [168] the authors presented the  method of 

estimation of cognitive workload during surgical tasks. Wu et al. [168] published a research 

paper claiming that eye-tracking metrics are sensitive to cognitive workload changes. The 

authors carried out an experiment asking eight trainees to perform simulated tasks. Eye-tracking 

features, performance scores and the NASA-TLX rate were taken into consideration in this 

study.  

The model based on the Naive Bayes algorithm predicts low or high level of cognitive workload 

based on 9 features: sex, trainee level and seven eye-tracking features consisting of pupil 

diameter mean and standard deviation, gaze entropy, fixation duration and eyelid closure 

percentage. The authors noticed that pupil diameter and gaze entropy allow to differentiate 

cognitive workload levels. If the level of cognitive workload increases, these two metrics 

increase as well. The authors reported 84.7% of accuracy in the subject–independent approach. 

Bitkina and colleagues [169] presented a scientific paper about the classification of cognitive 

workload during driving based on eye-tracking metrics. The authors extracted the following 

eye-tracking metrics: gaze fixation, duration, pointing, and pupil diameter and reported that 

gaze pointing, fixation duration and pupil diameter are good indicators of driving workload. 

The Logistic Regression Model was applied to predict low or high workload levels across 

7 NASA-TLX categories  achieving 83.5% - 95.9% of accuracy. Each participant was asked to 

fill in the NASA-TLX questionnaire and then label the  data: low or high levels were based on 

the NASA-TLX scores. Zahabi et al. published a scientific work dedicated to the classification 

of mental states during driving based on the drivers’ behavior and eye-tracking measures [170].  

In [34] the researchers published their study concerning the evaluation of interfaces 

for applications in the context of the users’ cognitive workload. They carried out an experiment 

engaging 50 participants between the ages of 20 to 60+ to perform five different tasks on mobile 

phones. The authors conducted a binary classification predicting low or high levels of workload 

and a multiclass classification consisting of 3 classes: low, medium and high and 5 class 

classification: very-low, low, medium, high and very-high. Cognitive workload levels were 

measured based on behavioral measures such as time and number of steps taken on a task, tasks 

completed and eye-tracking related features such as number of fixations and saccades, fixation 

and saccade rate, average, standard deviation and maximum fixation duration, average and 
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standard deviation of pupil dilatation. Among the eight classifiers, Random Forest, Support 

Vector Machine and k-Nearest Neighbors were tested for each participant. The SVM-Recursive 

feature Estimation method was applied in the feature selection process. The best results for 

each type of classification were achieved by Random Forest: 86.8% for 2 class, 74% for 3-class 

and 62.8% for 5-class. The authors noticed that ageing has an influence on cognitive workload 

during task performance on mobile phones.  The following features are considered as valuable 

parameters for cognitive workload: age, fixation and saccade number, average of pupil 

dilatation. The performance measures included Reaction Time and the Inverse Efficiency 

Score. Ktistakis et al. [39] pointed out that there are few publicly available datasets containing 

cognitive workload observations. They carried out an experiment involving 47 participants who 

performed tasks with different levels of difficulty and of a varying duration related to four 

cognitive workload levels. The participants were asked to find a selected object across nine 

puzzles and as the secondary task they were asked to perform arithmetical operations. The 

authors created a dataset called COLET – Cognitive Workload Estimation based on eye-

tracking data. The eye-tracking feature set includes fixation related features, saccade related 

features, peak saccade velocity features, blink related features, pupil diameter features. The 

NASA-TLX scale was used to assess the cognitive workload level. The following classifiers 

were tested: Random Forest, Linear Support Vector Machine, Ensemble Gradient Boosting, 

Logistic Regression etc. The authors labelled data based on two approaches: each activity was 

related to one cognitive workload level, in total 4 levels, the labels were assigned by using 

scores from the NASA scales, in total 3 levels: low, medium and high. The authors tested binary 

and multiclass classifications: 3-class and 4-class of cognitive workload level for two 

mentioned approaches. The binary classification was performed for each pair of classes e.g, 

low vs high, low vs medium, first task vs second task etc. The achieved results were among 

52% to 98% of accuracy based on cross participant approach getting the accuracy over 88% for 

2 class classification: low and high level of cognitive workload. In [171] the authors examined 

cognitive workload of operators in an oil refinery using eye-tracking data. Shi et al reported 

that they were able to predict the cognitive workload using the Logistic Regression model.  
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2.8 Cognitive workload classification based on combination  

of eye-activity and non-eye-activity data 

In the literature cognitive workload classification studies presenting the combination  

of eye-activity data and other types of data can be found [135, 152]. Lobo et al. [135] classified 

cognitive-workload based on eye-tracking and EEG data. They performed multiclass 

classification based on the subject-independent approach predicting one of three levels of 

cognitive workload. They carried out an experiment where 21 participants got involved and 

were asked to perform tasks. 21 features were extracted: alpha related features, theta related 

features, eye-related features such as right eye closure, left eye closure, right pupil diameter, 

left pupil diameter, performance related feature – correctness [38]. One of the tested approaches 

was that one participant was used in the test while others were used in the training process. The 

authors applied kNN and obtained a global average F-score equaling 0.332. The authors 

attempted to transform the multiclass classification into a binary problem joining low and 

medium levels together or medium and high together. In [152] the authors conducted 

an experiment involving 14 participants: both experts and novices in operating a military land 

platform in normal and dangerous conditions. They wanted to investigate the behavioral and 

neurophysiological differences among novices and experts. The data were gathered by using 

fNIRs and a mobile eye-tracker. The eye-tracking features include fixation durations and 

saccadic amplitudes while based on fNIRs data the following features were extracted: 

oxygenated hemoglobin (HbO), deoxygenated hemoglobin (HbR) and total hemoglobin (HbT). 

The combination of HbT and fixation duration features allowed to obtain 91% of accuracy in 

the two class classification using LDA based on the subject-independent approach.  

Ziegler et al. [41] published studies based on the subject-independent approach to estimate 

cognitive workload. 35 participants took part in the experiment in which they were asked to 

play two games with different levels of difficulty. The authors measured EEG, Heart Rate, and 

eye movements and pupillometry using an eye-tracker. The distribution of scores obtained in 

the games played on the easy and hard levels were compared. The SVM and Deep Belief 

Network were used in the research. The authors proposed to create a group of classification 

models where each model was trained on similar data. It can ensure high accuracy without 

creating each model for each individual participant. They doubt that one general classification 

model can properly estimate cognitive workload. In [172] the researchers proposed a similar 

approach as in [163], combining the subject-independent and the subject-dependent 

approaches. The subject-specific models were used as general classifier across participants for 
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new participant data. Each subject-specific classifier predicts the cognitive workload level and 

then similarities between participants are calculated and classifier weights are taken into 

account. The models are trained based on physiological data: eye tracking data, heart rate 

and behavior data. The data were collected from 47 participants during a real-time emergency 

simulation game containing scenarios of three difficulty levels where participants had to save 

people from emergency situations. Apart from eye-tracking related features such as fixations, 

saccades, pupils, heart rate and the game related features defined as actions per second were 

extracted. In total eight features were used. Two class classification based on Extra-Trees was 

performed allowing to predict low or high levels of cognitive workload. The mean accuracy for 

the subject-independent approach equals 70.14%-79.03%, while the mean accuracy of the 

cross-participant classification is between 67.92% - 80.56%. Cross-validation was applied in 

the evaluation process. In [150] He and colleagues estimated the cognitive workload of drivers 

using eye-tracking, heart rate and galvanic skin response. Six eye-tracking features were  

eye-closure raw data, blink duration, blink frequency, pupil diameter, eyeball rotation speed 

and PERCLOS – the percentage of eyelid closure over pupil. The authors examined machine 

learning models in estimating one of three cognitive workload levels. 33 participants took part 

in experiment and they were asked to perform tasks of various difficulty levels: no difficulty, 

lower difficulty and higher difficulty based on the n-back task approach. The well-known 

classifiers such as kNN, SVM, Random Forest, Feedforward neural Network were tested in the 

subject-independent approach. The author reported that the the most accurate results were 

obtained based on the combination of eye-tracking, heart rate and galvanic response skin 

features achieving 97.8% of accuracy for Random Forest. Classification of cognitive workload 

in driving is one of the most frequently discussed topic recently in [173] as well. 
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2.9 Interpretable machine learning classification 

Nowadays, machine learning is widely applied in various fields [174] such as object 

recognition, verification  and detection [175, 176], classification, analysis or recommendation. 

One of the methods based on machine learning is applying interpretable machine learning. 

Interpretable machine learning methods allow to perform feature analysis and understand the 

classification process. In [177] the authors predicted mental workload using an interpretable 

machine learning model based on the Gaussian Process Regression and the Multiple Linear 

Regression. EEG signals were gathered during the experiment. The authors stated that 

interpretability allows to carry out feature selection which leads to notable decrease 

of computational complexity. Cui et al. [178] presented a scientific paper related to the 

convolutional neural network in the detection of drowsiness in drivers based on EEG signals. 

They applied the interpretable Convolutional Neural Network to find similar EEG features 

across all participants. The authors used the Class Activation Map [47] to detect the regions in 

the signal which have the highest impact on classification and thanks to this technique 

the feature can be analyzed. The authors reported 73.22% of accuracy in the subject-

independent binary classification. In [179] the authors applied an interpretable machine 

learning model based on the Deep Convolutional Neural Network using EEG signals to analyze 

and understand which cortical regions are more relevant in hand movements. In [180] the 

authors used interpretable machine learning to classify brain states during visual perception 

using deep learning models. The authors applied the Shapley Additive Explanations [181] 

technique for feature importance estimation allowing to create feature rankings. This method 

gives a great explanation of the classification results for deep learning models. Moreover, the 

use of interpretable machine learning does not interfere with the use of other approaches in 

machine learning. The fuzzy aggregation operators can be applied to improve the quality of 

classifiers taking part in classification process. 

Such approach allows to take into consideration results of several classifiers returned separately 

and then the use of proper aggregation functions enables to aggregate their results [182]. As an 

aggregation function, one can use various types of mean, Choquet integral [183, 184] or 

triangular norms [185]. The aggregation functions are applied in many problems for example 

in face recognition problems [186, 187]. 
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2.10 Conclusion from the State-of-the-Art Overview 

The literature review shows an extensive interest of the scientific community towards cognitive 

workload studies. The topic of cognitive workload estimation is important nowadays and can 

find its application in many areas. Researchers pay significant attention to various aspects 

describing cognitive fatigue. As it was observed in the course of the literature review, features 

for cognitive workload estimation are extracted mainly from EEG signals. 

Electroencephalography together with its advantages has several features which make it 

inconvenient in practical use: the signals registered by EEG are highly prone to noise pollution. 

Moreover, its practical application is highly complicated due to the fact that the preparation for 

signal registration can last over 30 minutes. Owing to that fact, I decided to use an eye-tracker 

as the primary source of features for analysis.  

Various approaches to cognitive workload estimation can be found, but the common part of the 

vast majority of the reviewed articles is the following: authors tend to emphasize the 

quantitative results of cognitive load estimation and prediction. Often the main contribution of 

an article consists of achieving high values of a chosen machine learning metric. This can be 

especially notable in case of newly emerging deep learning models that allow to achieve high 

quality results, but work as black-boxes, rendering their understanding highly complicated. In 

contrast with the reviewed approaches, the present work extensively applies possibilities of 

interpretable machine learning models for deeper understanding of the cognitive processes 

underlying the phenomenon of cognitive workload. Thanks to interpretable models, I was able 

to indicate the most valuable features that have the highest impact on classification. 

Another valuable contribution of my work is the fact that I have utilized  

the subject-independent approach which, combined with interpretable machine learning, can 

help in understanding the most general patterns accompanying cognitive fatigue. To the best of 

my knowledge, there are no other examples of application of ex-Gaussian statistics for 

describing eye-tracking features applied for cognitive-workload estimation. I have decided to 

use  ex-Gaussian statistics to analyze not only temporal eye-movement features but also  

non-temporal features, such as saccade amplitude. Fuzzy aggregation is a tool which allows to 

affectively combine the predictions of various classification models. To the best of my 

knowledge, my work presents the first example of fuzzy aggregation in cognitive workload 

estimation.  
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3 Contributions 

The contributions concerning Informatics and Cognitive Science are presented in section 3.1 

and 3.2. All contributions to Informatics in section 3.1 are related to the classification process 

of cognitive workload levels based on eye-tracking data. Contributions to Cognitive Science 

described in section 3.2. are related to eye-tracking feature analysis. The scientific papers 

describing these contributions in detail can be found in section 6, where they are attached in 

their full versions. 

3.1 Contributions to Informatics 

1. Method for subject – independent classification of cognitive workload based on 

eye-tracking and user performance features 

This contribution refers to objective 1. My research has shown that eye-tracking and 

user performance features based on Digit Symbol Substitution Test (DSST) can be used 

to correctly classify cognitive workload. The following twenty eye-tracking and user 

performance features were used: 

• fixation-related features: fixation-number, mean duration of fixation, standard 

deviation of fixation duration, maximum fixation duration, minimum fixation 

duration.  

• saccade-related features: saccade number, mean of blink duration of saccades, 

mean amplitude of saccades, standard deviation of saccades amplitude, 

maximum saccade amplitude, minimum saccade amplitude. 

• blink-related features: blink number and mean of blink duration. 

• pupillary response features: mean of left pupil diameter, mean of right pupil 

diameter, standard deviation of left pupil diameter, standard deviation of right 

pupil diameter 

• user performance features:  related to cognitive DDST test. The features are 

number of errors, mean response time and response number. 

A binary subject-independent classification was conducted where the first class 

contained observations with a low level and the second class contained observations 

with a high level of cognitive workload. The most accurate results were achieved with 

the linear Support Vector Machine (SVM) – 0.97. The feature selection process allows 
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to obtain better results using a smaller number of features.The cognitive test used in the 

study is sensitive to changes in cognitive functioning, and correlates with the ability to 

perform everyday tasks. Eye-tracking features are useful in cognitive workload 

analysis. This non-invasive method can be applied to measure the level of mental 

fatigue. The method takes into account memory and concentration of the participant.  

Nowadays, the subject-independent approach becomes increasingly more popular. This 

approach has the potential for predicting cognitive workload because it ensures a high 

quality of classification, regardless of conditions such as age or habits of the examined 

person. The model is usually applied to the data that are taken from a new participant. 

Contrary to the majority of other sources presented in scientific literature, this research 

does not limit eye-tracking features to pupillary related features but also employs a vast 

set of other eye-tracking features, including saccades related features, fixation related 

features, blink-related features and performance related features. This study was one of 

the first where results of the DSST test were applied for cognitive workload 

classification. 

The presented contributions can be found in an article titled “Binary Classification of 

Cognitive Workload Levels with Oculography Features” written by Monika 

Kaczorowska, Martyna Wawrzyk and Małgorzata Plechawska-Wójcik. 

2. Interpretable multiclass subject-independent machine learning model predicting 

cognitive workload levels. 

This contribution refers to objective 2. I have created an interpretable machine learning 

model that allows to predict cognitive workload levels using Logistic Regression based 

on following features: mean amplitude of saccades, standard deviation of fixation 

duration, fixation number, fixation number, saccade number, mean response time and 

response number. This model predicts one of the three levels of cognitive workload: 

low, medium and high. This model has achieved 0.97 of F1 measure using only seven 

out of twenty features. All of the features were mentioned in the previous section and 

in the first publication of this thesis.  

The interpretable machine learning approach allows to generate a feature ranking 

and to understand the reasons for the decisions made by a machine learning model. 

A set of binary classifiers was used to obtain the ranking for each level of cognitive 
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workload. The feature ranking was obtained based on the Logistic Regression model 

for each class. The ranking can be analytically interpreted using the weight assigned to 

each feature. The analysis of the importance of processed features using interpretable 

machine learning techniques allows for a deeper understanding of mental processes. 

This approach enables the analysis of individual components of the model along with 

the selection of features that best distinguish each level of cognitive workload.  

To the best of my knowledge, no previous work presented an application of interpretable 

machine learning to cognitive workload estimation. Researchers often performed binary 

classification instead of multiclass classification. One of the valuable outcomes of the 

presented approach is to gain the interpretability of features in the process of the  

subject-independent approach. The results show that the interpretable machine learning 

approach can enable to obtain better understanding of features as well. 

The presented contributions can be found in the article titled "Interpretable Machine 

Learning Models for three-Way Classification of Cognitive Workload Levels for  

Eye-Tracking features" written by Monika Kaczorowska, Małgorzata  

Plechawska-Wójcik and Mikhail Tokovarov. 

3. Multiclass subject-independent machine learning model predicting cognitive 

workload levels using fuzzy aggregation functions. 

This contribution refers to objective 3. I have created a machine learning model using 

the Choquet fuzzy aggregation function that allows to predict cognitive workload levels 

based on all features mentioned in the first publication of this thesis. The model based 

on classifier ensembles has achieved higher accuracy levels than separate classifiers. 

The research in general shows a promising perspective: improvement of classification 

performance with appropriate combination of individual model results. The model 

predicts one of the three levels of cognitive workload: low, medium and high. 

Aggregation functions allow to improve the classification model by applying 

the knowledge cumulated in the parameters of the model. This approach is based 

on applying the probabilities of belonging to each cognitive workload class from 

original multiclass classification which are the inputs of  the aggregation functions.  
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The literature review shows that using fuzzy aggregation methods for cognitive 

workload level classification is a new approach. The fuzzy aggregation methods made 

it possible to obtain better results of classification. The results prove that the use of the 

generalized Choquet integral method ensures improvement even if the initial individual 

classifiers provide weak results. 

The presented contributions can be found in an article titled "On the Improvement of 

Eye Tracking-Based Cognitive Workload Estimation Using Aggregation Functions" 

written by Monika Kaczorowska, Paweł Karczmarek, Małgorzata Plechawska-Wójcik 

and Mikhail Tokovarov. 

4. Multiclass subject-independent machine learning model predicting cognitive 

workload levels based on Ex-Gaussian statistics. 

This contribution refers to objective 3. I have created a classification model based on 

features related to ex-Gaussian parameters which are proper model describing 

distributions of eye-tracking features. These 16 features are: amplitude of saccade, 

number of saccades and saccade duration, number of fixations and fixation duration, 

and number of blinks, number of correct answers and single trial response time. Among 

the listed features, the number of saccades, fixations, blinks and correct responses were 

extracted for the specific time intervals (10s period). Information processing shows 

variable dynamics and temporal changes in its efficiency hence the period of 10s has 

been chosen for some features. 

The Random Forest model has achieved the best result - almost 96% of accuracy and 

F1 measure based on all features in the multi-class subject-independent classification of 

cognitive workload. The model predicts one of the three levels of cognitive workload: 

low, medium and high. 

The literature review shows that authors did not use the features calculated based on 

Ex-Gaussian statistics in the classification process of cognitive workload.  

The ex-Gaussian statistics describes eye-tracking related features. Features based on ex-

Gaussian characteristics associated with cognitive workload data can be used as the 

input to a classification model. The advantage of using the ex-Gaussian distribution is 

not only the possibility of obtaining very accurate results but also taking into account 

the distributional features. These features are usually deleted during analysis according 
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to a parametric approach. However, they turn out to be the most distinguishing in case 

of the levels of the cognitive workload process. As for eye tracking features with the 

highest classification powers, the majority cover the tau parameter, for example related 

to saccadic features. 

Additionally, other classifiers were tested and using the Logistic Regression and SVM 

the feature ranking was obtained. It allows to analyze the features in terms 

of psychological and cognitive data together and separately. The presented ranking is 

based on interpretable machine learning and unsupervised learning with clustering. The 

appliance of K-means algorithm allows to obtain the set of the most valuable features 

based on feature weights. 

The presented contributions can be found in a scientific paper titled "Automated 

Classification of Cognitive Workload Levels Based on Psychophysiological 

and Behavioural Variables of Ex-Gaussian Distributional Features" written by Monika 

Kaczorowska, Małgorzata Plechawska-Wójcik, Mikhail Tokovarov and Paweł 

Krukow. 

3.2 Contributions to Cognitive Science 

Cognitive factor analysis based on interpretable machine learning models  

This contribution refers to objective 2. My studies suggest further directions regarding 

continuation research allowing for more precise recognition of the phenomena and changes 

during the cognitive process. My research might provide new insights into understanding 

cognitive factors analysis and the dependence between eye-tracking and cognitive features. 

Interpretable machine learning classification could help to understand and try to explain the 

mental fatigue in the context of the cognitive process. It allows to obtain the ranking of features 

and conduct deep analysis of cognitive features. Separate feature ranking for each level of 

cognitive workload allowed to define the most valuable features for each level of cognitive 

workload. In my hypothesis I state that the set of the most valuable features allowing 

to distinguish between low and high levels include: mean amplitude of saccades, mean response 

time, standard deviation of fixation duration, response number, fixation number, saccade 

number.  

It also might allow to develop more effective monitoring of cognitive workload in the learning 

process as well as in the case or neuropsychiatric diseases. 
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The presented contributions can be found in a scientific paper titled “Interpretable Machine 

Learning Models for three-Way Classification of Cognitive Workload Levels  

for Eye-Tracking features” written by Monika Kaczorowska, Małgorzata  

Plechawska-Wójcik and Mikhail Tokovarov. 
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4 Conclusion 

The measurement of cognitive workload levels is an essential part of cognitive science. 

The application of machine learning algorithms allows to automate the classification process 

of the cognitive load. The three main objectives in section 1 were defined and achieved: 

investigating whether the features based on eye-tracking and user performance can be used to 

classify cognitive workload levels, development of an interpretable machine learning model 

that allows classification of cognitive workload levels, as well as improvement of the quality 

of cognitive workload level classification. In the presented studies, the subject-independent 

approach was applied and both binary and multiclass classification of cognitive workload levels 

was performed. The results are promising and enable to understand which features are the most 

informative in the examined process. Understanding the decisions made by machine learning 

algorithms is more profitable and valuable than treating them as a black box. Introducing the 

Ex-Gaussian statistics was beneficial in the research into the multiclass classification 

of cognitive workload levels. The application of aggregation operators is useful, especially if 

the basic feature selection is applied. The proposed models could be successfully used in 

practice, among others, through obtaining high classification accuracy. 

Nevertheless, the results described in this thesis have limitations. The level of cognitive 

workload was fixed for all participants. A preliminary study was used to define the cognitive 

workload levels: low, medium and high. The medium level was assigned to the original version 

of the DSST test containing nine symbols and lasting 90s. The low and high levels of cognitive 

workload were defined based on a pilot study in the form of a participant interview. There exist 

other methods that allow to evaluate cognitive workload levels for each participant individually. 

For example, the NASA-TLX scale allows to assign a proper cognitive workload level 

depending on an individual’s cognitive ability. Moreover, it is unclear whether an individual 

scale of cognitive workload could be applied to train a classification model that is  

subject-independent. However, taking into consideration the level of difficulty for each 

participant may provide new insights into the results. Additionally, it is worth noting that the 

differences in education, age and performed work can have an impact on the analysis. In the 

presented research, a homogeneous group of participants took part in the experiment. The group 

consisted of students from technical specialties.  

The aspects, which were mentioned as limitations in the last paragraph, will be considered as 

a starting point in future works. The NASA-TLX scale will be applied to assess the cognitive 

workload difficulty level. The creation of an original questionnaire adjusted to performed tasks 
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is planned as well. Representatives from various professional groups will be asked to take part 

in the experiment in order to make the examined group more diverse. Moreover, two additional 

classification approaches will be tested. The first one will include a combination of the 

interpretable machine learning approach along with aggregation operators. The second 

approach is based on applying neural networks and their interpretability aspect which is 

described in the newest scientific papers. 

To sum up, this dissertation can be useful to researchers looking for ideas and techniques to 

study cognitive workload. This dissertation includes a literature overview concerning cognitive 

workload, eye-tracking and classification problems.  
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6 Scientific papers comprising the thesis  

6.1 Binary Classification of Cognitive Workload Levels with Oculography 

Features 

1. Details 

This article was written by Monika Kaczorowska, Martyna Warzyk, and Małgorzata 

Plechawska-Wójcik and published in Proceedings of Computer Information Systems 

and Industrial Management: 19th International Conference, CISIM 2020 Bialystok, 

Poland, October 16–18, 2020. The article is worth 40 points according to the list of the 

Polish Ministry of Science and Higher Education. 

2. Abstract 

Assessment of cognitive workload level is important to understand human mental 

fatigue, especially in the case of performing intellectual tasks. The paper presents a case 

study regarding binary classification of cognitive workload levels. The dataset was 

received from two versions of the digit symbol substitution test (DSST), conducted on 

26 healthy volunteers. A screen-based eye tracker was applied during the examination 

gathering oculographic data. The DSST tests results such as total number of matches 

and error ratio were also applied. The classification was performed with several 

different machine learning models. The best accuracy (97%) was achieved with the 

linear SVM classifier. The final dataset for classification was based on nine features 

selected using the Fisher score feature selection method.
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Abstract. Assessment of cognitive workload level is important to understand

human mental fatigue, especially in the case of performing intellectual tasks.

The paper presents a case study on binary classification of cognitive workload

levels. The dataset was received from two versions of the digit symbol substi-

tution test (DSST), conducted on 26 healthy volunteers. A screen-based eye

tracker was applied during an examination gathering oculographic data. DSST

test results such as total number of matches and error ratio were also applied.

Classification was performed with several different machine learning models.

The best accuracy (97%) was achieved with linear SVM classifier. The final

dataset for classification was based on nine features selected with the Fisher

score feature selection method.

Keywords: Cognitive workload � Binary classification � SVM � Eye-tracking
signal

1 Introduction

According to the literature, the term “cognitive workload” is a quantitative measure of

the amount of mental effort necessary to perform a task [1]. Estimation of cognitive

workload is of great importance in understanding human mental fatigue related to

performing tasks of various complexity requiring different concentration level. More-

over, assessment of mental effort might be useful in the process of modeling infor-

mation processing capabilities.

The Digit Symbol Substitution Test (DSST) [2, 3], known from over a century ago,

was introduced as a tool to understand human associative learning. Currently it is one

of the most commonly used tests in clinical neuropsychology to measure cognitive

dysfunction. Its popularity is related to its brevity and high discriminant validity [4].

The DSST enables to check the processing speed, memory and executive functioning

of the patient. It is prevalent in cognitive and neuropsychological test batteries [5, 6].

Originally, the DSST was designed as a paper-and-pencil cognitive test presented on a

single sheet of paper.

In the present study, user performance in a computerised version of the DSST test is

analysed. The DSST was performed on a homogeneous group of participants,

© Springer Nature Switzerland AG 2020
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composed of twenty six healthy students aged 20–24. The data analysed in the study

originate from two boards of the DSST differing in their difficulty.

The literature proves that eye-tracking features might be applied in prediction of

cognitive states. Benfatto et al. [7] used eye-tracking combined with machine learning

in detecting psychological disorders. In [8] and in [9] eye-movement features were

applied in the classification of visual tasks. Eye-tracking was applied in order to assess

the workload and performance of skill acquisition [10]. Other studies examined cog-

nitive workload using eye-tracking features among such groups as surgeons [11] or

pilots [12].

In statistical and correlation analysis the parameters such as pupil dilation or pupil

diameter size are the most often used to distinguish the state of cognitive workload [13,

14]. Additionally, such features as fixation rate and duration, saccade duration and

amplitude or the number of blinks can be used in statistical analysis in the context of

cognitive workload [15, 16].

The aim of the study is to verify whether features based on eye tracking might be

used to classify cognitive workload level in the DSST test. The evaluation is based on

eye-tracking features (fixations and saccades, blinks and pupil size) and test results

(total number of matches and error ratio). The novelty of the paper is focused on the

classification rate of cognitive workload level based on eye-tracking features.

The rest of the paper is structured as follows. The research procedure covering the

computer application, equipment and experiment details is discussed in Sect. 2. Sec-

tion 3 presents the methods applied in data processing, classification and statistical

analysis procedures. The results are discussed in Sect. 4, whereas conclusions are

presented in Sect. 5.

2 The Research Procedure

2.1 The Computer Application

The Digit Symbol Substitution Test (DSST) applied in the study was a computerised

version of the DSST developed on the basis of the original paper-and-pencil cognitive

test [15, 16]. The test requires a subject to match symbols to numbers according to

a key located at the bottom of the screen. A symbol is assigned by clicking it on the

key. A currently active letter is marked with a graphical frame. After assigning a

symbol to a letter, the frame is moving to the next letter. The subject matches symbols

to subsequent letters within specified time. Subsequent letters were generated ran-

domly, with repetitions and continuously within a defined period of time.

The number of symbols and the time is defined in the application settings. In the

case study two DSST parts were applied:

– 4 different symbols to assign; the test lasted 90 s.

– 9 different symbols to assign; the test lasted 180 s.

The application was developed in Java and is operated using a computer mouse. The

interface of the computerised version is presented in Fig. 1.
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2.2 Setup and Equipment

The experiment was conducted in a laboratory, in a testing room illuminated with

standard fluorescent light. Eye activity was recorded using screen-based eye tracker

Tobii Pro TX300 (Tobii AB, Sweden). The Tobii Pro TX300 uses video-oculography

based on the dark pupil and corneal reflection method. It collects binocular gaze data

with the frequency of 300 Hz.

The experiment was designed in Tobii Studio 3.2, the software compatible with the

Tobii Pro TX300 eye tracker, dedicated for preparing and analysing eye-tracking

experiments. Visual stimuli were presented on a separate monitor (23” TFT monitor at

60 Hz). During the experiment the participants were seated at a distance from the

screen between 50 and 80 cm. The differences were insignificant for the results and

they were depended on individual participant preferences (a comfortable position for

working with a computer) and All participants were tested using the same software and

hardware settings.

2.3 Experiment

The experiment was conducted in a dedicated laboratory with eye-tracker and com-

puter. The 26 participants spanned the age range of 20 to 24 (mean = 20.77 years, std.

dev. = 1.65). A single participant was examined for approximately 15 min. The

experiment was divided into two parts, with calibration before each part.

At the beginning of each session a 9-point built-in calibration procedure was run on

the eye-tracker. Then, the participants were provided with the instructions on the

screen, in which they were asked to make as many matches as possible by assigning

symbols to the appearing letters. The assigning was to be done by clicking a key with a

Fig. 1. The interface of the application.
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particular symbol. Next, the participants completed two parts of the DSST using the

computer application. Each part had a different number of symbols to assign and lasted

a different amount of time. At the beginning of each part, a short trial, consisting of 9

symbols, was run to familiarise the participants with the task. After the trial, the proper

test was started. Figure 2 presents the procedure of the experiment.

2.4 The Data Set

The dataset consists of 52 files generated from the eye-tracker and 52 files from the

application. The total number of files generated per participant is (equal to) 4:2 files

from the eye-tracker and 2 from the application. The data from each task were saved in

a separate file

3 Applied Methods

3.1 Data Processing

Figure 3 presents the procedure of data processing. The procedure of data processing is

divided in several main steps: data acquisition, data pre-processing, feature extraction,

feature selection and the classification process.

The pre-processing step consisted of data synchronisation. Four files were gener-

ated for one participant. Since two files were generated for each part: one file from the

computer application and one from the eye-tracker, the synchronisation procedure was

necessary to prepare the dataset. The data from the two files were synchronised on the

basis of the time stamps contained in the files. One file per part for each participant was

created as the result of the synchronisation. After pre-processing, the feature selection

step was performed, during which twenty features were extracted. These features are:

the mean, standard deviation, maximum value, minimum value, duration of fixations

and saccades and the maximum amplitude of saccades. The mean and standard devi-

ation were calculated for the left and right pupil. The number of blinks and duration of

Fig. 2. The procedure of the experiment.
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a blink were also extracted. Additionally to eye-tracking features, a DSST-based set of

features were obtained: number of responses, number of error responses and mean time

of responses. The next step in the procedure of data processing was feature normali-

sation, which was necessary to ensure a uniform scale of the features.

In order to reduce the input dimension number and ensure higher classification

accuracy, feature selection was performed. Two methods of feature selection were

applied in the analysis:

– Fisher score feature selection method [17] to select the most valuable features, and

– Principal Component Analysis (PCA) [18] to find principal components with high

variance.

The following classification models were applied: The following features appeared

at the top of the ranking: standard deviation of the right pupil, the mean of the left

pupil, standard deviation of the saccades, the mean blink duration and the number of

blinks.

After the selection feature step was completed, the final step – training and clas-

sifying was started. The following classification models were applied

– Support Vector Machine (SVM) with linear kernel

– Support Vector Machine (SVM) with polynomial (poly) kernel

– Support Vector Machine (SVM) with radial based function (rbf) kernel

– K nearest neighbours (kNN)

– Random forest

Fig. 3. The procedure of data processing.
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The dataset was shuffled in random order and divided into train and test datasets.

The test part was 20% of the entire dataset. After the learning process, the correctness

of the classifier was tested using the test dataset.

3.2 Statistical Analysis

The Kolmogrov-Smirnov (K-S test) test was performed for all 20 features to determine

whether the variables have a normal distribution. In order to compare the mean values

from two DSST parts, the independent-samples t-Test was used. Furthermore, the

Pearson correlation coefficients between each features was calculated. The analysis was

performed in the MATLAB software using the Statistical and Machine Learning

Toolbox.

4 Results

4.1 Classification Results

A two class classification was conducted. Observations with a low level of cognitive

workload were labelled as class 1, whereas high level observations were grouped in

class 2. Two approaches are presented below: the first one is based on the feature

selection method and the second resorts to the application of the PCA algorithm. The

following classifiers were chosen: SVM with linear kernel, SVM with poly kernel,

SVM with RBF kernel, KNN and random forest. Each learning process was repeated

200 times. The number of repetitions was established on the basis of simulation of the

results presented in Fig. 4. It can be observed that 200 repetitions is enough for the

partial standard deviation of the partial mean (1) of classification accuracy to reach the

value of 0.01. The partial mean of classification accuracy is defined as:

mean accð Þi¼
1

i

Xi

j¼1
accj; i 2 N; i� n ð1Þ

The partial standard deviation of std mean accð Þð Þi is defined as the standard devi-

ation of first i partial means.

Fig. 4. Selection of repetition number – standard deviation of mean accð Þ.
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Table 1 presents the results obtained for selected classifiers for 9 features selected

by the Fisher score based feature selection method. The accuracy was calculated for

each classifier. The best accuracy score was obtained for the SVM classifier with linear

kernel – 0.94 and for random forest – 0.93. The worst result was obtained for the SVM

classifier with poly kernel – 0.79. Tables 2 and 3 present the mean confusion matrix for

the SVM with linear kernel and for random forest. Table 2 shows that on average 5.33

observations coming from the first class were classified in the proper way and only

0.285 observations from the first class were classified as second class observations. On

average 5.055 observations from the second class were classified properly and 0.33

observations from the second class were classified as a first class. A similar situation

occurred with the random forest confusion matrix.

Table 4 presents the results obtained for selected classifiers for 2 principal com-

ponents. Accuracy was calculated for each classifier. Application of the PCA algorithm

instead of feature selection methods ensured a high accuracy score obtained using

feature selection methods and allowed to obtain even better results. The best accuracy

was calculated for the SVM classifier with linear kernel. However, all the results

obtained are acceptable.

Table 1. Selected classifier accuracies for 9 features selected by Fisher score based feature

selection method.

Classifier Type Accuracy

SVM Linear 0.94

Poly 0.79

Rbf 0.89

KNN 0.84

Random forest 0.93

Table 2. Confusion matrix for SVM classifier with linear kernel.

Class 1 Class 2

Class 1 5.33 0.285

Class 2 0.33 5.055

Table 3. Confusion matrix for random forest classifier with linear kernel.

Class 1 Class 2

Class 1 5.01 0.385

Class 2 0.375 5.23
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Figure 5 presents an example of the scatter plot for two first principal components.

It can be observed that class 1 and class 2 are separable both for the train and test set

observations.

4.2 Statistical Analysis

The K-S test found four features with non-normal distribution (Min Fix, Mi Saccade,

Blinks No and Error No). The number of responses was not included in statistical

analysis. The independent-samples t-Test revealed statistically significant differences

for some features. Table 5 presents features revealed with the t-Test for p-value 0.05.

Table 4. Selected classifiers accuracies for 2 principal components.

Classifier Type Accuracy

SVM Linear 0.97

Poly 0.93

Rbf 0.93

KNN 0.95

Random forest 0.95

Fig. 5. Scatter plot with two first principal components.
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Tables 6 and 7 present the statistically significant (p-value 0.05) correlation coef-

ficients for first and second part of the DSST examination. In the case of the first DSST

part, 11 pairs of correlated features were observed. The strongest correlation was

observed for the Mean Pupil Right – Mean Pupil Left pair. The Blinks No – Saccade

No pair also presents a high value of correlation coefficient.

The second part of the examinations revealed 11 pairs of correlated features. As in

the first part of the DSST examination, the highest correlation has been found for the

Mean Pupil Left – Mean Pupil Right pair. The most frequent feature to appear in the

first and second examination is Blinks No, which is correlated with Mean Saccade

Amplitude, Saccade No, Std Saccade No and Std Pupil Left.

Table 5. The results of independent-samples t-Test

Features Pvalue Features Pvalue

Mean Response Time <0.001 Std Saccade 0.034

Fix No <0.001 Max Saccade <0.001

Max Fix 0.005 Mean Saccade Amplitude <0.001

Std Fix 0.028 Std Pupil Left 0.006

Saccade No <0.001 Std Pupil Right 0.015

Table 6. The values of correlation coefficient for first part of examination

Features Correlation

coefficient

Features Correlation

coefficient

Mean Fix Duration-

Saccade No

−0.5814 Mean Saccade Duration-

Std Pupil Left

−0.5002

Max Saccade-Std Fix −0.5163 Blinks No-Mean Saccade

Amplitude

−0.6109

Max Saccade-Max Fix −0.3989 Blinks No-Saccade No 0.7049

Mean Pupil Right-Mean

Pupil Left

0.9127 Blinks No-Std Saccade 0.7144

Mean Pupil Right-Std

Pupil Left

0.5637 Blinks No- Std Pupil Right 0.4728

Std Pupil Left-Std Pupil

Right

0.7538
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5 Discussion and Conclusions

The aim of the paper was to verify whether eye tracking-based features might be used

to classify cognitive workload level. Mental fatigue was measured during two sessions

of the DSST test run in different conditions.

The binary classification was performed with different machine learning models

based on such algorithms as the SVM with kernels: linear, poly and radial basis

function, KNN and random forest. The evaluation was based on eye-tracking features

(mean, standard deviation, maximum and minimum value, duration of fixations and

saccades, maximum amplitude of saccades, the number and duration of blinks, and

pupil size) and test results (the number of responses and error responses and the mean

time of responses). The Fisher score feature selection method was applied to select nine

of the most informative features used to build models. The learning process for each

model was repeated 200 times.

The results show that the highest accuracy was achieved for the linear SVM model

(94%), although the random forest algorithm (93%) occurred to be efficient as well.

Confusion matrices for these models, where type I and type II errors are at relatively

low levels, proved the stability of the models. Data analysis with the PCA algorithm for

the first two principal components showed linear separability of classes, which cor-

responds to the fact that the linear model occurred to be the most efficient. The worst

classification results was reached for the SVM with polynomial kernel.

Statistical analysis revealed the most significant features, which are: mean response

time, standard deviation of saccades, standard deviation of fixation, fixation number,

maximum saccade, maximum fixation, mean saccade amplitude, standard deviation of

the right and left pupil. Most of these features were found by the Fisher score feature

selection method. Statistical analysis did not reveal very strong significant correlations

between features.

Table 7. The values of correlation coefficient for second part of examination

Features Correlation

coefficient

Features Correlation

coefficient

Mean Fix Duration-

Saccade No

−0.5079 Mean Pupil Right-Std

Pupil Left

0.4971

Saccade No-Max Fix −0.5717 Std Pupil Left-Std Pupil

Right

0.5776

Max Saccade-Std Pupil

Left

0.4145 Std Pupil Right-Saccade

No

0.4355

Max Saccade-Std Pupil

Right

0.4073 Blinks No-Std Saccade 0.5874

Mean Blinks Duration-

Max Fix

0.4000 Blinks No-Mean Saccade

Amplitude

0.4933

Mean Pupil Right-Mean

Pupil Left

0.9014
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6.2 Interpretable Machine Learning Models for Three-Way Classification 

of Cognitive Workload Levels for Eye-Tracking Features 

1. Details 

This article was written by Monika Kaczorowska, Małgorzata Plechawska-Wójcik 

and Mikhail Tokovarov and published in Brain sciences in 2021, vol. 11, nr 2. 

The article is worth 100 points according to the list of the Polish Ministry of Science 

and Higher Education. 

2. Abstract 

The paper is focused on the assessment of cognitive workload levels using selected 

machine learning models. In this study, eye-tracking data were gathered from 29 healthy 

volunteers during the examination with three versions of the computerized version of 

the digit symbol substitution test (DSST). Understanding cognitive workload is of great 

importance in analyzing human mental fatigue and the performance of intellectual 

tasks. It is also essential in the context of explanation of the cognitive context of the 

brain. Eight three-class classification machine learning models were constructed and 

analyzed. Furthermore, a technique of interpretable machine learning model was 

applied to obtain the measures of feature importance and its contribution to the brain’s 

cognitive functions. The measures allowed the improvement of the quality of 

classification, simultaneously lowering the number of applied features to six or eight, 

depending on the model. Moreover, the applied method of explainable machine learning 

provided valuable insights into understanding the process accompanying various levels 

of cognitive workload. The main classification performance metrics, such as F1, recall, 

precision, accuracy, and the area under the Receiver operating characteristic curve 

(ROC AUC) were used in order to assess the quality of the classification quantitatively. 

The best result obtained on the complete feature set was as high as 0.95 (F1); however, 

feature importance interpretation allowed to increase the result up to 0.97 with only 

seven of the 20 features applied.
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Abstract: The paper is focussed on the assessment of cognitive workload level using selected machine
learning models. In the study, eye-tracking data were gathered from 29 healthy volunteers during
examination with three versions of the computerised version of the digit symbol substitution test
(DSST). Understanding cognitive workload is of great importance in analysing human mental fatigue
and the performance of intellectual tasks. It is also essential in the context of explanation of the
brain cognitive process. Eight three-class classification machine learning models were constructed
and analysed. Furthermore, the technique of interpretable machine learning model was applied to
obtain the measures of feature importance and its contribution to the brain cognitive functions. The
measures allowed improving the quality of classification, simultaneously lowering the number of
applied features to six or eight, depending on the model. Moreover, the applied method of explainable
machine learning provided valuable insights into understanding the process accompanying various
levels of cognitive workload. The main classification performance metrics, such as F1, recall, precision,
accuracy, and the area under the Receiver operating characteristic curve (ROC AUC) were used in
order to assess the quality of classification quantitatively. The best result obtained on the complete
feature set was as high as 0.95 (F1); however, feature importance interpretation allowed increasing
the result up to 0.97 with only seven of 20 features applied.

Keywords: cognitive workload; mutliclass classification; explainable machine learning; eyetrack-
ing signal

1. Introduction

Understanding cognitive workload as a mental effort needed to perform a task [1]
is important in human mental fatigue analysis. The diverse complexity of mental tasks
requires different levels of concentration. Their understanding and categorising might
be useful in the process of modelling information processing capabilities. The level of
mental fatigue and its influence on the brain cognitive capability is the subject of numerous
research articles [2,3]. Mental fatigue might lead to a decrease of brain cognitive system
performance in terms of perception, attention, analysing, and planning [4,5]. What is more,
mental fatigue might affect reaction times, target-detection failure, and other objective
declines [6].

The literature review conducted shows that the most widely used method of assess-
ment of cognitive workload level in the past employed subjective measures, such as NASA
Task Load Index (NASA-TLX) [7,8]. However, the psycho-physiological state might be
assessed by objective methods based on bio-signals, such as the eye-tracking technique [9],
Galvanic Skin Response (GSR) [10,11], electroencephalogram (EEG), pupillometry, or elec-
trocardiogram (ECG) [12].

Eye-tracking data turn out to be useful in analysing cognitive workload [13]. Benfatto
et al. [14] apply eye-tracking features to detect psychological disorders. Workload and
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performance of skill acquisition based on eye-tracking data are presented in [15]. Eye-
movement based classification of visual and linguistic tasks is discussed in [16]. There
are also numerous studies presenting cognitive workload classification with a combi-
nation of eye-tracking and other bio-signals, such as EEG [17], although the literature
does not present numerous cognitive workload classification studies based only on eye-
tracking data.

Most cognitive workload classification studies presented in the literature are binary
approaches. Among them, the Support Vector Machines (SVM) classifier is one of the
most popular [18–20]. The above studies, based on different bio-signal data, report its
accuracy at the level of even 94–97%. Other popular methods are Linear Discriminant
Analysis (LDA) [21], k-Nearest Neighbours (kNN) [22], or Multilayer Perceptron (MLP) [23].
Multiclass problem studies can also be found. Authors applied such methods as SVM ([24]
71%), linear regression ([25] accuracy 82%), or neural networks ([26] 74%, [27] 83%).

Most cognitive workload classification results were achieved in a classical subject-
specific approach [27], for which researchers report higher classification performance [20,28].
However, developing a subject-independent classifier allows one to distinguish between
cognitive workload levels regardless of external and internal conditions such as the age,
time of day, or habits of an examined person. Nevertheless, the literature presents only a few
publications with subject-independent approaches [26–28]. In [29], the authors conducted
a subject-independent and subject-dependent classification based on EEG signals from
14 participants. Thodoroff et al. created a classifier model based on a subject-independent
approach [30] using a dataset containing 23 patients.

The aim of the present study includes the following points:

• Performing a multiclass subject-independent classification of cognitive workload levels,
• Examine both classification on the complete feature set and with the application of

interpretable machine learning models for feature selection,
• Carrying out a deeper analysis of the features related to the classification of particular

levels of cognitive workload.

The dataset used in the study is eye-tracking and user performance data gathered
from 29 participants while solving a computerised version of the digit symbol substitution
test (DSST).

The digit symbol substitution test (DSST) [31] is a cognitive tool introduced as a
paper-and-pencil test originally applied in order to understand human associative learning.
Currently, this test is commonly applied in clinical neuropsychology to measure cognitive
dysfunction and is often present in cognitive and neuropsychological test batteries [32,33].
The DSST allows one to check the patient’s processing speed, memory, and executive
functioning [34].

The rest of the paper is structured as follows. The review of the literature is presented
in Section 2, while the research procedures covering the computer application, equipment,
and experiment details are discussed in Section 3. Section 4 presents the methods applied in
data processing, classification, and statistical analysis procedures. Results are discussed in
Section 5. Section 6 contains an analysis and discussion of the extracted feature importance
measures. Section 7 concludes the paper.

2. Related Work

Table 1 shows a review of the literature where the numbers of participants and cogni-
tive workload levels are presented. The approach column indicates a subject-dependent
(sd) or subject-independent (si) approach of classification. For the scientific articles, the
results of classification are presented as well. In [35], the authors wrote about labelling cog-
nitive workload data using three methods: difficulty split by expert, the Rash model, and
the stress–strain model. The most common method is based on task difficulty conditions
named difficulty split labelling, while the Rash and the stress–strain models allow adjusting
the cognitive workload level to each participant separately. The authors conducted the
examination on 34 participants, obtaining data to label and classify the level of cognitive
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workload [35]. Lobo et al. published a study on the classifying levels of cognitive work-
load based on eye-tracker and EEG data [17]. They conducted a three-class classification
where they created three levels of cognitive workload and applied a subject-independent
approach based on 21 observations. Both the experts and novices took part in the experi-
ment [36], having a low level of cognitive workload while the novices had a higher one [36].
The authors conducted a two-class subject-independent classification based on data from
14 participants. In [37], the authors carried out the experiment asking 35 participants to
play two games with different levels of difficulty.

Almogbel et al. published a study examining the levels of cognitive workload in
the process of playing a computer game [38]. The data were collected from one partici-
pant, and a classification of low and high level of cognitive workload was obtained. The
same authors published another paper where they tried to classify three and six levels
of cognitive workload on the basis of data from one participant in the process of playing
a computer game [39]. In [38,39], the authors applied a subject-dependent approach to
create a classification model. Study [40] attempted to classify low and high levels of cog-
nitive workload defined on the basis of data gathered from eight participants. In [41], a
subject-independent classifier was made on the basis of data from 12 participants. The
experiment was conducted using arithmetical tasks defining seven levels of cognitive
workload, where the first level was the easiest and contained one and two-digit numbers,
and the seventh level was related to arithmetical tasks on three-digit numbers with three
carries. The authors attempted to classify the three and two cognitive workload levels
using a subject-independent and dependent approach based on the pupil data from 25
participants [42]. In [43], two approaches were applied to create a classification model as
well. The authors considered the prediction of a driver’s cognitive workload: good or
poor driving performance state while driving based on EEG data from 37 participants.
In [44], the authors applied eye tracking in virtual reality (VR) and augmented reality (AR)
technology to classify the cognitive load of drivers under critical situations. Two-class
subject-independent classification was conducted using several types of classifiers: SVM,
decision tree, random forest, and k-Nearest Neighbours and used five metrics: accuracy,
precision, recall, and F1-score. Data were gathered from 16 participants and two levels of
cognitive load were defined: low and high.

Fridman and colleagues [45] conducted the experiment based on making videos of real-
time cognitive load in various contexts which were corresponding to cognitive load level.
A total of 92 participants took part in the experiment, and three-level classification was
applied using convolutional deep neural network 3D and Hidden Markov Model. In [45],
a subject-independent approach was used to create the classification model based on eye
images extracted from videos. In [46], the authors noticed that most of the previous research
was based on data not related to older adults. They mentioned that the changes in eye-
tracking could appear in older adults, so they conducted an experiment where older adults
were asked to watch the video clips. A two-level classification model was created on the
basis of the data gathered from 12 participants. The model is able to classify the fatigue and
non-fatigue state independently from the participant’s age. In [47], the authors presented
an interesting approach to cognitive workload estimation using EEG signals with the
application of a deep convolutional neural network with residual connections and a gated
recurrent unit (GRU). A high accuracy of subject-independent classification was reported
for an approach with four workload levels. In [48], a model capable of distinguishing
between two cognitive workload levels was developed. The authors proposed a novel
approach consisting of two steps that included the initial training of a set of participant-
specific classifiers and then combining the trained classifiers to address the problem of
subject-independent cognitive workload estimation. In [49], Custom Domain Adaptation
(CDA) was used to develop a highly efficient classifier, which was trained with the same
dataset as it was applied in [47].
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3. The Research Procedure
3.1. The Computer Application

In the present study, the computerised version of the DSST test [50,51] was applied. A
subject was asked to match symbols to numbers according to a key located at the bottom of
the screen. To assign a particular symbol, a subject had to click on the key corresponding
to this symbol. A graphical frame (Figure 1) marked the currently active letter, and after
assigning a symbol, the frame moved to the next letter. The subject matched symbols to
subsequent letters within the specified time. Subsequent letters were generated randomly
and with repetition, and they appeared continuously within the defined time.

The number of symbols and the time is defined in the application settings. In the case
study, three DSST parts were applied:

• Part 1—low-level cognitive workload: four different symbols to choose from, 90 s
test length;

• Part 2—medium-level cognitive workload: nine different symbols to choose from, 90 s
test length;

• Part 3—hard-level cognitive workload: nine different symbols to choose from, 180 s
test length.

These three parts correspond to the classes of cognitive workload, defined in Section 3.3.
Three levels of cognitive workload were empirically defined and separated on the basis of
a preliminary pilotage study performed on a small group of two participants with a profile
consistent with the characteristics of the study participants (they did not participate in the
target study). The number of symbols and the duration of the test were set in an interview
carried out after this preliminary examination.

The Java 8.0 programming language was the main tool used for developing the
application; it was designed to be operated by a computer mouse. The interface of the
computerised version is presented in Figure 1. The legend containing the characters used
and the digits assigned to them is shown at the top in the form of the table. The user
can select a specific character by clicking the proper cell in the table at the bottom of the
window. The central part contains the currently active task (a user is supposed to click the
character with digit 6). The left part of the central table presents the history of the tasks,
and the right part shows the upcoming tasks.
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3.2. Setup and Equipment

The described experiment was carried out in a laboratory with standard fluorescent
light. In order to ensure stable, equal conditions for all participants, the outside light
was blocked. The activity of eyes was registered by a Tobii Pro TX300 screen-based eye
tracker (Tobii AB, Stockholm, Sweden) utilising near-infrared technology [52]. The video-
oculography method in the said device is based on corneal reflection as well as the dark
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pupil method (VOG). It collects the data related to binocular gaze with the frequency of
300 Hz for studies of saccades, fixations, and blinks. The sampling rate variability is less
than 0.3%. The gaze precision (binocular) is 0.07◦, and the gaze accuracy is 0.4◦. The eye
tracker is built into a monitor (23′′ TFT monitor at 60 Hz) connected to the computer (laptop
computer Asus G750JX with 8 GB of RAM and processor Intel Core i7–4700HQ) on which
the experiment was carried out. Tracking is proceeded for each eye separately.

The experiment was designed in Tobii Studio 3.2, which is the software compatible
with the Tobii Pro TX300 eye tracker, and it is dedicated to preparing and analysing eye-
tracking tests. Visual stimuli were presented on a separate monitor (23′′ TFT monitor with
60 Hz of refresh rate). During the experiment, the participants occupied a seated position
in such a way that the screen was from 50 to 80 cm away from the participant depending
on the fact of which position was convenient for the participant to work with the computer.
The experiment was preceded by the nine-point calibration procedure realised for each
participant, so the distance from the monitor within the mentioned range did not affect the
results of the experiment. The calibration procedure is performed separately for each eye.
Identical hardware and software settings were used for examining all the participants.

The Tobii Studio was applied to export eye activities gathered during the experiment.
The signal lost was used to check the tracking ratio to ensure the proper quality of data.
Eye activities exported from the experiments were related to several measures:

• Fixations [53], originally defined as the period of uptake of visual information, when a
participant holds eyes relatively stable in a particular position. Single fixation occurs
between two consecutive saccades. All visual input occurs [54] during fixations.

• Saccades [53] are defined as the rapid eye movement occurring between fixations.
During saccades, the eye gaze is moved from one point to another to bring the part
of visual information onto the most sensitive part of the retina in order to retrieve
information [54].

• Blinks derived as zero data embedded in two saccadic events.
• The blink was identified as zero data is embedded in two saccadic events [46,55,56].
• Pupillary response understood as pupil size. The Tobii Studio applies the dark pupil

eye-tracking method.

Fixations and saccades are detected in the Tobii Studio with the Velocity–Threshold
Identification (I-VT) fixation classification algorithm [57], which classifies the eye move-
ments using directional velocity shifts of the eye. The velocity threshold parameter was
set to 30◦/s [58]. This is the recommended value sufficient for recording with the average
level of noise. The research on the I-VT velocity threshold parameter for the Tobii TX300
eye-tracker show that it provides stability when the I-VT threshold is between 20◦/s and
40◦/s [52]. The amplitude of saccades and blinks were determined directly from the eye
tracker via 3D eye position and screen gaze points.

3.3. Experiment

The experiment was applied on a group of 29 participants aged 20 to 24 (mean = 20.61 years,
std. dev. = 1.54). The tested group was homogeneous. Healthy participants (23 males,
six females) were recruited among second- and third-year students of the BSc degree in
computer science. The participants had normal/corrected to normal vision. The acceptable
level of data activity recorded by the eye-tracker was set to 90%. Originally, 30 participants
were invited to participate in the study; however, one participant was discarded due to
poor data eye-tracking quality caused by excessive body and head movement (the data
activity level recorded by the eye-tracker for this participant was 70%).

The research was approved by the Committee of the Lublin University of Technology
(Approval ID 2/2018 from 19 October 2018). The participation was voluntary, and all
participants received information about the study.

A single participant was examined for approximately 15 min. The experiment was
divided into three parts. Each part was preceded by a calibration phase. The calibration
phase was run on the eye-tracker as a built-in procedure. The next step contained the
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instructions demonstrated to the participants on the screen. The participants were asked
to create as many matches as possible by assigning symbols to the appearing letters. The
assigning was done by clicking on a particular symbol on the key located at the bottom
of the screen (see Figure 1). Afterwards, the participants went through the three parts of
the DSST using the computer application. Every experiment stage contained a different
number of symbols to assign and lasted a different period of time. Each stage started from
a short trial including nine symbols, and the participants were supposed to familiarise with
the task by performing the trial. After finishing the initial part, a participant could start the
main part of the test stage. Figure 2 presents the procedure of the experiment.
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3.4. Dataset

The dataset consists of files generated from the eye-tracker and files generated from
the application. The files generated from the eye-tracker consist of the time stamps and
the data that are related to such eye activity as fixations, saccades, blinks, etc. The files
generated by application include the time stamps and the data that are related to DSST test
results such as number of errors or number of responses. The total number of generated
files per participant equals six, i.e., three files from the eye-tracker and three files from the
application. The data from each task were saved in a separate file.

Eye activity-related and DSST test results-related data exported from the eye tracker
covering 20 features are presented below:

• Fixation-related features: fixation number (total number of fixations), mean dura-
tion of fixation, standard deviation of fixation duration, maximum fixation duration,
minimum fixation duration.

• Saccade-related features: saccade number (total number of saccades), mean duration
of saccades, mean amplitude of saccades, standard deviation of saccades amplitude,
maximum saccade amplitude, minimum saccade amplitude.

• Blink-related features: blink number (total number of blinks), mean of blink duration.
• Pupillary response features: mean of left pupil diameter, mean of right pupil diameter,

standard deviation of left pupil diameter, standard deviation of right pupil diameter.
• DSST test results-related features: number of errors (total number of errors), mean

response time, response number (total number of responses).

The listed eye-activity related features were chosen as the most informative ones
available in the eye tracker software. Features related to fixations and saccades are the most
common eye-tracking features analysed in the literature [54] in such areas as psychology
and neuroscience, including behavioural patterns, mental fatigue, and disorders analy-
sis [46,57]. Although in the literature the most common approaches consider only the main
fixation- and saccade-related features such as the total number of saccades, mean duration
of saccades, total number of blinks, and mean of blink duration, we decided to consider
also an additional set of features including standard deviation of saccades amplitude,
standard deviation of fixation duration, maximum and minimum saccade amplitude, and
fixation duration. Even though these features are not widely applied in cognitive workload
research, they were included in the analysis to check its possible usefulness in the process
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of classification. Standard deviation, mean and skewness of fixation duration, and saccade
amplitude have been previously applied in the task of classifying mental states [59]. Stan-
dard deviations of the saccade parameters were also used in the analysis of eye-movement
relation to the age of the participants [60]. Distributions of fixation durations and of saccade
amplitudes were analysed also in the context of classifying eye fixations [61]. Motivation
to analyse maximum and minimum values (included in the analysis after correction of
outliers) as well as standard deviation of fixation duration and saccade amplitude (as a
measure of variance or dispersion) was related to potential statistical differences between
particular cognitive workload levels.

Blink-related features as well as pupillary response features were proved to indi-
cate the dynamics of the cognitive process [1,62,63]. Pupil diameter-related features were
measured separately for each eye and needed additional preprocessing steps. The pupil
size was reported in millimeters, and it was estimated based on the magnification effect
achieved by both the spherical cornea and the distance to the eye [46]. Linear interpo-
lation was applied in order to reduce the impact of blinking or artifacts [64]. A sudden
pupil size change of 0.1 mm, within a 3 ms time span, was marked as an artifact [64,65].
Missing data, especially data related to blinks, were ignored and were not included in the
further processing. A subtractive baseline correction (corrected pupil size = pupil size −
baseline) [66] has been applied to the pupil size data. The baseline has been estimated
based on 100 ms fragment recorded before the main experimental procedure (during the
welcome page displayed). The DSST test results-related features were included to complete
the analysis process.

4. Methods Applied
4.1. Data Processing

Eye activity data and DSST test results were analysed off-line using custom programs
written in MATLAB 2020a and Python 3.6. The procedure of data processing was divided
into 6 steps:

• Data acquisition
• Data synchronisation
• Feature extraction
• Feature normalisation
• Feature selection
• Training and testing classification models.

Six files were generated per participant, three for both parts: one file from the com-
puter application and one from the eye-tracker. The essential part of preprocessing was the
procedure of synchronisation, which was necessary to prepare the dataset. It allowed com-
bining the files from the eye-tracker and application and obtaining one file per each part of
the experiment. Every participant provided three observations: the first one corresponded
to a low level of cognitive workload (file 1), the second one was labelled as moderate
(file 2), and the last one had the signal associated with a high level of cognitive workload
(file 3). The dataset included 87 observations in total (3 observations per participant). Every
observation consisted of independent features and the class label (low, moderate, or high).
The values of independent features were obtained by means of a feature extraction step,
leading to the twenty features listed in Section 3.4. The feature normalisation step was the
next stage in the procedure of data processing; it was necessary to ensure a uniform scale
of the features.

4.2. Feature Selection

In order to obtain the values of feature importance measure, the logistic regression
model was used. Due to its properties, logistic regression is commonly used in the applica-
tions where deep understanding of the reasons behind the decision taken by the model is
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necessary [67]. The model of logistic regression can be expressed by the formulae below.
First, the weighted sum of the feature values is computed as shown below:

S = ∑n
i=1 wi · ai + w0. (1)

The result is calculated with the use of the following logistic function:

p =
1

1 + e−s (2)

where

• p is the probability of the fact that the classified sample belongs to the positive class,
• i is the order number of the feature,
• wi, (i ∈ [1, n]) is the weight of the i-th feature; the lower the absolute value, the

less important the feature, and conversely, higher absolute values of the weights
correspond to the features producing great influence on the model’s decisions,

• w0 is the bias,

ai, (i ∈ [1, n]) is the value of i-th feature.The values of weights {wi}, representing
feature importance, are obtained in the process of model training. Hence, training a
logistic regression model on the complete feature set is a starting point for feature selection.
Figure 3 presents the process of feature selection and appliance of its results in classification.
The logistic regression models applied for feature selection include also regularisation
elements; after initial consideration, elastic net, being the linear combination of L1 and
L2 regularisation, was applied. The approach allowed mitigating possible correlations
between features, so that in a pair of correlated features, one obtained a higher importance
weight and the other was assigned a notably lower weight.
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4.3. Classification

The aim of the classification process was to assign observations into one of the three
classes:

• Class 1—observations with low level of cognitive workload
• Class 2—observations with moderate level of cognitive workload
• Class 3—observations with high level of cognitive workload

Classes correspond to three cognitive workload levels applied in the DSST application.
Various classification methods, such as SVM, kNN, Random Forest, Multilayer Per-

ceptron (MLP), and Logistic Regression were applied in order to produce initial results,
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showing the general perspectives of eye-tracking data as the source of information for
cognitive workload assessment.

The classifier models mentioned had the following hyperparameters:

• kNN—nearest neighbour number: 5
• Random Forest—tree number: 100
• MLP—two hidden layers: 32 and 16 neurons; optimiser: Adam; learning rate: 0.0001;

activation function: relu (rectifier linear unit)

Afterwards, logistic regression was used for extracting feature weights representing
their importance in the process of distinguishing between particular levels of cognitive
workload. The influence of selected features was tested for the classifiers mentioned before.

The mentioned classification models were chosen due to the following reasons: lower
number of parameters (compared to deep learning models), lower tendency to overfit
on small datasets (compared to deep learning models), low computational cost allowing
running multiple experiments in a reasonable amount of time. Moreover, selection of
algorithm was performed considering the other studies in the field of cognitive work-
load classification.

The dataset was shuffled in random order and divided into train and test datasets.
Data from every participant could be used only in one dataset: train or test, in order to
ensure a truly subject-independent approach, so that the signals of the test dataset persons
would be completely unknown for the model. Approximately 20% of the input dataset,
which corresponds to 6 participants, was used for testing.

A range of classical machine learning models were used. The applied approach
included the initial state, where the classifiers were tested on the complete feature set and
afterwards the main analysis where the feature selection was conducted. This solution
allows optimising calculation, avoiding the models that provide worse results at the
very beginning.

4.4. Statistical Analysis

In order to compare the variance of values (for 20 features) from three DSST parts, one-
way ANOVA analysis was used. The Kolmogorov–Smirnov test (K-S test) and the Levene
test were used to test the assumptions of the ANOVA analysis. The K-S test was performed
to verify that variables had a normal distribution, the Levene test was used to check that
the variance of the data from three parts of the DSST test was equal. Finally, the Tukey’s
honest significant difference test (Tukey’s HSD) post-hoc test was performed to identify
which pairs of the DSST test parts had statistically significant differences. The analysis was
carried out in MATLAB 2020a software using Statistical and Machine Learning Toolbox.

5. Results
5.1. Classification Results

The three-class subject-independent classification was conducted and the F1 score
of a selected classifier for a complete feature set is presented in Table 1. The following
classifiers were applied: SVM with linear, quadratic, and cubic kernels, Logistic Regression,
Decision Tree, kNN, Multilayer Perceptron, and Random Forest. The learning process
including a train–test cycle was repeated 200 times in order to ensure the stability of results
(the number was obtained empirically). Train and test datasets were formed randomly
for every repetition. In order to ensure the methodological correctness of the experiments,
the procedure of feature selection was performed on the training set independently in
every repetition. Tables 2 and 3 present the results of numerical experiments: the main
metrics allowing to assess the quality of classification: recall, precision, F1, accuracy, and
ROC AUC.
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Table 2. Main classification performance measures obtained for a complete feature set.

Classifier Recall Precision F1 Score Accuracy ROC AUC

SVM linear 0.94 ± 0.05 0.95 ± 0.05 0.94 ± 0.05 0.94 ± 0.05 0.99 ± 0.02
SVM quadratic 0.71 ± 0.10 0.77 ± 0.10 0.71 ± 0.10 0.71 ± 0.10 0.85 ± 0.07

SVM cubic 0.90 ± 0.07 0.92 ± 0.06 0.90 ± 0.07 0.90 ± 0.07 0.98 ± 0.03
Log regression 0.95 ± 0.05 0.96 ± 0.04 0.95 ± 0.05 0.95 ± 0.05 0.99 ± 0.02

kNN 0.88 ± 0.07 0.90 ± 0.06 0.88 ± 0.07 0.88 ± 0.07 0.96 ± 0.04
Decision Tree 0.89 ± 0.07 0.92 ± 0.05 0.89 ± 0.07 0.89 ± 0.07 0.95 ± 0.04

Random Forest 0.95 ± 0.05 0.96 ± 0.04 0.95 ± 0.05 0.95 ± 0.05 0.99 ± 0.02
MLP 0.90 ± 0.07 0.92 ± 0.06 0.90 ± 0.07 0.90 ± 0.07 0.98 ± 0.03

The best classification performance results are in bold. The best mean values of separate performance metrics
achieved by specific models are presented in the following way: mean ± standard deviation (feature number).

Table 3. Main classification performance measures obtained for a selected feature subset.

Classifier Recall Precision F1 Score Accuracy ROC AUC

SVM linear 0.97 ± 0.04 (5) 0.97 ± 0.03 (5) 0.97 ± 0.04 (5) 0.97 ± 0.04 (5) 0.99 ± 0.02 (5)
SVM quadratic 0.92 ± 0.06 (8) 0.93 ± 0.05 (8) 0.92 ± 0.07 (8) 0.92 ± 0.06 (8) 0.98 ± 0.03 (8)

SVM cubic 0.94 ± 0.05 (8) 0.96 ± 0.04 (8) 0.94 ± 0.05 (8) 0.94 ± 0.05 (8) 0.99 ± 0.02 (6)
Log regression 0.97 ± 0.04 (4) 0.97 ± 0.04 (4) 0.97 ± 0.04 (4) 0.97 ± 0.04 (4) 0.99 ± 0.01 (4)

kNN 0.96 ± 0.05 (8) 0.96 ± 0.04 (8) 0.96 ± 0.05 (8) 0.96 ± 0.05 (8) 0.99 ± 0.02 (5)
Decision Tree 0.90 ± 0.07 (5) 0.92 ± 0.05 (5) 0.90 ± 0.07 (5) 0.90 ± 0.07 (5) 0.95 ± 0.05 (8)

Random Forest 0.95 ± 0.05 (7) 0.96 ± 0.03 (7) 0.95 ± 0.04 (7) 0.95 ± 0.05 (7) 0.99 ± 0.02 (7)
MLP 0.97 ± 0.05 (5) 0.98 ± 0.04 (5) 0.97 ± 0.05 (5) 0.97 ± 0.05 (5) 0.99 ± 0.01 (5)

Every cell contains a series of numbers, which has to be understood in the following way: mean ± standard deviation (number of features
ensuring the best result). The best classification performance results are in bold. The best mean values of separate performance metrics
achieved by specific models are presented in the following way: mean ± standard deviation (feature number).

All the measures, except for accuracy, were computed in a multiclass way; i.e., first, a
measure was computed for the separate classes, and the final value was obtained as the
mean of class-wise measure values with the weights proportional to the content of specific
class samples in the test set.

Table 2 shows the values of classification performance measures obtained for the
complete feature set; Table 3 presents the results obtained with the use of the feature
selection procedure, based on elastic net, which is composed of logistic regression with
linearly combined L1 and L2 regularization.

As it may be noticed, the best classification quality was achieved by MLP, SVM with
linear kernel, and Logistic Regression. The mentioned models required correspondingly
five, five, and four features per class. So, the total number of features was as high as seven,
seven, and six—the numbers are obtained as the number of common features in the first five
and four rows of Table 4, presenting the features ranked with respect to their importance for
classifying a sample as an instance of the particular classes. Figure 4 presents the weights
of the specific features for particular classes, which were marked with the color and shape
of the markers. The whiskers represent the standard deviation of the values. Figure 4
presents the weights of the specific features, so, in addition to the rankings, the importance
measures can be compared as well, so one can observe not only which features are more
important but also quantitatively examine the difference of importance measures; e.g., it
can be noticed that some features are significantly more important: mean amplitude of
saccades, number of fixations, response number as well as mean response time.
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Figures 5–7 show the dependence between the number of features applied and the
results of the models, which achieved the highest values of F1 score after feature selection.
The vertical lines indicate standard deviation of the results. As may be observed in the
figures, the procedure of feature selection influences classification performance positively:
all the plots presented in Figures 5–7 demonstrate a distinctive maximum for specific
feature number and decrease of the F1 measure for a higher feature number (for SVM and
logistic regression). Figures 5–7 present quantitative evidence of positive effect produced by
feature selection and demonstrate that together with the decrease of computing complexity,
an improvement in classification quality is achieved by selecting proper features.

Tables 5–7 present the mean confusion matrices of the models that provided the best
performance, namely: SVM with a linear kernel, logistic regression, MLP. For example,
for the SVM classifier, the observations from class 1 and class 2 are more similar to each
other than the observations from class 3. This can be seen in the mean confusion matrix.
All the observations of class 3 from the test dataset were classified correctly. On average,
5.62 observations of the first class were classified in the proper way and 0.38 observations
from the first class were classified as second-class observations. The mean of 5.77 obser-
vation from the second class were classified in a proper way, and 0.23 observations from
the second class were classified as first class. Only 0.005 observations on average were
classified as the observations of the second class being the observations of the third class,
while no observations of the third class were classified as first class.
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Table 5. Mean confusion matrix for SVM classifier with linear kernel.

True

Class 1 Class 2 Class 3

Predicted
Class 1 5.62 0.38 0
Class 2 0.23 5.77 0
Class 3 0 0.005 5.995

Table 6. Mean confusion matrix for Logistic Regression classifier with linear kernel.

True

Class 1 Class 2 Class 3

Predicted
Class 1 5.64 0.36 0
Class 2 0.22 5.78 0
Class 3 0 0.005 5.995
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Table 7. Mean confusion matrix for MLP.

True

Class 1 Class 2 Class 3

Predicted
Class 1 5.64 0.36 0
Class 2 0.16 5.84 0
Class 3 0 0 6

5.2. Statistical Results

The K-S test revealed three features with non-normal distribution (minimum fixation
duration, minimum saccade amplitude, and number of blinks). The Levene test found five
features with unequal variances (number of fixations, minimum fixation duration, number
of saccades, minimum saccade amplitude, number of blinks). As a result, the ANOVA
analysis was performed for 15 features. It found seven features for which differences
between their mean values were significant (p-value 0.05). The Tukey’s HSD post-hoc test
identified pairs of DSST parts which presented statistically significant differences.

Table 8 presents significant results (p-value < 0.05) of the ANOVA analysis and a post
hoc test for selected features. Significant differences were observed mainly between class 1
and class 2, as well as between class 2 and class 3. Only one feature, maximum saccade
amplitude, presented significant differences between class 2 and class 3 (p-value = 0.046).

Table 8. The results of one-way ANOVA analysis.

ANOVA Post-hoc Test

Features p-Value p-Value
Class 1–Class 2

p-Value
Class 1–Class 3

p-Value
Class 2–Class 3

mean response time <0.001 <0.001 <0.001 0.069
standard deviation of fixation duration 0.002 0.003 0.008 0.947

maximum fixation duration 0.009 0.011 0.04 0.877
maximum saccade amplitude 0.002 0.411 0.001 0.046

mean saccade amplitude <0.001 <0.001 <0.001 0.088
standard deviation of left pupil diameter 0.006 0.016 0.011 0.993
standard deviation of right pupil diameter 0.023 0.069 0.029 0.934

Figure 8 shows the comparison of mean values of the features that demonstrated the
significant differences for various classes of cognitive workload.

Brain Sci. 2021, 11, x FOR PEER REVIEW 11 of 23 
 

 

5.3. Cognitive Factors Analysis 
The topic of cognitive workload assessment also requires cognitive factor analysis. 

The term cognitive factors refers to characteristics of the person that affect his/her per-
formance and learning effectiveness. Cognitive factors include such functions as 
memory, reasoning, and attention. Analysis of eye activity as well as DSST features al-
lows estimating the cognitive factors. The procedure of feature selection run with the use 
of logistic regression model enabled obtaining the most valuable features, showing that 
the most important feature subsets are fixation and saccade-related features. Those kinds 
of features correspond to the intensity of eye movement, which shows a higher degree of 
attention during the performance of more complicated tasks, which is demonstrated es-
pecially well in Figure 8: in maximum fixation duration, we see that with the increase of 
task level from low to medium, the maximal duration of fixation decreases, which shows 
that the gaze of the examined person on average stays shorter in one position, which can 
be more evidence of higher attention in these tasks; the rest of the features presented in 
Figure 8 also support this thesis. 

6. Discussion 
The aim of the study was to perform the multiclass subject-independent classifica-

tion of cognitive workload level with both interpretable and noninterpretable machine 
learning models. A three-class subject-independent classification was performed on the 
basis of the dataset containing eye-tracking and user performance data. The study as-
sessed mental fatigue with features based on eye-tracking and DSST test results. The data 
were gathered in a case study of three versions of the computerised Digit Symbol Sub-
stitution Test (DSST). An interpretable machine learning model was used for selecting 
the most valuable features, which allowed improving the result of classification and ob-
taining insights that enabled understanding the process of mental fatigue. 

Eight machine learning models were built and compared. It is a common approach 
to run an initial stage of classification tests with the use of multiple classifier models in 
order to find the most promising ones for further analysis. The aim of our work was not 
only to obtain the highest possible result of the classification but also to gain the feature 
interpretability especially in the case of subject-independent classification. The initial 
stage was provided by SVM with linear, quadratic, and cubic kernel, Logistic Regression, 
kNN, Decision Tree, MLP, and Random Forest. The learning process for each model was 
repeated 200 times. 

Logistic Regression, chosen in the study as a feature selection tool, is commonly 
applied as an interpretable machine learning model, as it assigns specific weights to 
separate features, which allows assessing their importance quantitatively and hence cre-

Figure 8. The comparison of mean values from the three-part digit symbol substitution test (DSST)
for selected features.

80



Brain Sci. 2021, 11, 210 16 of 22

5.3. Cognitive Factors Analysis

The topic of cognitive workload assessment also requires cognitive factor analysis. The
term cognitive factors refers to characteristics of the person that affect his/her performance
and learning effectiveness. Cognitive factors include such functions as memory, reasoning,
and attention. Analysis of eye activity as well as DSST features allows estimating the
cognitive factors. The procedure of feature selection run with the use of logistic regression
model enabled obtaining the most valuable features, showing that the most important
feature subsets are fixation and saccade-related features. Those kinds of features correspond
to the intensity of eye movement, which shows a higher degree of attention during the
performance of more complicated tasks, which is demonstrated especially well in Figure 8:
in maximum fixation duration, we see that with the increase of task level from low to
medium, the maximal duration of fixation decreases, which shows that the gaze of the
examined person on average stays shorter in one position, which can be more evidence of
higher attention in these tasks; the rest of the features presented in Figure 8 also support
this thesis.

6. Discussion

The aim of the study was to perform the multiclass subject-independent classification
of cognitive workload level with both interpretable and noninterpretable machine learning
models. A three-class subject-independent classification was performed on the basis of the
dataset containing eye-tracking and user performance data. The study assessed mental
fatigue with features based on eye-tracking and DSST test results. The data were gathered
in a case study of three versions of the computerised Digit Symbol Substitution Test (DSST).
An interpretable machine learning model was used for selecting the most valuable features,
which allowed improving the result of classification and obtaining insights that enabled
understanding the process of mental fatigue.

Eight machine learning models were built and compared. It is a common approach
to run an initial stage of classification tests with the use of multiple classifier models in
order to find the most promising ones for further analysis. The aim of our work was not
only to obtain the highest possible result of the classification but also to gain the feature
interpretability especially in the case of subject-independent classification. The initial stage
was provided by SVM with linear, quadratic, and cubic kernel, Logistic Regression, kNN,
Decision Tree, MLP, and Random Forest. The learning process for each model was repeated
200 times.

Logistic Regression, chosen in the study as a feature selection tool, is commonly ap-
plied as an interpretable machine learning model, as it assigns specific weights to separate
features, which allows assessing their importance quantitatively and hence creating a
ranking. Logistic Regression was applied for feature selection, as it is commonly used
in the cases requiring interpretable machine learning. It allowed improving the result
from 0.95 to 0.97 (SVM with linear kernel) using only five features per binary classifier
out of 20. Logistic Regression demonstrated a similar result with an even lower feature
number (4). MLP also ensured high performance, which required five features. Based
on the obtained results, it may be noticed that the most reasonable solution is to use an
SVM/logistic regression model in the present problem.

The DSST test used in the study was a computerised version of the classical paper-
and-pencil test. This cognitive test was chosen in the study as it was sensitive to changes
in cognitive functioning, and its performance correlates with the ability to accomplish
everyday tasks. Although originally, the test was designed to measure cognitive dysfunc-
tion, we decided to apply it in the study, as it is easy to use and it engages the memory
and concentration of the participant. A preliminary pilot study was applied in order to
define the number of symbols and duration of the test. The original version of the test
assumes nine different symbols, which were generated in a random and repeated way to be
assigned over a 90 s period. We decided to use this setting for the medium level of cognitive
workload, whereas the settings for the low and hard level of cognitive workload were
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defined in an interview with the pilot study participants. However, the limitation of such
an approach is that the level of cognitive workload is set permanently for all participants
independently of their abilities and IQ level. It is worth noting that there are some methods
dedicated for the evaluation of mental fatigue of particular participants. These methods
take advantage of the capacity models (e.g., the Rasch and strain–stress model) and allow
adjusting the cognitive workload assessment to a specific person, taking into consideration
his/her mental abilities. On the other hand, these methods are based on surveys (e.g.,
NASA-TLX scale) and gather subjective assessment of the participant, which might also
be blurred with different factors. Moreover, there are many various aspects affecting the
subjective cognitive workload assessment, which are hard to consider and explain. A
problem that can appear here is a more complicated structure of the experiment due to a
possible lack of balance between the classes in this case. Nevertheless, supplementing the
study with a mental fatigue evaluation of each participant might provide new insights into
the analysis results and will be performed as a future work.

The paper presents the classification process based on eye activity gathered with the
eye-tracking technique. This dataset is supported with features retrieved directly from
the DSST application. The study includes general eye activity features related to visual
fixations and saccadic movements, blinking, and pupil characteristics. Information about
location indicating where participants were looking was not included. Such data might
be used to map eye position onto the visual objects displayed on the screen; however, it
is doubtful whether these results could increase the accuracy of the classification. On the
other hand, such data could provide information about the test results, although these
results are obtained directly from the DSST application.

Classification results and the feature ranking obtained in the study strongly suggest
that the performed tasks have a systematic influence on eye movements. The results prove
the relation between the participants’ engagement in the task combined with their cognitive
state and their eye activity. The results give insights into understanding the dependence
between eye movements and cognitive factors. However, further research is necessary
to explain these dependences among different participant groups and different stimulus
types. Although the results of our study suggest that eye movement-related features
might be applied in the process of cognitive state assessment, there is a possibility that
the type of tasks, graphical interface, or even initial mental state of the participant might
affect the results. However, both sets of features applied in the study (eye movement-
related features and DSST test-related features) are objective measures independent of the
subjective assessment of individual participants. What is more, the eye tracking-based
features chosen in the study are a natural type of response gathered from a non-invasive
source and obtained without any training or additional activity. A limitation of the work
is the relatively small number of participants. Even if the group of 29 participants turned
out to be sufficient for performing the statistical analysis, further studies are definitely
necessary to confirm the results over a broader group of participants. What is more, we
also plan to check the influence of the task order by randomising it in the experiment.

The highest F1 rate was achieved for SVM with a linear kernel after performing feature
selection. Three binary classification models were used for distinguishing between three
classes, each of them used an individual six-feature set obtained from the ranking built
in the stage of feature selection (the rankings are presented in Table 4). The union of the
binary model feature sets contains seven features: mean saccade amplitude, mean response
time, fixation number, standard deviation of fixation duration, saccade number, response
number, and mean duration of fixation. It might be noticed that the majority of the selected
features are related to fixation (standard deviation of fixation duration, fixation number,
mean duration of fixation) and saccadic eye movements (mean saccade amplitude, saccade
number). It worth noting that only a standard deviation of fixation duration was important
among the group containing an additional set of features (including standard deviation
of saccades amplitude and fixation duration as well as maximum and minimum saccade
amplitude and fixation duration). Such phenomenon could be related to the high variability
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of fixation duration among particular cognitive workload levels caused by possible physical
eye fatigue, although this issue needs further investigation. No blink or pupillarity-related
features were included in the set of seven selected features. This result suggests that the
most commonly used eye-tracking features related to fixation and saccades are the most
informative. The obtained results show that the cognitive workload level is related to
the number of saccadic movements and fixation duration. Surprisingly, the analysis has
shown low importance of blink-related features, which happened to be low discriminative
in terms of cognitive workload. Additionally, according to previous expectations, the
features related to DSST results also proved to be important for distinguishing between
cognitive workload levels, which is quite intuitive; i.e., a more complicated task requires
more time to solve and the probability of error is higher. The complete feature rankings are
presented in Table 4. The feature rankings can be analytically understood and interpreted;
for example, the analysis revealed that the response number was the most important
feature for distinguishing the high level of cognitive workload, which is quite intuitive, as
complicated tasks require a longer time to solve. More valuable information was related to
the next features: fixation number and saccade number, which is also intuitive: participants
tend to move their gaze more rapidly during solving more complex tasks. The results
presented in Figure 5 allow comparing the scale of separate feature importance values,
showing that some features are significantly more important than others, e.g., mean saccade
amplitude, which shows that while solving easier tasks, the participants could move their
gaze wider, producing longer saccades.

It has to be taken into account that differences in education, performed job, experience,
and age can cause complication in the analysis, and results might differ between these
groups. Thus, due to the approximate mental homogeneity of the examined group in the
present research, the results show the relation between cognitive workload level and eye
activity especially adapted to analytical minds of students of technical specialties.

The statistical analysis was based on the ANOVA procedure. Statistically significant
differences for all classes were revealed for the maximum saccade amplitude feature, but
the difference was observed only in the following pairs: class 1 and class 3, class 2 and class
3. The most significant differences were observed between class 1, which corresponds to a
low cognitive workload level, and class 3, which is related to a high cognitive workload
level, as they are the farthest from each other. However, the differences between average
values of the mean response time feature was calculated for class 1 and class 2 but not
for class 1 and class 3. It could be explained by the fact that the participants had been
better acquainted with the application, so they answered questions faster, despite the fact
that the third part of the experiment was more difficult. Presumably, there is no statistical
significant difference between class 2 and class 3 for mean response time because the second
and third part of the experiment included the same number of elements. What is more, a
statistically significant difference has been found only for the maximum saccade amplitude
feature between class 2 and class 3. This might be explained by the fact that the third part
is the most advanced, and then, the participant saccades had the highest amplitude.

7. Conclusions

The specific aim of the paper was to conduct a deeper analysis of the features related
to the classification of particular cognitive workload levels. It is an important task from
the point of view of understanding the influence of cognitive workload level and mental
fatigue on the brain cognitive process.

Interpretable machine learning allows to understand which features provide the most
valuable information about the examined process. Generally speaking, it is more profitable
to understand the reasons behind the decision taken by a machine learning model rather
than using it as a black box. Understanding major processes beneath phenomena of interest
allows us to build more robust models and perform more effective monitoring of cognitive
workload.
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For example, in the presented case, due to the interpretable machine learning model,
we know which features to focus on and which ones can be neglected, thus allowing
lowering the computing cost and obtaining better results. In practice, it is more reasonable
to use as few features as possible, since this approach requires less processing power and is
more robust.

As a general conclusion, the authors may state that the paper can serve as an example
for researchers seeking ideas and techniques to investigate the relationships between
mental fatigue and various biomedical measures.
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Abstract: Cognitive workload, being a quantitative measure of mental effort, draws significant
interest of researchers, as it allows to monitor the state of mental fatigue. Estimation of cognitive
workload becomes especially important for job positions requiring outstanding engagement and
responsibility, e.g., air-traffic dispatchers, pilots, car or train drivers. Cognitive workload estimation
finds its applications also in the field of education material preparation. It allows to monitor the
difficulty degree for specific tasks enabling to adjust the level of education materials to typical abilities
of students. In this study, we present the results of research conducted with the goal of examining
the influence of various fuzzy or non-fuzzy aggregation functions upon the quality of cognitive
workload estimation. Various classic machine learning models were successfully applied to the
problem. The results of extensive in-depth experiments with over 2000 aggregation operators shows
the applicability of the approach based on the aggregation functions. Moreover, the approach based
on aggregation process allows for further improvement of classification results. A wide range of
aggregation functions is considered and the results suggest that the combination of classical machine
learning models and aggregation methods allows to achieve high quality of cognitive workload level
recognition preserving low computational cost.

Keywords: aggregation; generalized Choquet integral; fuzzy measure; classical machine learning;
cognitive workload

1. Introduction

Cognitive workload is understood as a mental effort necessary to perform a task [1]. It
is a non-trivial process useful in explaining mental fatigue and its influence on the brain’s
cognitive system performance. Automatic categorizing and classification of cognitive work-
load levels is a subject of numerous research studies published recently. The classification of
cognitive workload can be conducted in two ways: subject-dependent approach [2–4] and
subject-independent approach [5,6]. Subject-independent approach, being more general,
attracts greater attention of the researchers nowadays [7]. The literature review [8] also
shows the examples of combined subject-dependent and subject-independent approaches.
The most frequent case that can be found in the literature is binary classification problem:
distinguishing between low and high levels of cognitive workload [9,10]. Besides the binary
approach, papers dealing with three-way classification can be found. In that case, low,
medium, and high levels of cognitive workload are considered [6,7,11]. Experiments in-
volving multiclass classification are less common in the cognitive workload research [12,13].
The literature shows the reports of the results obtained with various classifiers, but the most
popular among them are Support Vector Machine (SVM) [6,14,15], Linear Discriminant
Analysis (LDA) [16], k-Nearest Neighbors (kNN) [11], and Random Forest [6]. In addition
to classical recognition models, deep neural network-based approaches such as convolu-
tional deep neural networks [9,17,18] are applied in the cognitive classification process. The
reported results of accuracy are in the range of 50–80%. Classification of cognitive workload
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can be conducted on the basis of electroencephalographic (EEG) data [11], galvanic skin
response (GSR) [19], or eye-tracking [20]. In [21,22], the authors use the fuzzy methods to
effectively monitor the state of cognitive workload of an Unmanned Aerial Vehicle (UAV)
operator. In [23], the authors successfully apply fuzzy cognitive mapping to analyze the
pilots’ decision during the flight.

It is worth recalling a few recent results. Fatimah and colleagues [24] published an
article on the automatic detection of mental difficulty in arithmetic tasks on the basis of
an EEG signal. The authors used a publicly available dataset from MIT PhysioNet, which
contains recordings from 36 people. The arithmetic tasks performed by the respondents
consisted of subtracting numbers. Based on the number of correct calculations per minute,
the performed tasks were divided into two groups: easy and difficult. If the number of
incorrect answers was not more than 20%, the tasks were considered easy, otherwise they
were considered difficult. For 12 people, the tasks turned out to be easy, and for 24, the tasks
were difficult. A two-class classification independent of the examined person was carried
out: the main goal was to distinguish between low and high levels of cognitive load. The
following classifiers were used: SVM, Decision Tree, and Quadratic Discriminant. Accuracy
of the classification was calculated for each electrode separately and for each electrode
divided into bands. The best results were achieved for the Quadratic Discriminant classifier,
both with and without division into bands for a given electrode [24]. The best accuracy
achieved with selected electrode and specific frequency band was as high as 97.2%. In [25],
the authors conducted research aimed at detecting various mental states of the pilot such as
distraction, workload, fatigue, and normal state. Various biosignals were used in the study:
EEG, EKG, EDA, and EEA. Based on the signals collected from eight pilots, a four-class
classification was carried out relating to distraction, workload, fatigue, and normal state.
The authors presented the results of classification independent of the tested person for
various classifiers, among others, for KNN, SVM, sLDA, LSTM, and their own proposed
network for the EEG data separately, for the rest of the signals and for the combination of
the EEG with the rest of the signals. The best results for the majority of classifiers were
obtained for the data considering all signals. For the method proposed by the authors,
based on the LSTM, the mean classification score was 85.2% (accuracy). In [26], the authors
presented a model based on GALoRIS, thanks to which it is possible to identify high and
low cognitive loads. The algorithm selects the features that correspond to low and high
loads. The model was tested by the authors on the basis of the cognitive load data associated
with driving. EEG data for the experiment were collected while driving the vehicle in
the simulator. In addition, the authors used the NASA scale TLX and Instantaneous
Self-Assessment (ISA), which enabled the subjective assessment of the individual and
the vehicle performance measures (error level). The authors conducted a classification
independent of the examined person and tested several classifiers in their research, the best
result was achieved for the SVM classifier and was over 96%. Agnola and colleagues [27]
dealt with a very interesting topic—the cognitive load in the context of using drones in
search-and-rescue (SAR) missions. The authors used a simulator with which three levels
of SAR-related cognitive bias were evoked. They used biological signals such as: ECG,
skin temperature, respiration. The authors proposed a method of eliminating the extracted
features using the following algorithms: eXtreme Gradient Boosting (XGBoost) and Shapley
Additive exPlanations (SHAP). Experiment was carried out on 24 people who were asked
to perform four activities: baseline, mapping activity, flying activity, flying and mapping
activity simultaneously. As in the case of article [26], the authors used the NASA-TLX scale.
The article presents the results of classification independent of the tested person, both
two-class and three-class using such classifiers as kNN, Logistic regression, LDA, XGBoost,
Random Forest. Two-class classification was used for distinguishing between low and
high cognitive load. The authors obtained 80.2% accuracy for the two-class classification
and 62.9% for the three-class classification using the XGBoost classifier with 24 features.
In the paper [28], the authors presented a model that classifies the cognitive load based
on the Long Short-Term Memory (LSTM) network and the Filter Bank Common Spatial
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Pattern (FBCSP) based on EEG data. The authors conducted the two-class classification:
arithmetical tasks and rest state; they achieved an accuracy of 87% with this model. In their
research, the authors used a publicly available dataset, which contains data from 30 people
performing arithmetic tasks.

The poor or unsatisfactory quality of some classifiers in various fields of application
can be compensated by the use of appropriate operators aggregating the classification
results returned by these classifiers separately or on the basis of an information fusion at the
stage of the data preprocessing. The former way of finding the final ranking of classification
results is intuitively appealing and typical for many fields of application such as sport
competitions, risk analysis, decision-making, etc. These aggregation functions or operators
are described in detail in many monographs [29–34] and papers [35–37]. In particular,
typical classes of aggregation operators are means, triangular norms [38,39], ordinary
weighted averaging operators [35,40], Choquet integral, and its generalizations [41–47]
called pre-aggregation functions, etc. Comprehensive experimental studies, in particular,
on an applications of aggregation operators and generalizations of Choquet integral to the
face recognition problems were presented in [44,46,48], respectively.

The main goal of this study is to improve the results of eye activity and user performance-
based cognitive workload level classification with the use of aggregation methods. For
this purpose, we test and compare over 1000 classic aggregation operators and over 1000
pre-aggregation operators (so called generalized Choquet integrals) to determine the best
one. The set of aggregation operators utilized in a series of thorough numerical experiments
is built on the basis of above-mentioned monographs [29–34] and selected papers. We list
the best aggregation functions and discuss the accuracies obtained for the typical classifiers
such as Decision Tree, k-Nearest Neighbors, etc. The dataset used in the classification study
contains eye-tracking and user performance data taken from 29 participants in the study of
solving the computerized version of Digit Symbol Substitution Test (DSST).

The rest of the paper is structured as follows. Section 2 presents the description of
the experiment procedure with detailed explanation of eyetracking-related aspects and
data processing methods applied. Section 3 presents the utilized aggregation functions.
Section 4 contains the presentation of the results obtained with individual classifiers as well
as the recognition rates achieved with application of the presented aggregation functions.
Section 5 concludes the paper and presents the future work directions.

2. Eyetracking
2.1. Research Procedure

The dataset containing eye activity and user performance data was gathered using
the computerized version of the DSST test [49] developed for the purpose of this study.
The idea of DSST test is to match displayed symbols to particular digits according to
a key presented continuously on the screen (Figure 1). In the study, participants were
asked to assign subsequent symbols to digits within the specified time. Symbols were
generated randomly and with repetition. Participants were instructed to perform as many
correct matches as possible within defined time. The time of single trial and the number of
different symbols to be displayed were defined in the application settings. For the purpose
of the study, three DSST parts were prepared; each of them corresponded to one cognitive
workload level in the further analysis. Part 1 corresponding to the low level of cognitive
workload, contained four different symbols, and the time was set to 90 s. Part 2 related
to the medium level of cognitive workload, covered nine different symbols, and the time
was also set to 90 s. Part 3 defined for the hard level of cognitive workload, covered nine
different symbols, and the time was extended to 180 s. In all parts, participants were asked
to perform as many matchings of subsequent symbols to digits as possible (in defined
time). They were also instructed to perform matches as fast as possible. The settings were
defined empirically based on the preliminary pilotage study. Each participant of the case
study was asked to perform all three DSST parts. The experiment was preceded by short
trial to familiarize participants with the application.
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Figure 1. The interface of the application.

The experiment was performed in a laboratory room illuminated with standard
fluorescent light. The eye activity data were gathered using Tobii Pro TX300 screen-based
eye tracker (Tobii AB, Stockholm, Sweden), which was built into a monitor (23′ ′ TFT
monitor, 60 Hz) connected to the computer. Data were registered with the frequency of
300 Hz. Tobii Studio 3.2 software was used to design the experiment and export data. Each
session was preceded by the 9-point calibration procedure.

Eye activities gathered in the experiment were related to such measures as fixations,
saccades, blinks, and pupil size. Fixations are understood as the period of uptaking visual
information, during which a participant holds eyes stable in a particular position. Saccades
are understood as the rapid eye movement occurring between fixations. The dataset cov-
ered 20 selected features related to fixations (total number of fixations, mean duration of
fixation, standard deviation of fixation duration, maximum fixation duration, minimum
fixation duration), saccades (total number of saccades, mean duration of saccades, mean
amplitude of saccades, standard deviation of saccade amplitude, maximum saccade ampli-
tude, minimum saccade amplitude), blinks (total number of blinks, mean of blink duration),
and pupillary response (mean of left pupil diameter, mean of right pupil diameter, standard
deviation of left pupil diameter, standard deviation of right pupil diameter). Moreover,
data related to DSST test results, i.e., number of errors, mean response time, and response
number, were also included.

The experiment was conducted on a homogeneous group of 30 participants: 24 males,
six females aged 20 to 24 (mean = 20.61 years, std. dev. = 1.54) recruited among healthy
students of the BSc degree in computer science. The participants reported to have nor-
mal/corrected to normal vision and they were not under strong medicines. As the ac-
ceptable level of registered data activity was set to 90%, data from one participant were
discarded from the further analysis due to their poor quality.

2.2. Data Processing

The data processing procedure was composed of six steps: data acquisition, data
synchronization, feature extraction, feature normalization, feature selection, training, and
testing classification models. The raw data were generated in the form of six files per single
participant (two files (eyetracking data and DSST results) for each of three DSST parts).
Owing to that fact, a synchronization procedure was needed. Finally, 87 observations were
included in the output dataset (three observations representing three cognitive workload
levels per single participant). In the feature extraction procedure, twenty independent
features were obtained. Feature normalization was also performed to guarantee a uniform
feature scale.

The ANOVA analysis was performed for 17 features. The K-S test and Levene test
were previously performed to check assumptions of normality of distribution and equality
of variance. In this process, three of 20 features (mean duration of saccades, minimum
saccade amplitude, and mean of blink duration) were discarded from further analysis.
The ANOVA analysis revealed 10 significant features (p-value 0.05), which were applied
in classification process. The Tukey’s HSD post-hoc test was applied in order to identify
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the pairs of DSST parts which differed significantly. Table 1 presents significant results
(p-value < 0.05) of the ANOVA analysis.

Table 1. The results of one-way ANOVA analysis.

ANOVA Post-Hoc Test

Features p-Value p-Value
Class 1–Class 2

p-Value
Class 1–Class 3

p-Value
Class 2–Class 3

response number <0.001 <0.001 <0.001 <0.001
mean response time <0.001 <0.001 <0.001 0.69

total number
of fixations <0.001 0.36 <0.001 <0.001

standard deviation of
fixation duration 0.002 0.003 0.008 0.95

maximum fixation
duration 0.009 0.011 0.04 0.87

total number
of saccades <0.001 0.56 <0.001 <0.001

maximum saccade
amplitude 0.002 0.41 0.001 0.046

mean saccade
amplitude <0.001 <0.001 0.09 <0.001

total number of blinks 0.015 0.99 0.003 0.003
standard deviation of
pupil diameter (left) 0.005 0.016 0.012 0.99

The classification procedure was focused on assigning observations into one of the
three classes: low, medium, and high level of cognitive workload. Various classification
methods such as SVM, kNN, Decision Tree, Random Forest, Multilayer Perceptron (MLP),
and Logistic Regression were applied. As the classification was performed using a subject-
independent approach, the division into train and test datasets was done in such a way
that a single participant could be used only in one dataset. The test dataset covered data
from six participants, which corresponded to approximately 20% of the input dataset.

In order to investigate the influence of particular features of classification process,
feature importance ranking was generated. Table 2 presents the features ranked with
respect to their importance for classifying procedure. The results were obtained based on
Logistic Regression model.

Table 2. Separate class feature rankings together with weights obtained by interpreting the weights of the Logistic
Regression model.

No. Low Medium High

1 mean saccade amplitude (1.0) mean response time (1.0) response number (1.0)
2 mean response time (0.95) response number (0.65) total number of fixations (0.95)

3 standard deviation of fixation
duration (0.6) mean saccade amplitude (0.63) total number of saccades (0.95)

4 total number of fixations (0.53) standard deviation of fixation
duration (0.62) mean saccade amplitude (0.22)

5 total number of saccades (0.52) total number of fixations (0.6) maximum saccade amplitude (0.19)
6 response number (0.27) total number of saccades (0.55) mean response time (0.18)

7 standard deviation of pupil diameter
(left) (0.17) maximum fixation duration (0.28) maximum fixation duration (0.15)

8 maximum fixation duration (0.16) maximum saccade amplitude (0.15) total number of blinks (0.1)

9 maximum saccade amplitude (0.5) total number of blinks (0.09) standard deviation of pupil diameter
(left) (0.09)

10 total number of blinks (0.1) standard deviation of pupil diameter
(left) (0.05)

standard deviation of fixation
duration (0.08)
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3. Aggregation of Classifiers

Let us recall the most important properties of aggregation operators. Aggregation
function p: [0, 1]n → [0, 1] is, in general, defined as an operator fulfilling the following
conditions:

p(0, 0, . . . , 0) = 0, p(1, 1, . . . , 1) = 1 (1)

and
∀x, y ∈ [0, 1]nx ≤ y⇒ P(x) ≤ p(y) (2)

It means that it preserves bounds and monotonicity [31]. Examples are various means
or Ordinary Weighted Averaging (OWA) operators [40]. One of the most important and
intensively developed aggregation operators is the Choquet integral. To define this integral,
we have to recall the properties of fuzzy measure. If X is a set then Q(X) = 2X is its subsets
family. Then a function g fulfilling the conditions

g(∅) = 0 (3)

g(X) = 1 (4)

g(A) ≤ g(β), A ⊂ B, A, B ∈ Q(X) (5)

lim
n→∞

g(An) = g
(

lim
n→∞

An

)
(6)

where {An}; n = 1, 2, . . . , denotes an increasing sequence is called fuzzy measure. Note
that the Sugeno λ-fuzzy measure is a typical example of fuzzy measure class of functions.
Recall that it satisfies

g(A ∪ B) = g(A) + g(B) + λg(A)g(B) (7)

for λ > −1. Here, A and B are not overlapped. Moreover,

g(Ai+1) = g(Ai) + gi+1 + λg(Ai) (8)

where Ai = {x1, . . . , xn}, Ai+1 = {x1, . . . , xn+1}. To simplify one writes

gi = g({xi}) i = 1, · · · , n (9)

Let h(x) be a function and let h(xi), i = 1, . . . , n; be ordered in a non-increasing manner.
Moreover, let h(xn+1) = 0. Then the Choquet integral is

CH =
n

∑
i=1

(h(xi)− h(xi+1)g(Ai)) (10)

An interesting generalization for this function is [46,48]

CMMin(x) =
n

∑
i=1

M(min(h(xi), g(Ai))−min(h(xi+1), g(Ai))) (11)

or

CMinM(x) =
n

∑
i=1

(min(M(h(xi), g(Ai)), g(Ai))−min(M(h(xi+1), g(Ai)), g(Ai))) (12)

Here, M can be any t-norm, see [43,44].
A general model of aggregation processing is presented in Figure 2. The data are

classified separately by various classifiers. Next, on a basis of weights, which can be
obtained from experts or on a basis of accuracy of individual classifiers, the results are
aggregated using a proper aggregation operator.
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4. Experimental Results
4.1. Individual Clssifiers

Several classic machine learning models were tested in the first stage of numerical
experiments. The following classifiers were applied: SVMs with various kernels, namely
linear, quadratic, and cubic one, Logistic Regression, k-Nearest Neighbors, Decision Tree,
Random Forest, Multilayer Perceptron (MLP). Due to the fact that the test sample was
balanced, accuracy can be an appropriate classification quality metric. Table 3 shows the
mean values of accuracy obtained for various classifiers achieved for both datasets: the
dataset containing all 20 features and the dataset containing 10 selected features. It can
be noticed from the results, the best classification model allowed to achieve the accuracy
reaching the level of 96%. The results show that the classifier accuracy for dataset with
selected features are slightly better than the results obtained for all features.

Table 3. Accuracies obtained with separate classifiers.

Model Accuracy (%) for 10 Selected Features Accuracy (%) for All Features

SVM(Linear) 94.75 93.11
SVM(Quadratic) 84.47 78.28

SVM(Cubic) 92.36 89.47
Logistic Regression 96.22 94.67

kNN 93.78 89.61
Decision Tree 90.39 90.11

Random Forest 96.22 94.89
MLP 93.53 89.56

Another important aspect worth noting here is the procedure of fuzzy measure density
values generation. Several methods of fuzzy measure generation can be used: expert
assumption, optimization, and, finally the heuristic one. In our research, we use the
heuristic based on cross validation. In order to produce a density measure for a classifier,
we run n-fold cross validation on the training set. As the result we obtain n values of
accuracy. The mean of cross validation accuracy is considered as the fuzzy measure gi of
the i-th classifier. The fuzzy measures can be interpreted as the degree of trust (or simply
weights or level of importance) to a separate classifier’s predictions. Figure 3 illustrates
the approach.
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4.2. Aggregation of Classifiers

Here, we present the best functions serving as aggregation operators for the classifiers
listed in the previous subsection, i.e., Cubic SVM, Decision Tree, k-Nearest Neighbor,
Linear SVM, Logistic Regression, Multilayer Perceptron, Quadratic SVM, and Random
Forest. In the cases where it is needed to feed the aggregation algorithm with weights,
they were found on a basis of specific classifiers’ accuracy by performing cross validation
on training data. For instance, to determine fuzzy measure densities gi, see Equation (9).
The values being the inputs to the aggregation functions are the probabilities of belonging
to the three considered classes. Depending on the number of arguments of the specific
aggregation function, these values are either provided to a single function or transitive.
The latter case is considered when the function has only two arguments. In the validation
stage, we considered 200 repetitions, each including tests on 18 validation observations
for which we have obtained the probabilities of belonging to the three classes. Let us
now discuss the best aggregation operators from over 2000 aggregation operators and
so-called pre-aggregation functions (generalized Choquet integrals), see papers [43,45]. The
source of the functions were various examples or our own modifications of the functions
comprehensively described in [29,31,34,38,50,51] and other books and papers. In the rest of
the section, we present the results obtained with particular aggregation operators: both for
complete feature set and for selected 10 features. The results are provided in the following
format: “selected features result” (“complete feature set result”). The summary of the
results is presented on Figure 4.
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The best result was obtained with a so-called generalized form of Choquet integral [34],
i.e.,

L(x, y) =
{

ax + (1−Q)y f or x ≥ y
(1− b)x + by otherwise

(13)

where x ≥ 0, y ≥ 0, a, b ε [0, 1]. It gave the accuracy 96.44% (96.11%) for various parameters
of a and b, for instance a = 0.01, b = 0.99. Other selected values of these parameters resulted
in correct recognition rates on a slightly lower level. Here, it is worth stressing that the name
of the function (12) can be misleading since it is not typical Choquet integral discussed in
the previous section, see Equation (10).

The next function producing satisfying results 95.86% (95.3%) is a so-called weighted
aggregation function of the form [34]

A(x1, . . . , xn) =
∏n

i=1(1 + wixi)−∏n
i=1(1− wixi)

∏n
i=1(1 + wixi) + ∏n

i=1(1− wixi)
(14)

where the values of wi’s are the individual classifiers’ accuracies.
The next function, which produces highly satisfying results, is Stolarsky mean [34], [52]

Ms(x, y) =


(

xr−yr

r(x−y)

) 1
r−1 i f x 6= y

x i f x = y
(15)

where r 6= 0. In this case, the resulting recognition rate is 95.66% (95.94%). For r = 2. The
next interesting function is an associative function proposed in [29], namely

C(x, y) =
1
2

W(x, y) + M(x, y) (16)

where
W(x, y) = max(x + y− 1, 0)

and
M(x, y) =

x + y
2

with 95.66% (95.86%) accuracy. A so-called SP-based bivariate symmetric sum [31]

f (x, y) =
x + y− xy

1 + x + y− 2xy
(17)

produced the recognition rate of the level of 95.58% (95.72%). The function of the form

f (x, y) = 2log (1+x) log (1+y)/(log 2)2
(18)

gave 95.55% (95.5%) recognition rate. The accuracy 95.44% (95.5%) was obtained with an
application of a function of the form

f (x, y) =
x + y

2
(19)

but if x ∈ [0.5, 0.7) the value of x is substituted by 0.5. The same is done with y ∈ [0.5, 0.7).
Good results are also obtained with a so-called 1-Lipschitzian aggregation function (Bertino
copula) [34] (p. 271)

f (x, y) =

{
(Min(x, y))2, if x ≤ y

(Max(x, y))2 − |x− y|, otherwise
(20)
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returns 95.25% (95.15%) accuracy. Finally, Sugeno integral [34,50] and max-based bivariate
symmetric sum [31], i.e.,

f (x, y) =
max(x, y)
1 + |x− y| (21)

yielded 95.22% (95.44%) recognition rate.
Very good results can also be obtained with the generalization of the Choquet integral

of the form (11) and (12). The function M standing under the integral sign was

M(x, y) =
(

ln
(

ex−α
+ ln

(
ey−α − e

)))− 1
α (22)

for α > 0. Its value α = 3.3 gave the maximal recognition rate at the level of 95.81%
(95.44%).

Here, it is worth stressing that also the results at satisfying level were obtained using
various fuzzy integrals, most of the pre-aggregation functions or generalized aggregation
functions discussed in [38], median or weighted median, scoring or weighted scoring,
quadratic mean, and a few versions of ordinary weighted averaging functions (OWA).
Interestingly, aggregation operators can improve recognition rate in more noticeable way
for the data without extended feature selection.

Figure 4 presents the ranking of the best operators among the tested aggregation
functions. The results show that their application affects the quality of classification in
a favorable way. The best result, achieved with a generalized form of Choquet integral
function, is more than 1.2 percentage point higher for complete feature set and 0.2 percent-
age point higher for selected features compared to the best individual classifier (Logistic
Regression and Random Forest).

5. Discussion

The aim of the study was to improve the result of multiple cognitive workload level
classification based on eye activity and user performance. The original classification proce-
dure covering three class classification using classical methods such as SVM, kNN, Decision
Tree, Random Forest, MLP, and Logistic Regression was the input to the aggregation func-
tions. In the study, many aggregation and pre-aggregation operators published in the core
literature monographs were compared in order to find the best model suitable for classifica-
tion of cognitive workload level. The results show that using various classification models
in combination with an aggregation function allows further improvement of recognition
rate by applying the knowledge cumulated in the parameters of the trained models.

The original dataset covering eye-tracking and user performance data was gathered in
a study of three parts of the computerized version of DSST test (Digit Symbol Substitution
Test). Classification was performed with the interpretable machine learning model in
order to regard the most valuable features. Eye-tracking features, in general, have been
already proved to be useful in cognitive workload analysis also due to the fact that it is
a non-invasive sourced, natural type of response obtained without additional activity or
training. What is more, the classification was performed as subject-independent in order to
distinguish classes regardless of such conditions as the age of an examined person, his/her
habits, or testing period. The best original classification results achieved 96%. It is worth
noting that the tests were performed on a homogeneous group of healthy people with
similar age and educational level.

The study presented in the paper proved that applying aggregation methods enables
to increase the classification result by more than 1 percentage point. Detailed results show
that there were several aggregation functions that enabled achieving the highest results
(presented in the paper are the top ten functions as Equations (13)–(22)).

Classification results, both individual and with aggregation, prove that the time and
difficulty level of performed tasks have a systematic influence on user performance, pupil-
lary and eye movements. The results show that there is a relation between the participants’
engagement combined with cognitive state and eye activity. The most important features
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in the study are these related to the user performance and the intensity of eye move-
ment. It indicates that fixation and saccade-related features (mean saccade amplitude,
standard deviation of fixation duration, total number of fixations and saccades) as well
as response-related features (mean response time, response number) reflect the degree of
attention during the tasks performance. However, further results are needed to investigate
additional factors such as types of tasks, participant profiles or their initial mental state.
What is more, it is worth to consider the mental abilities of each single participant. Such
information might help to adjust the cognitive workload to a particular participant. This
might be measured with dedicated models or surveys (e.g., NASA-TLX scale, the Rasch
and strain–stress model), although such tools are based on subjective assessment.

A broad set of pre-aggregation and aggregation operators was analyzed in the study
in order to find the ones that fit the best to the analyzed problem. The detailed results show
that the classification accuracy was improved.

In the case study, two approaches were applied. The first one was based on classifica-
tion considering original 20 features whereas the second one covered 10 features chosen in
statistical analysis. The individual classification results for both approaches differ slightly,
although the results for smaller number of features occurred to be better. Results for both
approaches were further processed in order to apply pre-aggregation and aggregation
operators. The best results for both approaches were achieved for the generalized Cho-
quet integral. This operator enabled to improve the classification results by as much as
1.2 percentage point for all features-based approach compared to the best classification
model. The same operator proved to be efficient also in case of a smaller feature number
approach, although the improvement was not as high. It was Random Forest that occurred
to be the best among the classical classifiers for both approaches. Additionally, Logistic
Regression gave similar results for the second approach. These results confirm usefulness
of the generalized Choquet integral found in research over classification performance. The
results prove that the application of pre-aggregation and aggregation operators is useful
especially in case of applying the basic feature selection. Aggregation functions might give
better improvement in case of weaker initial individual classification results.

Future work is planned to include the experiments on a broader dataset, collected from
a higher number of participants. The authors also consider analysis of a higher number of
cognitive workload levels. As further development of the topic, it is planned to include
self-report tools of detecting mental illness such as depression or anxiety symptoms in our
future work.
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Abstract: The study is focused on applying ex-Gaussian parameters of eye-tracking and cognitive
measures in the classification process of cognitive workload level. A computerised version of the digit
symbol substitution test has been developed in order to perform the case study. The dataset applied
in the study is a collection of variables related to eye-tracking: saccades, fixations and blinks, as well
as test-related variables including response time and correct response number. The application of
ex-Gaussian modelling to all collected data was beneficial in the context of detection of dissimilarity
in groups. An independent classification approach has been applied in the study. Several classical
classification methods have been invoked in the process. The overall classification accuracy reached
almost 96%. Furthermore, the interpretable machine learning model based on logistic regression was
adapted in order to calculate the ranking of the most valuable features, which allowed us to examine
their importance.

Keywords: ex-Gaussian modelling; classical machine learning; cognitive workload

1. Introduction

Cognitive load classification is the subject of numerous scientific studies [1–3]. Its
goal is to verify whether there are objective indicators of several cognitive workload
levels enabling its recognition by various computational methods. The authors carried
out both subject-dependent [4] and subject-independent [5] classification inquiries; the
latter becoming progressively more popular in the research. The subject-independent
classification approach is where samples taken from a single subject are fully included
in one dataset (train or test) in order to ensure reliability of results. In the literature,
one can also find utilization of both approaches applied simultaneously [6]. The most
common classification of the level of cognitive load is the binary approach (presence or
absence of overload) [7], but there are also attempts to classify several levels of cognitive
load [8]. The literature review shows that the cognitive load is most often tested on
the basis of eye-tracking signals [8] and EEG [9]. As for classification methods, both
classic classifiers and deep neural networks [10,11] are administrated. In terms of classical
classifiers one can mention such models as support vector machine (SVM) [1,12], linear
discriminant (LDA) [3] and k-nearest neighbours (kNN) [13]. Depending on the type of
classification, the authors usually present their results between 70–95% accuracy. Yamada
and Kobayashi [14] conducted a study including 12 participants and undertook a two-class
classification of cognitive load with the use of the SVM classifier, achieving a result of
over 90% accuracy. The model created classified the effort or its lack, regardless of the
age of the examined person. In other research [15], the authors presented a seven-class
classification, which concerned the sorting of cognitive load on the basis of the eye-tracking
signal when performing arithmetic tasks, from the easiest to the most difficult. The authors
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obtained an accuracy reaching from 0.4 to 0.98 using artificial neural networks. There are
other studies presenting the results of binary [16–18] and three-class classification [6,19] of
cognitive workload. As suggested earlier, the classification studies on cognitive workload
have two main purposes: to find the objective indicators of cognitive overburden (e.g.,
behavioural, cognitive and physiological) and to verify computational methods enabling
the most accurate automatic recognition and differentiation of overload levels.

The vast majority of cognitive experimental data sets consisting of a large amount of
numeric results are still analysed with the application of parametric analytical methods,
first of all in the form of means and standard deviations. Despite this, researchers focused
on measuring reaction times (RTs) have noticed that the distribution of such outcomes, even
when collected from healthy participants, is often skewed and contrary to expectations;
the empirical distribution of RT data does not always fit the Gaussian model on which
parametric statistics are based [20]. Typically, the skewness of the distribution of the RT
series is positive; that is, it has a set of the most typical and at the same time relatively
short, most frequent RTs, and an extended right-side convolution tail, containing the rarest,
but at the same time longest RTs, representing the most unusual, prolonged RT outliers
of the whole distribution [21]. Such a form of data distribution suggests that in a series of
RTs parametric symmetrical standard deviation (SD) does not fully cover the real range
of outliers, and instead, averaging all data to the form of arithmetic means eliminates
some portion of uncommon observations and ultimately makes it impossible to assess
the true extent of intra-individual variability (IIV). Hence, to circumvent some limitations
of the parametric approach to experimental RT-based data, the so-called ex-Gaussian
methodology has been developed, allowing analysis of positively skewed distribution
so as not to eliminate outliers, and at the same time, not distorting the range of typical
results. Ex-Gaussian distribution modelling provides quantitative characteristics in the
form of three independent parameters: mu (µ), representing the mean of the normal
component and reflecting average performance or the most frequent results; sigma (σ),
defining the symmetrical standard deviation of the normal component; and tau (τ), covering
the exponential part of the distribution with the most prolonged and most often rarest
RTs [22]. In cases when the experimental procedure consists of displaying repetitive stimuli
and/or relatively unified reactions are expected, it is considered that the τ parameter
covering the scope of the most prolonged RTs might be understood as an indicator of
“attentional lapses” or “off-task mind wandering”. Attentional lapses are usually due
to transient failures in performance controlling mechanisms occurring, for example, due
to increasing cognitive fatigue [23–25]. RT-based and other studies focused on cognitive
performance and its disturbances confirm that an increased range of attentional lapses and
off-task mind wandering is associated with lower levels of effortful control [26], states of
reduced alertness and generally diminished productivity [27,28], and additionally with
mental health risk factors, such as anxiety and negative affect [29,30].

Although measures of intra-individual variability, including ex-Gaussian modelling,
have so far been used mainly to analyse features of RT distribution, it does not mean that
these methods cannot be successfully implemented for other types of empirical data. For ex-
ample, indicators of intra-subject variance were used to analyse neuroimaging results, espe-
cially regarding patterns of variability in neuronal functional connectivity matrices [31,32],
analogous computation has been exploited in studies on heart rate variability [32–34] and
ex-Gaussian modelling enabled the highlighting of intergroup differences in the extremely
high measures of IgG allergic reaction markers in patients with depression, irritable bowel
syndrome and healthy controls [35].

It can be argued without a doubt that, just as the application of ex-Gaussian modelling
to cognitive data in the form of RT series is relatively common, the use of this quantitative
analysis method for eye-tracking output is still scarce. To our knowledge, one of the first
studies in which the distribution of variables such as fixation length and intersaccadic
intervals were successfully matched to ex-Gaussian distribution was carried out by Otero-
Millian et al. [36]. In the following years, the ex-Gaussian modelling of eye-tracking results
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was described only a few more times, while probably the fullest theoretical and empirical
justification for the application of distributional analyses to parameters such as fixation
length was presented by Guy, Lancry-Dayan and Pertzov [37]. These authors documented
not only the parametric mean of fixation duration (FD), but also that its empirical distri-
bution is sensitive to experimental manipulations of the task input; they also alluded to
the results of previous studies which confirmed the existence of significant relationships
between task features such as semantic clarity, stimuli familiarity and cognitive individual
differences, e.g., regarding working memory, and FD ex-Gaussian characteristics, especially
µ and τ. First of all, in their original study Guy and co-workers evidenced that under three
different experimental conditions FD distributions fitted the ex-Gaussian curves even better
than the Gaussian one; µ and τ cover significantly different aspects of eye movements and
are not redundant or overlapping variables. Additionally, when the same individuals were
subjected to the same eye-tracking experiments with a 7-day interval, ex-Gaussian parame-
ters exhibited very high reliability (the correlation between the first and second assessments
was at least 0.80). In the end, Guy et al. [17] argued that the τ parameter is associated with
repetitive exposures to the same images, while µ, as previously suggested, is to a greater
extent related to stimuli familiarity and individual differences in problem-solving efficiency.
The increase in τ calculated from FD might represent a psychophysiological marker of
attentional lapses because as regards the repetitive presentation of stimuli, i.e., an experi-
mental situation, when a testee already knows given stimuli and the duration of individual
fixations enlarges, it is rather unlikely that such extremely prolonged fixation represents
the process of stimulus decoding since it has already been visually decoded. Although in
the discussed research ex-Gaussian modelling was applied only to one variable, which, as
RTs, has a temporal character (duration), we postulate that since the distribution has an
axis representing the frequency of measured observations, this approach may also be used
to analyse non-temporal eye movement features, such as the magnitude or amplitude of
microsaccades and saccades. Then, µ might cover the typical, most recurring observations,
while τ will refer to the rarest and to some extent extreme attributes of eye-movements.
Taken together, we assume that application of ex-Gaussian modelling to data collected
from eye-tracking during exposure to tasks eliciting cognitive workload seems to be fully
justified. Additionally, we expect that both µ and τ measures will prove to be significant
predictors allowing objective classification of cognitive workload levels with high accuracy.

At this point, we would like to assert that according to our knowledge, although the
eye-tracking data were analysed with an application of ex-Gaussian modelling, it was not
implemented regarding data taken from the cognitive workload experiment. We presume,
that increasing cognitive overburden is associated with a growing number of atypical RTs
and atypical physiological events, and therefore, utilization of ex-Gaussian parameters may
enhance the possibilities of its automated classification.

In the current study, we implemented ex-Gaussian modelling to analyse two types
of data: cognitive variables in the form of RTs and correct or invalid reactions together
with psychophysiological variables collected from the eye-tracker. Eye-tracking values
cover data related to saccades, fixations and blinks. Both of these groups of data were
gathered during an experimental procedure whose aim was to elicit the state of cognitive
overburden. In comparison with the aforementioned Guy et al. study [17], we decided to
corroborate our premises according to which ex-Gaussian characteristics might reflect not
only time-related variables’ distributions (e.g., fixation duration) but also another type of
psychophysiological measures collected during the cognitive workload experiment. This
might be acknowledged as potentially original input in our research.

Considering the above, our study has two main goals:

• To verify whether the cognitive and physiological data collected during cognitive-
workload-related experiments fit the ex-Gaussian distribution;

• To determine the possibilities of machine-learning-based classifiers regarding auto-
matic recognition of cognitive workload using ex-Gaussian parameters of eye-tracking
and cognitive measures.

105



Brain Sci. 2022, 12, 542 4 of 15

Taking into account the above goals, this manuscript is organized as follows: The
Materials and Methods section describes the research procedures covering the computer
application, equipment, experiment details, data processing, classification methods and
statistical procedures. The Results section contains distributional analyses regarding the
fitness of the obtained data to ex-Gaussian curves and classifications outcomes. The last
section (Discussion) describes and explains the results with reference to the study goals.

2. Materials and Methods
2.1. Research Procedure

Obtained experimental input collected in the current study is fully original and does
not coincide with our previous research. The experiment itself consisted of administrating
a computerised version of the digit symbol substitution test (DSST) [38], which measures
the speed of cognitive processing. While performing DSST, a subject’s task was to connect
the abstract symbols to the corresponding numbers as quickly as possible. In order to
match the number with the symbol, the participant had to indicate with the mouse an
appropriate number on a displayed keyboard. The experiment was divided into three parts.
In each part, the participant’s task was to match the number with the symbol, but the parts
differed regarding the number of symbols and duration of the task itself. The first part
lasted 90 s and had 4 symbols to choose from, the second and third parts had 9 symbols,
but the second part lasted 90 s and the third part lasted 180 s. Thus, it can be assumed
that the level of cognitive load in each successive part was higher than in the previous one,
giving in sum three levels of cognitive workload. The application was written in Java 8.0.

Figure 1 shows the procedure of the experiment. Each part consisted of the same steps.
The successive parts differed in the difficulty of the task being performed.
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Figure 1. The procedure of the experiment.

2.2. Data Acquisition

The experiment was carried out in the laboratory using the proprietary application
and the stationary eye-tracker Tobii Pro TX300 (Tobii AB, Stockholm, Sweden). The eye
activity-related data were recorded with 300 Hz frequency. The Tobii Studio 3.2, a software
compatible with the eye-tracker, was used in the described experiment. In general, the
experiment lasted about 15 min. A nine-point calibration was performed at the start of
each measurement. Then the participant proceeded to implement each of the parts. Before
each part, the trial version was presented so that the participant knew what to do in a given
part. Using the Tobii Studio 3.2 software, the eye activities were exported and saved to an
individual file. Additionally, the application generated a file with information about the
answers given by the participant. The accepted quality of eye-tracking recording was set to
90% of eye activity.

Thirty healthy participants (students) were involved in the study. The group included
subjects aged 20 to 24 (M = 20.45; SD = 1.62); 23 males and 7 females. Additionally,
participants had no history of psychiatric nor neurologic diagnoses and reported not to be
undergoing medical treatment or taking medication. All participants had normal/corrected-
to-normal vision.
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2.3. Data Processing

The dataset applied in the study covered features related to eye-activity and cognitive
results of the DSST performance. The following eye-activity-related measures, obtained
from the eye-tracking equipment, were used in the study:

• Saccades [39], understood as eyes movements bringing the essential visual information
onto the most sensitive part of the retina. This process is performed to retrieve
information easily [40].

• Fixations [39], described as the time period when the visual information is proceeded.
During that time eyes stay in a relatively stable position.

• Blinks, identified by Tobii Studio software as zero data saccades [41].

Among the cognitive measures received from the DSST application we applied the
following:

• Response time defined as the time needed to perform a single matching in the application.
• Good response numbers understood as the number of correct answers given in a

certain time period.

The abovementioned variables were used in the data processing procedure, which cov-
ered such steps as data synchronisation, feature extraction, feature selection and classification.

The synchronisation procedure was related to the process of merging of data received
from eye-tracker equipment and from the DSST application. Synchronisation was made on
the basis of timestamps saved in both datasets. As each participant took part in three parts
of the assessment, each with a different level of cognitive workload, 90 observations were
included in the final dataset.

Synchronised outputs were subjected to the basic data cleansing procedure. One
highest and one lowest value were deleted from each data series obtained from a particu-
lar subject.

The feature extraction procedure was performed using ex-Gaussian statistics. We
decided to use this method as it offers a good prognosis [35] for dissimilarity detection in
groups. Ex-Gaussian parameters allow us to consider the exponential specificity of the data.
The ex-Gaussian distribution enables us to distinguish three independent parameters:

• Mu (µ)—corresponding to the mean of the normal component;
• Sigma (σ)—representing the symmetric standard deviation of the normal component;
• Tau (τ)—reflecting the exponential part of the distribution.

Mu and sigma in ex-Gaussian modelling correspond to classical mean and standard
deviation. Mu results were used in the final dataset in order to consider averaged, most
frequently occurring results. The tau parameter was included as it indicates the extremes
in results dispersion, or outliers usually eliminated in evaluations based on normal distri-
butions. Ex-Gaussian modelling was accomplished using the MATLAB toolbox “DISTRIB”
and the recommendations of Lacouture and Cousineau [22].

Ex-Gaussian parameters were calculated for the following eye-related measures: sac-
cades (amplitude of saccade, number of saccades and saccade duration), fixations (number
of fixations and fixation duration) and blinks (number of blinks) as well as for DSST-related
measures: number of correct answers and single trial response time. Among the listed
features, the number of saccades, fixations, blinks and correct responses were extracted
for the specific time intervals (10 s period). The taking into account of cognitive and psy-
chophysiological data extracted for shorter intervals was dictated by the conclusions of
our earlier research showing that information processing is specifically time-organised and
shows variable dynamics and temporal changes in its efficiency [42–44]. Therefore, we
decided that isolating the potential dynamic dimension of task performance may also in this
case strengthen the effectiveness of classification of cognitive workload at various levels.
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In the feature selection procedure the nonparametric Friedman test (α = 0.05) was
applied to check the significance of the features. Results showed that most of the sigma
parameters (for such features as number of fixations, fixation duration, number of saccades,
saccade duration, number of correct answers and single trial response time) were non-
significant. Taking into account these results and the fact that the sigma parameters indicate
only how far the data are spread from the mean, we decided to discard all the sigma
parameters from the further analysis in order to reduce the data dimensionality. Ultimately
the resulting dataset contained the following 16 features:

• Saccade-related features: mu of saccade amplitude, tau of saccade amplitude, mu
of saccade duration, tau of saccade duration, mu of saccade number in 10 s, tau of
saccade number in 10 s;

• Fixation-related features: mu of fixation duration, tau of fixation duration, mu of
fixation number in 10 s, tau of fixation number in 10 s;

• Blink-related features: mu of blink number in 10 s, tau of blink number in 10 s;
• DSST-related measures: mu of correct answers number in 10 s, tau of correct answers

number in 10 s, mu of single trial response time, tau of single trial response time.

Additionally, correlation between particular features were checked using Spearman’s
correlation coefficient with a significance level of α = 0.05. There were no significant strong
correlations found in the dataset.

The classification procedure was performed in order to distinguish between three
classes: low, medium and high cognitive workload. These three classes correspond to three
parts of the DSST-based experiment. The dataset was randomly divided into the training
and testing parts in the ratio 80:20. A subject-independent approach was applied in the
procedure and data from a single participant were assigned to only one dataset (train or test)
in order to ensure full independence of both datasets. Several classification algorithms such
as decision tree, SVM, random forest and logistic regression classifier were applied in the
study. Furthermore, feature weights were extracted by using the logistic regression model
in order to assess the importance of particular features in the process of distinguishing
cognitive workload levels. The entire train–test division and classification procedure was
independently repeated 200 times in order to achieve reliable classification results.

3. Results
3.1. Distributional Analyses

The first step of the outcome analysis consisted of checking whether the data fit the
ex-Gaussian distribution. As depicted in Figure 2, the majority of the studied variables’
empirical distribution matched to ex-Gaussian characteristics. In detail, Figure 2 presents
distributions of measures such as amplitude of saccade, number of saccades, saccade
duration, number of fixations, fixation duration, number of blinks, number of correct
answers and single trial response time. Additionally, charts show the right-side exponential
tail related to tau parameters.

The level of skewness was positive and constantly grew for measures at all cognitive
workload levels, e.g., saccade duration (values 0.2231, 0.4379 and 0.4522, respectively) and
response time (values 3.7235, 3.8627 and 4.0802, respectively).
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3.2. Classification Results

A tree-class cognitive load classification was carried out. The quality of classification
was measured with F1 and accuracy, which provided similar results. The following classi-
fiers have been tested: decision tree with the Gini splitting criterion and unlimited depth,
kNN with k = 5, SVM with a quadratic kernel, SVM with a cubic kernel, SVM with a linear
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kernel (C = 1, gamma = 1/16, other values of hyperparameters were tested in the course
of preliminary experiments; however, no notable influence of classification performance
was registered), logistic regression, random forest with 100 trees with the Gini splitting
criterion as well as multilayer perceptron with two hidden layers and the ReLU activation
function. The best obtained results are presented in Table 1. The first column contains the
name of the classifier and the second contains the average accuracy score and the standard
deviation in parentheses. The third column includes the mean values of the F1 measure and
the standard deviation in parentheses. The fourth column shows the number of features
used for the classification selected on the basis of the feature ranking. The column contains
the number of features selected from the ranking. The number of features was the same
in case of accuracy and the F1 measure. As shown, the best results were achieved for the
random forest classifier—almost 96% with 16 features. Four classifiers obtained results
above 90%. The SVM classifier with linear kernel needed first 10 features which led to the
set of 14 features contained in the union of all separate classifier feature sets. The approach
allowed us to obtain a score above 91%.

Table 1. Classification results for a selected feature subset.

Classifier Accuracy F1 Number of Features

Decision Tree 90.91 (6.73) 90.93 (6.72) 14
SVM With Linear Kernel 91.44 (6.62) 91.36 (6.72) 14

Logistic Regression 90.06 (7.58) 90.03 (7.68) 13
Random Forest 95.97 (4.55) 95.98 (4.52) 16

Figures 3–5 show how the accuracy of the classifier changes for the classifiers with
respect to the number of features taken for analysis. Feature importance was obtained with
logistic regression. The following models were tested: random forest, SVM with a linear
kernel and decision tree. The standard deviation was marked as horizontal black lines. An
interesting situation can be observed for the SVM classifier with a linear kernel. On the
basis of just one feature, an accuracy of more than 82% can be obtained. As for the random
forest classifier, the deviation value decreases with the increase of the feature numbers.
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3.3. Feature Ranking

In addition to a quantitative influence on classification accuracy, interpretable machine
learning methods allow us to obtain weights corresponding to the importance of particular
features. The differences between feature importance weights can be quite low, hence a
ranking containing sorted features can be an inadequate approach. A better approach
would be to apply cluster analysis to divide features into three groups based on their
importance: high, medium and low. The method of k-means was utilized for obtaining the
three clusters. The presented values of weights were produced in the course of multiple
repeated experiments including training a classifier model on a random sample drawn from
the analysed dataset. The experiment was repeated 1000 times for each classifier model.

Figure 6 presents barplots of sorted feature importance weights divided into the
mentioned groups. Each subplot corresponds to a separate level of cognitive workload. The
k-means clustering was applied independently to separate workload levels. Two models
were applied for calculating the features’ weights: linear SVM and logistic regression. The
models have been chosen as the main feature selectors due to the fact that they are among
the most popular interpretable machine learning algorithms [45,46]. A ranking has been
created for each of the levels: low, medium and high. The higher the feature is in the
ranking, the more important it is. It can be noticed that some features from the low and
medium levels are common, just like those from the medium and high levels.
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Table 2 presents the features belonging to the clusters of high and medium importance
for all the levels of cognitive workload with the application of the linear SVM model. As
Figure 6 shows, the subsets belonging to the specific clusters obtained by different models
are very similar; the only differences are related to the following features: tau of fixation
duration and mu of correct answers number in 10 s, which were included into the clusters
of lower importance. Table 2 presents the features included in the clusters of high and
medium importance by the SVM model with linear kernel. The detailed list of features
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belonging to the medium and high importance clusters are presented separately for linear
SVM and logistic regression in supplementary materials in Tables S1 and S2.

Table 2. The features belonging to the clusters of high and medium importance according to linear
SVM model, presented separately for each cognitive workload level.

Low Cognitive Workload Medium Cognitive Workload High Cognitive Workload

mu of blink number in 10 s
mu of saccade amplitude

mu of saccade number in 10 s
mu of single trial response time

tau of correct answers number in 10 s
tau of saccade amplitude

tau of single trial response time

mu of blink number in 10 s
mu of saccade amplitude

mu of saccade number in 10 s
mu of single trial response time

tau of correct answers number in 10 s
tau of fixation duration

tau of saccade amplitude
tau of single trial response times

mu of correct answers number in 10 s
tau of correct answers number in 10 s

tau of saccade duration
tau of saccade number in 10 s

When analysing the importance of the features in Table 2, it can be noticed that the
common feature for all workload levels is tau of correct number of answers in 10 s. As for
the feature sets selected for low and medium cognitive workload, they overlap to a high
degree. The most important eye-tracking-related features are mu of blink number in 10 s,
mu of saccade amplitude, mu of saccade number in 10 s and tau of saccade amplitude,
whereas the set of the most important cognitive measures includes mu of single trial
response time, tau of correct answers number in 10 s and tau of single trial response times.

Furthermore, a high cognitive workload has the set of distinct features that overlaps
with the other levels to a notably lesser extent, which can be related to different cognitive
processes corresponding to that level.

4. Discussion

The major aims of the study were to find out whether the cognitive and physiological
data collected during cognitive-workload-related experiments fit the ex-Gaussian distribu-
tion, and to verify whether it is possible to efficiently perform three-class classification of
cognitive workload levels using interpretable machine learning models. An independent
approach was applied in the study, so that data from particular subjects were not separated
into trial and the main test datasets. Such an approach ensures a better reflection of reality
as in practice the trained model is usually applied to data that are taken entirely (without
data division) from a new participant. An additional purpose was to obtain the feature
interpretability, which is especially important in subject-independent classification.

The dataset applied in the classification was composed of two sets of features: eye-
tracking and cognitive-based. Collected eye-tracking data related to such measurements
as saccades, fixations and blinks; in other words, typical outputs gathered during an eye-
tracking procedures. Additionally, cognitive features were gathered as a consequence of
the DSST performance. Participants did not have any additional equipment; no devices
had been directly attached to their bodies and did not restrict their movements or hinder
their testing.

The feature extraction procedure was performed in such a way that features such as
number of saccades, fixations or blinks and number of correct responses were extracted
for 10 s intervals. The feature extraction procedure was focused on ex-Gaussian statistics,
especially the mu and tau parameters. The sigma parameters were included in the initial
analyses because most sigma parameters calculated for particular measures occurred to be
insignificant; therefore, we discarded all the sigma parameters from further analysis.

An interpretable machine learning model was adapted in order to calculate the ranking
of the most valuable features. This ranking was used to improve the classification results.
Furthermore, it gives valuable information about the process of mental workload. Two
models were applied to assign and to verify specific weights to separate features. These
models are logistic regression with elastic net regularization and SVM with linear kernel.
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Two models were chosen in order to verify the stability of feature importance ranking. It
allows the placing of feature importance quantitatively in the model.

The prominence of features can be examined in two ways. The first is an approach
including the whole set of features, cognitive and eye-tracking measures together. The
feature ranking was analysed separately for each cognitive workload level (low, medium
and high), as presented in Figure 6. K-means cluster analysis was applied to divide features
into three groups of different importance: high, medium and low. Further analysis of
feature importance was conducted based on features from the first two clusters, rejecting
the third due its features having the lowest importance. Specific weights of features are
presented in Figure 6. In our opinion considering features of the third cluster might be
confusing. The detailed list of features belonging to particular clusters separately for linear
SVM and logistic regression are presented in supplementary materials in Tables S1 and S2.
The most important feature for all three levels turned out to be the tau of the correct
number of answers (in 10 s). The most noticeable differences between the low and medium
levels were the mu of single trial response time, the mu of saccade amplitude, the tau of
saccade amplitude and the mu of saccade number (in 10s). The difference between the
medium and high levels is particularly strong for the feature tau of the correct number of
answers (in 10 s). Moreover, the tau of saccade amplitude is also placed high in the ranking.
The second approach assumed the division into cognitive and eye-tracking features. The
detailed ranking for these two sets is presented separately in supplementary materials
(Tables S3 and S4 for logistic regression and Tables S5 and S6 for linear SVM). The cognitive
feature set contained four features; the most important of them was the tau of the correct
number of answers (in 10 s). In the case of the eye-tracking feature set including 12 features,
the mu of saccade amplitude and the tau of saccade amplitude were high in the ranking.
Overall results of feature ranking indicate features related to saccades, the number of correct
answers and single trial response time as the most valuable in the case study. Results show
that features related to fixations and blinks were not as important as other eye-tracking
features, especially saccades.

The results of the classification show that the features based on ex-Gaussian statistics
allow us to carry out a multi-class classification. Eight classifiers were initially tested
and four of them enabled us to achieve an accuracy higher than 90%. They are logistic
regression, random forest, SVM with a linear kernel and decision tree. Obtaining more
than 90% accuracy is possible with 13 features (logistic regression). However, obtaining a
result equal to almost 96% is possible with the use of 16 features. This result was obtained
for the random forest classifier.

In sum, we find that introducing ex-Gaussian distributional characteristics to cognitive
and physiological data associated with different levels of cognitive workload classification
was beneficial. This claim seems to be particularly justified considering that among eye-
tracking-related variables with the highest classification powers the majority covers the tau
parameter, for example, considering saccade number, saccade duration and its amplitude.
This means that a distributional feature which is usually deleted when analysed according
to a parametric approach turns out to distinguish to the greatest extent three levels of
cognitive processing overburden. However, the fact that mentioned indicators of eye-
movement were characterised by the tau metric, and not by mu, suggests that cognitive
workload, as it is studied with eye-tracker methodology, is probably highly associated with
the amount of non-typical rare dimensions of eye-movement, not by the most common ones.
Therefore, we suggest that the accumulation of cognitive workload might be physiologically
expressed by an increase in the scope of outliers, not only by changes related to the most
common features of performance.

There are some limitations of our study, which should be addressed. The experimental
group was not well balanced regarding sex, with a clear predominance of men. However,
according to our knowledge, there is no strong and unequivocal support for the notion
that there are substantial sex differences regarding eye-movements schemata observed
during non-sexual visual content scanning [47]. Nevertheless, we plan on providing a
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better gender-balanced group in future studies. Additionally, the feature ranking and
classification rate might be changed in the case of a differently constructed experiment.
It is worth examining the influence of the type and the order of tasks on the overall
classification results. Changes in the requirements of the task which was administered
to elicit a gradual increase in cognitive workload consisted in both elongation of the
performance time (difference between parts 1, 2 and 3) and an increase in the number of
stimuli to be processed (difference between part 1, 2 and 3). Therefore, our study did not
distinguish whether the increase in cognitive load was generated by performance length or
the scope of task internal complexity indicated by the number of given stimuli. However,
our goal was not directly related to the problem of the relationship between the specificity
of the task and the level of cognitive load. We assumed that the increasing modification
of both the complexity of the task and its length should provoke an increase in cognitive
overburden. The data achieved indicate the accuracy of our premise.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/brainsci12050542/s1, Table S1: The features belonging to the clusters of high and medium
importance according to SVM with linear kernel, Table S2: The features belonging to the clusters
of high and medium importance according to logistic regression, Table S3: Separate class feature
rankings obtained by interpreting the weights of the logistic regression model with elastic net
regularisation for cognitive features, Table S4: Separate class feature rankings obtained by interpreting
the weights of the logistic regression model with elastic net regularisation for eye-tracking features,
Table S5: Separate class feature rankings obtained by interpreting the weights of the linear SVM
model for cognitive features, Table S6: Separate class feature rankings obtained by interpreting
the weights of the linear SVM model for eye-tracking features, Table S7: Ex-Gaussian parameters
describing the data used for classification.
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