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Abstract

English language version

Author claims that numerical simulations must integrate a robust model development
methodology, with adequate testing and simulation steering workflows to increase scientific
throughput and improve utilisation of current and next-generation computational infrastruc-
ture, available both on-premise and in-cloud. To this end, there is the need to transform the
end-to-end computational experiment workflow from one that is non-universal and manual
to one that is standardised and (at least partially) automated.

Liquid State Machines (LSMs) are a type of recurrent neural network that have been
widely used for tasks such as pattern recognition and classification. However, simulating
LSMs can be computationally expensive due to their large number of neurons and connections.
In this PhD thesis, author presents a novel Neural Simulation Pipeline (NSP) for LSMs that
significantly reduces the computational cost of simulation while automating the tasks needed
to manage and deploy the experiments into different execution environments. A provider-
agnostic simulation framework can be used to run simulations on different hardware platforms
or microprocessor architectures to allow researchers to use the most appropriate hardware
and software for their specific simulation needs, without being tied to a specific vendor or
provider. In the High Performance Computing (HPC) context, public cloud resources are
becoming an alternative to the expensive on-premise clusters.

This thesis presents Neural Simulation Pipeline (NSP), a set of Bash and PowerShell
scripts to facilitate the large scale computer simulations and their deployment to multiple
computer infrastructures using the infrastructure as code (IaC) containerisation approach.
The pipeline consists of three main components: a data preprocessing module, a simulation
module, and a post-processing module. The preprocessing module manages the experiment’s
input data into a format suitable for LSM simulation, while the simulation module performs
the actual experiment execution using a selected simulation engine. The post-processing
module then analyses the simulated data and generates the final results.
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Author demonstrates the effectiveness of NSP in a pattern recognition task programmed
with GENESIS (a general purpose simulation engine for neural systems) and simulated
through two custom-built visual systems: (1) RetNet(4x8,1) based on a single LSM column
of multiple sizes, and (2) RetNet(28x28,4) using four LSM columns. Both systems were
built using biologically plausible Hodgkin–Huxley spiking neurons. and are explored in the
experimental chapters. The key finding relates to twelve different LSM readout algorithms,
evaluated through five standard classification metrics, using the 10-fold cross-validation
process. The LSM system presented achieves a repeatable accuracy and F1 Score of 81% for
the readout based on Light Gradient Boosting Machine.

Moreover, the pipeline is evaluated by performing additional 54 experiments executed
on-premise, and in the AWS Public Cloud environment. Author compares the standard and
containerised execution, as well as presents the cost of execution in AWS. The results show
that the NSP can significantly reduce entry barriers to LSM simulations, making it more
practical and cost effective for real-world applications. The experimental conclusions are
supplemented with practical tips related to prototyping with author’s custom single board
computer cluster (Neural Simulation Cluster), and suggested further research on the pipeline.

Polish language version

Autor twierdzi, że symulacje numeryczne powinny integrować metodologiczne podejś-
cie do rozwoju i testowania modeli cybernetycznych, z odpowiednimi przepływami pracy
obliczeniowej. Uczynić to należy w celu zwiększenia ich skuteczności naukowej oraz
poprawy wykorzystania obecnej i przyszłej infrastruktury obliczeniowej, dostępnej zarówno
w modelu tradycyjnym, jak i w chmurowym środowisku obliczeniowym. W tym celu istnieje
potrzeba przekształcenia przepływu pracy dla eksperymentów obliczeniowych z takiego,
który jest nieuniwersalny i manualny na taki, który jest znormalizowany i (przynajmniej
częściowo) zautomatyzowany.

Maszyny stanów płynowych (ang. Liquid State Machines, lub w skórcie LSM) są rodza-
jem rekurencyjnej sieci neuronowej, która jest szeroko stosowana w zadaniach takich jak
rozpoznawanie i klasyfikacja wzorców. W niniejszej pracy autor przybliża tę tematykę i
wskazuje, że symulacje takie mogą być kosztowne obliczeniowo ze względu na dużą liczbę
wiarygodnych, kolczastych neuronów pulsacyjnych Hodgina-Huxleya i mnogość połączeń
między nimi. W niniejszej pracy doktorskiej autor przedstawia nowatorski Potok Symu-
lacji Neuronowej (ang. Neural Simulation Pipeline, lub w skrócie NSP) dla maszyn LSM,
który znacząco zmniejsza koszt obliczeniowy takich symulacji, automatyzując jednocześnie
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zadania potrzebne do zarządzania i wdrażania eksperymentów obliczeniowych w różnych
środowiskach uruchomieniowych. Potok umożliwia przeprowadzania symulacji komput-
erowych w standaryzowany sposób na różnych platformach programowych i sprzętowych (w
tym architekturach mikroprocesorowych), ułatwiając badaczom wykorzystanie najbardziej
odpowiedniego sprzętu i oprogramowania dla ich specyficznych potrzeb symulacyjnych,
bez przywiązywania ich do konkretnego dostawcy usług lub architektury. W kontekście
super-obliczeń HPC (ang. High Performance Computing), zasoby chmury publicznej stają
się alternatywą dla drogich klastrów komputerowych działających w tradycyjnych centrach
obliczeniowych.

Wspomniany potok symulacji neuronowej NSP, będący zestawem skryptów Bash i
PowerShell ułatwiających przeprowadzanie symulacji komputerowych na większą skalę
i wdrażanie ich w różnych środowiskach uruchomieniowych korzysta z podejścia kon-
tenerowego w paradygmacie Infrastruktura jako kod (ang. Infrastructure as Code, lub w
skrócie IaC). Sam potok składa się z trzech głównych komponentów logicznych: modułu
wstępnego przetwarzania danych, modułu symulacyjnego oraz modułu powykonaniowego.
Moduł przetwarzania wstępnego zarządza danymi wejściowymi eksperymentu do formatu
odpowiedniego dla symulacji LSM, podczas gdy moduł symulacji wykonuje rzeczywiste
wykonanie eksperymentu przy użyciu wybranego silnika symulacyjnego. Moduł powyko-
naniowy wspomaga analizę danych symulacyjnych i generuje ostateczne wyniki.

Autor demonstruje skuteczność NSP w zadaniu rozpoznawania wzorców zaprogramowanym
w GENESIS (silnik symulacyjny ogólnego przeznaczenia dla systemów neuronowych) i
symulowanym przez dwa zbudowane przez siebie systemy wizyjne: (1) RetNet(8x5,1) oparty
na pojedynczej kolumnie LSM o zmiennym rozmiarze oraz (2) RetNet(28x28,4) wykorzystu-
jącym cztery kolumny LSM. Oba systemy zostały zbudowane z wykorzystaniem biologicznie
wiarygodnych neuronów impulsowych Hodgkina-Huxleya i są omówione w rozdziałach
eksperymentalnych niniejszej rozprawy. Kluczowy wynik badawczy dla zaproponowanej
architektury maszyn stanów płynowych dotyczy zbadania dwunastu różnych algorytmów
warstwy odczytującej, ocenionych za pomocą pięciu standardowych metryk oceny klasy-
fikacji, z wykorzystaniem procesu 10-krotnej walidacji krzyżowej. Uzyskany przez autora
wynik zaproponowanego systemu LSM osiąga dokładność (oraz F1 Score) na poziomie
81%, dla odczytu opartego o algorytm drzew decyzyjnych LightGBM (ang. Light Gradient
Boosting Machine).

Ponadto, potok jest oceniany poprzez wykonanie 54 dodatkowych eksperymentów
obliczeniowych wykonywanych w tradycyjnym centrum danych i w środowisku publicznej
chmury obliczeniowej AWS. Autor porównuje standardowe i skonteneryzowane wykonania
symulacji maszyn stanów płynowych, jak również przedstawia koszt wykonania poszczegól-



xii

nych eksperymentów w AWS. Wyniki pokazują, że zaproponowane rozwiązanie może
znacząco zmniejszyć bariery wejścia do prowadzenia takich symulacji, czyniąc je bardziej
praktycznymi w zastosowaniach i efektywnymi kosztowo. Wnioski z eksperymentów są
uzupełnione o praktyczne wskazówki związane z prototypowaniem przy użyciu autorskiego
klastra obliczeniowego opartego o komputery jednopłytkowe (Neural Simulation Cluster),
oraz sugestie dotyczące dalszych prac badawczych i wdrożeniowych dla potoku symulacji
neuronowej NSP.
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Nomenclature

Roman Symbols

mA milliampere measures electrical current and is equal to one-thousandth of an ampere,
10−3 A = 0.001 A

mV millivolt measures electric potential or electromotive force and is equal of one thou-
sandth of a volt, 10−3 V = 0.001 V

V volt, SI base unit of derived unit for electric potential and its difference (voltage)

Greek Symbols

α parameter indicating level 1 regularisation, a basic way to avoid overfitting in Machine
Learning by penalising high-valued coefficients

γ parameter indicating minimal loss reduction to split a leaf for Machine Learning
tree-based algorithms

λ parameter indicating level 2 regularisation in Machine Learning, implying a trade-off
between more bias with low lambda, and less bias with high lambda (higher variance)

Ω the ohm, SI derived unit of electrical resistance

Subscripts

αm,αn,αh,βm,βn,βh variables describing a stochastic dynamics of the activation process
with rate constants α and β in the HH neuron model

Cm membrane capacitance

Ek equilibrium potential (or reversal potential of the equivalent circuit)

El potential reducing the net channel current to zero when Vm = Er
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Er rest potential (of the equivalent circuit)

Gl leakage conductance (Gl =
1

Rm
)

Ii current source (optional injection of current)

Ra R′a axial resistances (on the sides of the equivalent circuit)

Rm membrane resistance (of the equivalent circuit)

Vm membrane potential, the potential inside a call compartment (in relation to a point
outside of the cell)

Vm membrane potential, the potential inside a call compartment (in relation to a point
outside of the cell)

Acronyms / Abbreviations

A/C Alternating current power, often provided to a device through a power supply

ANN Artificial Neural Network (traditional; computes all neurons, fixed number of synapses)

AP Approximation Property of LSM

API Application Programming Interface

ARM64 Advanced RISC Machines, originally Acorn RISC Machine (64-bit extension)

AUC Area under Curve (the ROC curve)

BBP Blue Brain Project

BRAIN Brain Research through Advancing Innovative Neurotechnologies (Project)

Caltech California Institute of Technology

Ce Caenorhabditis elegans, a simple organism (1000 cells incl. 302 neurons)

C fC Closed-form Continuous-time Neural Networks

CI/CD Continuous Integration / Continuous Delivery

CLI Command Line Interface



Nomenclature xxv

CNS Central Nervous system

CPU Central Processing Unit, a central processor

CT M Computational Theory of Mind

DevOps Development and Operations, methodology representing a collaborative approach
to performing company’s application development and IT operations tasks
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ECG Electrocardiogram

ECR Amazon Elastic Container Registry

ECS Amazon Elastic Container Service

ELM Extreme Learning Machine

EPFL École Polytechnique Fédérale de Lausanne

ESM Echo State Machines

ESN Echo State Networks

EU European Union

F−MNIST Fashion-MNIST dataset of Zalando’s article images, each a 28x28 grayscale
image with a label from 10 classes

GB Gigabyte, IEC 80000-13 confirms that a gigabyte is 109 bytes

GBT Gradient Boosted Trees Algorithm

GENESIS GEneral NEural SImulation System

GNUGPL GNU General Public License

GPIO General Purpose I/O, an interface available on most modern microcontrollers

GPU Graphics Processing Unit, originally designed to accelerate computer graphics work-
loads

GUI Graphical User Interface



xxvi Nomenclature

HBP Human Brain Project

HDMI High-Definition Multimedia Interface, a proprietary interface for transmitting com-
pressed or uncompressed audio/video data

HH The Hodgkin-Huxley neuron model

HPC High Performance Computing

HPI Hasso Plattner Institute

IA64 Intel Itanium Architecture-64 (Itanium microprocessors)

IAM AWS Identity and Access Management

I&F The integrate-and-fire neuron model

I/O Input/Output

IoT The Internet of Things, a network of (any) devices connecting and exchanging data
with other devices and systems over the internet

IP Internet Protocol address

IPC Inter-process communication

IT Information Technology

IZ The Izhikevich neuron model

LARS Least Angle Regression

LightGBM Light Gradient-boosting Machine

LSM Liquid State Machine

LST M Long Short Term Memory

LXC LinuX Containers

MAUC Multi-class Area Under the Curve

MB Megabyte, a common unit of digital information equal to one million bytes

ML Machine Learning
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MLP Multi-layer Perceptron

MNIST Modified National Institute of Standards and Technology database

MPI Message Passing Interface

NALSM Neuron-Astrocyte Liquid State Machine

NCC Neocortical columns, also known as hypercolumns

NIC Network interface card, a hardware component allowing computer to connect over a
network

N−MNIST Spiking version of the frame-based MNIST dataset

NSC Neural Simulations Cluster

NSP Neural Simulations Pipeline

OS Operating System

PDU Power Distribution Unit, a device that provides multiple outputs to distribute electric
power to racks of computers or network devices in a data centre

PGENESIS Parallel extension to GENESIS

PID Process ID

POSIX Portable Operating System Interface

PV M Parallel Virtual Machine

R53 Amazon Route 53, a Domain Name System service

RBAC Role-based Access Control

R&D Research and Development

RDD Resilient Distributed Dataset

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic curve

RPi Raspberry Pi, a complete single board computer manufactured in the UK
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RPr ROCKPro64, a complete single board computer manufactured in Hong Kong

RU Rack Unit, a standardised form of servers: 2U is 1.75" x2 = 3.5 inches. All rackmount
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S3 Amazon S3, a name for AWS Simple Cloud Storage service

SBCC Single Board Computer Cluster
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SGD Stochastic Gradient Descent Algorithm
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Chapter 1

Modelling Networks of Spiking Neurons

1.1 Introduction

In the first chapter of this PhD dissertation the author describes why the brain simulations
are critical for neuroscience. The chapter explains the necessity and foundations of brain
modelling and neural simulation. We start with a description of how biological neuronal
networks are represented as computational models. We continue with an introduction of
our selected simulation platform GENESIS, which we will use as simulation engine in
Neural Simulation Pipeline (NSP) to execute our Liquid State Machine (LSM) models
on high-performance computing resources at Hasso Plattner Institute (HPI) in Germany
(IA64), as well as self-built computational cluster made of Raspberry Pi 4B and ROCKPro64
nodes (ARM64). We follow with a characterisation of the limitations of the traditional
workflow. We then report on the current state of the art in the simulation frameworks and
tools. Finally, author concludes with a description of high performance computations and its
general challenges.

The chapter is organised as follows. This Section 1.1 provides a discussion of this chapter.
Section 1.2 explains the need for neural computations, whereas Section 1.3 focuses on
how such artificial neural networks are (1) represented, (2) simulated using computational
models on High Performance Computing (HPC) resources. Section 1.4 highlights why it
is important to introduce a pipeline into the simulation of neural networks. Section 1.5
describes the limitations of the traditional approaches to neural simulations, and challenges
to pre/post-experimental management of neural data. Section 1.6 explains how a visual
cortex and hypercolumns work, whereas Section 1.7 focuses on key computational models of
biological neuronal networks. Section 1.8 presents key challenges and progress in simulation
of these models. Section 1.9 describes the existing simulation engines for large-scale neural
networks. Section 1.10 introduces GENESIS, the key simulation engine that author uses
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in this thesis. Finally, Section 1.11 focuses on the gaps in setting up and executing neural
experiments (e.g. developing models, and setting up model parameter values), and the need
to transform the end-to-end simulation development and execution workflow from one that is
non-universal and manual to one that is standardised and at least partially automated.

As a result, we are getting a step closer to allow scientists to be able to perform a what-if
analysis supported by machine learning algorithms, and/or to apply Big Data analytics to
surface hidden trends, unknown correlations, or other meaningful insights, based on more
reliable experimental data.

1.2 Problem, Motivation, and Proposed Solution

Computer-based simulations of neural networks help to overcome a key challenge in neuro-
science, that is, to help us understand the joint behaviour of large groups of different types of
neurons [14]. At the moment, we still have a limited knowledge about how the brain’s neural
networks work together to form complex behaviours such as visual signal understanding for
action selection, motor learning or emotion. To overcome that and get a better understanding
of information processing in the brain, we are currently able to simulate large neuronal
network models that contain millions of neurons (105) and billions of synaptic connections
(109) [16, 156, 4].

Although progress is constantly being made, even if we only look at the number of
neurons (and their types) and their synaptic connections, we clearly see that we are orders
of magnitude from the adequate representations of the biological systems, and still far from
covering the complexity of the human brain. The present computer hardware simply fails to
keep up with the increasing computational requirements of these simulations [138, 125].

New methods of computing are needed to meet the large computational requirements
of brain scale networks. New advancements in simulation technologies must be achieved
to allow for both the numerical models to leverage the maximum compute capability of
various computing hardware in clusters efficiently. We should also start leveraging both the
low power edge devices, GPUs, as well as recent neuromorphic architectures like Intel’s
Loihi [48] or SpiNNaker [74], a million-core computing engine built of an array of ARM9
processors designed to simulate the behaviour of up to a billion neurons in real time.

The new more complex brain models will likely require even higher performing I/O
subsystems, as well as faster networks to avoid delays in moving large amounts of data
for processing or analysis. The increasing compute-I/O gap has caused the traditional post-
experiment analysis methods (related to batch processing) to fail to adequately scale to meet
the new requirements [5, 90, 116].
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Apart from that, new neuromorphic computational paradigms and hardware architectures
emerge, and they can play an important role in running large scale brain simulations, deliver-
ing unprecedented computing resources, accompanied by limited power requirements [167].

This might open new ways for neural simulations to use new, distributed or on-edge
low-power systems, and at the same time allow to create some new, more intelligent adaptive
systems, analysing data and interacting with the environment in real-time.

From the neural simulation perspective though, it seems that we need new interactive
pipelines and adaptive workflows to more actively analyse/monitor data points for their points
of generation. Such an approach will reduce the need for data movement and it will allow to
perform hypothesis-driven “what-if” analysis in near real time.

Neural simulation environments are often complex and expensive to build and maintain.
Their configuration and model deployment might present a significant barrier for many
researchers tackling biocybernetic modelling. This is because building, testing and deploying
cybernetic models often requires different software libraries as dependencies, and the ability
to consume significant amounts of parallel or distributed computing power to speed up the
long running computations. The matter is especially important for developing larger, and
more complex scripts simulating elements of human brain. The task is not trivial from
technical perspective, even when using a well established simulation engine like on the
GEneral NEural Simulation System (GENESIS) [44].

In this thesis, I propose a Neural Simulation Pipeline (NSP) to facilitate the simulations
of large, biologically plausible neural network models using GENESIS simulation engine.
The NSP enables the integration of a more robust model development methodology with
adequate testing. It also closes a gap in setting up, and executing the experiments across
different execution environments incl. a high performance computing environment. In the
later chapters, I assess the impact of running experiments using different neural networks on
a HPC class system, as well as a self-made cluster built of Raspberry Pi and ROCKPro64
nodes, and in-cloud.

1.3 Simulating Neural Networks on HPC Resources

The human brain is complex. It is built of 100 billion interconnected neural cells forming an
extremely large and complex network. In spite of all the recent developments in computing
technology, it is still impossible to achieve the simulated neural networks at this scale. The
current brain exploration methods are also limited. Scientists are prevented to insert electrodes
into human brains due to ethical reasons. Even if this form of direct experimentation on
the live human brain was possible, attaching an electrode to a single neural cell would be
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technically problematic, as it would surely damage the cell (alongside with all its surrounding
cells).

Therefore, computational models of neural networks are often the primary mechanism
for scientific discovery in brain related sciences. This creates demand for larger scale and
higher fidelity models. Such models, of different scale, can now be simulated using various
computer hardware and software technologies, allowing for the modelling of small sub-
cellular processes, up to the simulation of the complete functional areas of the brain on
massively parallel computing environments [116].

We simulate models of neurobiological processes to validate the theory with observable
results, and to investigate the relationship between their structure and function. Moreover,
neural models are used to study dynamical systems for which any experimental data is not
available.

The primary challenge for neural simulation is that the current brain models have to be
significantly scaled down. The number of neurons and synapses in these models is limited
by the number of network elements that can reside in the computer’s memory at any one
time [125].

Therefore, to overcome this limitation neuroinformatics focused on data structures to
enable the simulation of neural network models at increasing sizes [39, 51, 138, 116, 98].
Apart from the challenge of representing a large numbers of network elements in computer’s
memory, the time needed to instantiate a network is also concerning [116]. As models
become larger, the computational requirements and time to instantiate them grow, which has
the potential to affect the simulation performance negatively.

Parallel neuronal simulators have been developed that partition the neural network across
multiple processing elements to speed up the computation. By default the processing of
spiking neural networks (SNN) should be accelerated with multi core central processing
units (CPU), rather than graphics processing units (GPU). This is because of CPU’s larger
flexibility of task and thread level parallelism. SNN simulations could be less efficient on
GPUs, as the high GPU efficiency for traditional artificial neural networks (ANN) relies on
fixed arrays [18]. Moreover, as GPUs tend to offer lower precision, modern applications with
higher accuracy needs often improve performance and satisfy these accuracy requirements
by implementing so called “mixed precision computations” [135], that are not implemented
for the well established neural simulation engines [215].

To summarise, given the scale and complexity of brain-like neural networks, their simula-
tion often requires powerful supercomputers (and complex simulation setup). These large
computers, often need to also consume a lot of electricity, are expensive to build and maintain,
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and are not easily available for these who would need to use them (there are clear entry
barriers to the neural simulation).

In this thesis, I analyse the impact of execution environment like traditional HPC resources
(e.g., single fat nodes and high-end clusters), and low-end, low power single board computer
nodes on performance, data generation, and science delivered by GENESIS for increasingly
large and complex models of the brain’s visual cortex. I explore the relationship between
model fidelity (i.e., the level to which our model successfully reproduces the behaviour of
neuronal networks in nature) and performance, by increasing the number of cells simulated
in two models, and I run the simulations on both high-end (HPC), and a self-built, low-end
cluster, as well as in public cloud.

1.4 Integrating Pipeline into Neural Simulations

Constant evolution of the simulation technology have enabled improvement in the fidelity and
sizes of the neural network models [2]. As a result these models generate more data [139].

A common scientific workflow in neuronal simulation models is to analyse the simulation
results after completing the simulation. As already mentioned in Section 1.3, these workflows
are often happening in a high performance computing environment, where simulation time is
expensive and scarce. A typical workflow includes preparing simulation input, configuration
of model parameters, and execution of the computations. This is concluded by the post-hoc
analysis and/or visualisation of the simulation data. These post-processing steps are usually
executed in sequences [246, 53, 196].

As a result, the large amount of data produced by more complex, higher fidelity models are
becoming more and more difficult to save and transfer for the post-hoc analysis. A possible
solution to this problem is to adjust the scientific workflow to allow for more automated and
interactive experiment management. In this thesis, I design a neural simulation pipeline. I
evaluate the scalability of the system, with the intention of presenting not only performance,
but also the execution cost in-cloud.

Da Cruz et al. [46] show that despite the high interest in scientific workflow management
systems, it is still “an open field” due to its complexity. Authors suggest promoting the
interoperability of such systems, so that scientists are able to manage the data from executions
of distributed heterogeneous workflows more efficiently.

I attempt to investigate the relationship between experiment setup and simulation run
in computational neuroscience. This is to improve experiment management, and facilitate
the analysis of data generated by simulation of the electrical activity of a brain’s neuronal
network.
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1.5 Limitations of the Current State of the Art (EEG)

At present, brain electrical activity is measured using electroencephalography (EEG). This
method uses electrodes that are placed on the outside of the head to record the activity of all
the neurons simultaneously. EEG is a well established method in neuroscience. It is also the
most commonly used method to study brain pathology [130].

It is believed that the brain’s cognitive functions are resulting from the neuronal connec-
tivity, and the electrical activity of neurons’ multitude of connections. This activity allows
for information processing that is achieved by the synchronisation of the spike trains of large
networks of neural cells [97, 25].

When the ensembles of neurons are active, EEG measures and records the differences of
the ionic current in the brain [69, 145].

EEG measurements cover vast amounts of information about the activity of the brain.
There are many approaches for analysing this information, most of them based on different
spectral analysis methods, usually measuring so called spontaneous electrical activity of
the brain over a specified time [69]. The activity often has oscillatory characteristics, with
frequencies ranging from 1 to 100 Hz, and it is associated with human cognition [144].

When working with EEG signals, the main challenge is that such signals are non-
deterministic. As such they are not restricted to special formations, in the same way that
electrocardiogram signals (ECG) are. The result of this lack of restrictions is that the analysis
is performed using the parametric and statistical approaches (such as e.g. time-frequency
analysis) [123]. Unfortunately none of these approaches allows us to observe the detailed
neuronal connectivity, and how that impacts the activity of the the whole brain [4].

In order to address this challenge, larger and more realistic brain models of brain bio-
physical activity have been created. Such models, which are more biologically accurate, are
significantly more computationally intensive, both in numbers of required neurons (e.g. the
cerebral cortex contains 14 to 20 billion neurons [100]), as well as their synaptic connectivity
(e.g. the cerebral cortex is connected with trillions of synapses).

1.6 Visual Cortex

1.6.1 Visual Cortex as Part of Cerebral Cortex

The cerebral cortex, forming approximately 80% of the human brain, is made of so-called
grey matter. This part of the brain is responsible for all the key brain functions, such as
perception, communication, adaptation to new environment conditions, as well as complex
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cognitive functions of planning, and higher level mental functions [213]. The most evolution-
arily advanced part of the cerebral cortex is called neocortex. It covers 90% of the volume of
the human cerebral cortex, and it appears not earlier than in mammals [100].

Cognitive abilities depend largely on the brain’s ability to anticipate future events in order
to react appropriately in a changing environment. The cerebral cortex with the neocortex
uses complex brain networks that transform sensory stimuli into a multidimensional response
in real time [200]. The signals received from the body sensors are mapped in both the
neocortex and in the sub-cortex, as well as into the sub-cortical region. Within the cortex
itself, information is repeatedly duplicated to maintain a coherent and complete picture of
the situation. This is fuelled by the memory of past experiences. There are well known
topographic maps of the neocortex that accurately specify the general basic function of each
brain region and show how all the cortical regions are internally connected [213]. The key
visual processes in the cortex that I focus on happen in the occipital lobe, so ’in the back side’
of the head, as per Fig. 1.1.

The whole visual process starts with retina passing the electrical signals via the optic
nerves, and later so called visual pathways to the primary visual cortex, as shown in the
Fig. 1.1. Visual area constitutes about 25% of the cortex in humans with approximately 5
billion neurons. The visual cortex can be split up further into 5 layers. These are V1, V2,
V3, V4 and V5. V1 is often referred to as primary visual cortex. The studies have revealed
that these visual regions differ on the basis of their anatomical architecture, topography
and physiological properties [175, 11]. Each region is involved in processing a multitude
of information related to shape, orientation, colour, movement and size of objects. The
information results from the visual pathways, transforming an image applied to a retina.

The images we see with our eyes are processed in the primary visual cortex. When we see
an object, the image that is captured by our eyes is always inverted (back to front) and blurry.
Our brains are equipped with enormous processing power, allowing real-time transformations
that correct the received image. This processing involves the recurrent cortical circuits [157].

As stated by Tong [216], V1 is probably the most well known area of primate cortex, but
whether this region contributes directly to conscious visual experience is still controversial.
Initial studies found out that visual awareness was best correlated with neural activity in
extrastriate cortex visual areas, frontal lobe areas, such as the frontal eye field. More recent
studies have found similarly powerful effects in the V1, with interactive models proposing
that recurrent connections between V1 and higher areas form functional circuits that support
awareness[170].
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(a) A labelled side view of the visual pathway in human brain [61].

(b) The grey matter in the primary visual cortex is divided into six layers that comprise of pyramidal
cells and interneurons [11].

Fig. 1.1 Visual system in humans, a view of visual cortex and the pathways.
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Similar to other areas of the brain, the neurons in the visual cortex are connected to one
another by synapses [175]. Neurons contained in the same micro-column share the same
static and physiological dynamic properties [170].

The excitatory neurons in the visual cortex are of a great significance for us in under-
standing brain functions. Such neurons use the excitatory neurotransmitters to fire a signal
called an action potential into the receiving neuron. In contrast, the inhibitory neurons cause
neighbouring connected neurons to be less likely to fire. 2/3 of neurons are organised into
sub-networks of pyramidal neurons [175].

Finally, it is widely understood that it is the connectivity within the brain that is responsible
for the cognition, perception, decision-making, and language [27, 188, 202].

1.6.2 Hypercolumns as Information Processing Units

A fundamental characteristic of the cortex is its repetitive structure. Billions of neurons are
connected to their neighbours, forming a unique ’wiring’ of the neuronal network of our
brain. These connections determine both the individual uniqueness of each person, as well as
form some general connectivity patterns, as recorded by Brain Activity Map Project, aimed
at reconstructing the full record of neural activity across complete neural circuits [4].

These neuronal connections are neither random, nor arbitrary. Neurons form multiple,
small computational columns of a cylindrical shape throughout the cortex. They are made
of a complex network of around 10000 connected neurons. Their size differs. As a way of
example, the dimensions of an ocular dominance column in the cat is 0.5 mm, whereas cat’s
orientation column size is 0.1 mm. Although in both cat and monkey large variations in the
sizes were observed, a base diameter of a column can be approximated to 0.5 mm and a
height of up-to 2 mm [6].

There are millions of microcircuits in any mammalian cortex. Their exact number differ
between different species, but the difference between a rat and a human brain is mainly
in the number of microcircuits that each brain is built of. The biological computational
columns resemble microcircuits in a computer processor, which is why they are often called
neural microcircuits, or (due to their cylindrical shape) neocortical columns (NCC) or simply
hypercolumns [210].

There is a consensus that information processing specific to the neocortex is performed
by neuronal microcircuits. Despite their identical structure that is repeated several times,
their functions can be radically different depending on the position in which these basic
information processing units are located in the brain. Moreover, multiple microcircuits may
form a group of units, specialising in a certain task. Moreover, the same microcircuit may
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Fig. 1.2 (a) The De Valois and De Valois’ icecube model of a cat V1 hypercolumn. (b) The
modified icecube model for macaque’s V1, as presented by Bressloff [28].

belong to a few different groups, and respond (or ignore) signals in the cortex depending on
the dynamic situation in the brain.

The microcircuits themselves, and all other neurons in the layers of neocortex represent
the incoming, changing states of the environment in the form of impulses. The anatomical and
physiological properties, as well as the probability of connection between neurons are unique
for each synaptic connection. The advantages of such a recurrent system are enormous. It
exhibits much greater information processing capabilities than a simple random recurrent
network [152].

Based on the studies of different mammals, including cats and macaques, it has been
shown that certain columns recognise the slope of a line (these are called orientation columns),
while other like these represented in the diagram by a cylinder (blob), play an important part
in colour recognition. That means that the mammalian V1 cortex has the spatially periodic
micro structure of the cortex [28]. The alignment of microcircuits within a fragment of
mammalian visual cortex is shown in Fig. 1.2.

This leads us to conclusion that it is the distribution of the microcircuits that allows the
cortex to cope with different tasks of high complexity, and the same information processing
unit, but located in different brain region, can perform completely different operations.
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1.7 Simulating Spiking Neural Networks

From a computational perspective, neural networks can be defined as directed, distance
weighted graphs. In these graphs neurons form nodes, whereas edges represent synapses [183].
In such a network neurons communicate by passing spikes of action potentials [183]. This
communication happens (1) in a single direction, from the node sending the spike to the
node receiving the action potential, (2) with a specified delay. Each neuron also has a defined
threshold. If this threshold is exceeded as a result of receiving one or more inputs from
connected cells, the neuron will fire, and therefore will continue the propagation of the signal
across the network [107]. We present the three most important computational models of
neurons used in simulations.

1.7.1 Hodgkin-Huxley Model

The most important and popular computational model of neurons was presented in 1952 by
Hodgkin-Huxley [107], who were later awarded a Nobel prize for their contribution. Their
mathematical model of neuron was based on the measurements of the giant axon of a squid,
that allow them to describe the electric current flow through the surface of axon’s membrane.
As a result, they were able to build an artificial neuron that was able to realistically simulate
the initiation and propagation of the action potential in a neuron, and recreate the behaviour
of a biological system through a human built electrical system.

In their model the neuron’s membrane acts as a capacitor. It separates the interior of the
cell from the outside liquids, allowing the cell to store electrical charge.

They defined electric conductance gion as being proportional to the number of open
channels. The net movement of ions across the cell membrane is defined as the ion current.
If we denote V as the membrane potential and Vion the reversal potential, than using the
Ohm’s Law, the electrical current can be expressed as:

Iion = gion(V −Vion) (1.1)

The Hodgkin-Huxley model considers three ion channels that are the voltage-dependent
K+ and Na+ channels, as well as the static leaky channel. The channel can be expressed by
equations:

gK = gKn4,gNa = gNam3h (1.2)
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where gK and gNa the maximum conductance of respectively the sodium and potassium
channels, with the leakage channel considered to be constant, and modelled by a given
resistance. The variables m and h describe the activation and deactivation of the Na+ channel
respectively, while n describes the activation of the K+ channel. They are called gating
variables and control the openings of ion channels, that can be in interpreted a molecular
switch between two states with voltage-dependent transition [159].

The dynamics of the model is expressed with the three fundamental differential equations:

dm
dt

= αm(v)(1−m)−βm(v)m (1.3)

dn
dt

= αn(v)(1−n)−βn(v)n (1.4)

dh
dt

= αh(v)(1−h)−βh(v)h (1.5)

Hodgkin and Huxley formulated the above equations and their parameters to fit the
experimental data that they had gathered during the measurements of the giant axon of a
squid. The α and β determine the evolution of the model variables. The model is described
in more detail in [201]. As it can be represented as an electrical circuit it is often referred to
as a conductance-based model, to differentiate from other models of neurons. I present the
model in more detail in Chapter 1.9 of this thesis, where we explain how the simulation of a
standard GENESIS neural compartment works.

To summarise, the Hodgkin-Huxley model, in spite of its age, remains the fundamental
model for any biologically representative neural simulations. It exhibits all the computational
properties of spiking and bursting models. Unfortunately, the model is also the most compu-
tationally expensive to implement, and difficult to analyse. Therefore, it is generally used
to simulate smaller groups of neurons, often with no constraints on simulation time (such
models tend to run for a long time), often with expensive HPC simulation setups.

1.7.2 Leaky Integrate-and-Fire Model

Assuming the computational complexity of the original Hodgkin-Huxley model, new models
were being created. The integrate-and-fire (I&F) neuron model is one of the most popular
spiking models. It is often used in the study of the neural information processing, or to
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analyse the neural systems. It is simple for mathematical analysis, and allows building large
networks to analyse the network dynamics in neuron coding or memory [81]

In contrast to the HH model the IF model is represented by a simple circuit built of a
resistor R and capacitor C driven by a current I(t). The changes of the membrane potential V
can be calculated using a leaky integrator differential equation of:

dV
dt

=−V (t)
Tm

+
I(t)
C

(1.6)

This equation assumes that the sodium channel is not voltage dependent, so it models the
neuronal effects of the sodium and leaky channels only. I(t) represents the total incoming
current from neurons prior to the receiving synapse.

If no new spikes arrive to the synapses, the potential V reduces to the resting potential.
This happens with a speed indicated by membrane time constant Tm = RC. As soon as the
threshold voltage is reached, the stimulated neuron fires an output spike.

As a result of this firing V is changing to Vr (the rest potential) for the so called refractory
period of Tre f rac, where t0 is the time of firing. At he end of the process V (t) changes again
(due to the newly received synaptic current) according to Equation 1.6. The whole process
can be described by the below Equation 1.7:

V (t) =Vr f or t0 < t ≤ t0 +Tre f rac. (1.7)

1.7.3 Izhikevich Model

The other important model of neuronal networks was presented by Eugene Izhikevich [118].
The Izhikevich (IZ) model is computationally simple, and able to simulate several neuronal
responses. The model is based on two ordinary differential equations:

dV
dt

= 0.04 V 2 +5 V + 140 − u + I(t) (1.8)

du
dt

= a (b V −u) (1.9)

The IZ model uses post-spike resetting, defined as:
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i f V ≥ +30 mV then

V ← c

u← u+d
(1.10)

The variable u denotes membrane recovery. It models the activation of K+ and inactiva-
tion of Na+ ionic current flows. It also provides a negative feedback to membrane potential
V . Both V and u are reset after the neuron spike exceeds a threshold of 30 mV, according to
the Equation 1.10.

The other parameters a, b, c, and d can be assigned different values depending on the
type of neuron being simulated: a refers to the time scale of u; b to the sensitivity of u
reflecting the variations of V ; and finally c refers to the post-spike reset value of V related
to high-threshold K+ conductance; whereas d refers to the post-spike reset of u due to slow
high-threshold K+ and Na+ conductances.

As stated by Izhikevich [119] in his later work, the firing patterns of all known types of
cortical neurons can be reproduced with the choice of parameter settings in the model [118]
summarised in this sub-chapter.

1.8 Challenges and Progress

In spite of recent progress in neuroscience, the understanding of how neuronal connectivity
allows us to perform advanced actions such as understanding of what we see, hear and feel; or
complex cognitive activities, such as planning actions in advance, is still poorly understood.
Improved understanding of our brains allows us not only to understand how we think and
what the biochemical processes in our brains are, but it also contributes to the creation of
new, more efficient computing paradigms, such as neuromorphic computing [41].

The main challenge in science focusing on the brain is that a direct observation of
neuronal activity of individual neurons, or their groups, is currently not technically possible
using the state-of-the art in-vivo human neuro-imaging. As these methods are deemed often
inefficient, a focus shifted to brain simulations [4].

To achieve large scale simulations of a brain-like neural system having approximately 109

neural cells and 1012 synapses, much larger neural networks models are needed, and these
models are not currently available. At the moment the computational resources needed for
simulation of these large neural systems exceed the available capacity of small-to-medium
sized HPC setups, which are traditionally made available to scientists in their own research
institutions. As a result, these growing computational demands of brain researchers have been
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targeting purpose-built neuromorphic hardware that relies on massively parallel computing
architectures like SpiNNaker [167].

In order to start studying the fundamental information processing in the human brain, the
general requirements for the simulated neural network size in computational neuroscience
are models built of more than 105 neurons and 109 synaptic connections [116]. Such models
allow scientists to explore the impact of different network models, as well as different synaptic
connectivity. The last decade has brought an increased performance and capability of neural
simulations, often using supercomputer hardware, or large HPC clusters [39, 51, 99, 98, 187].
The developments have been revolving around simulating models that are around the size of
a cubic millimetre of brain cortex (so approximately 105 neurons), using small to medium
sized HPC clusters. A major challenge in these simulations were large numbers of synapses
connecting neurons [125]. This was the challenge because the simulation of the realistic
number of synaptic connections has often exceeded the available memory capacity of the
HPC hardware that was made available to the brain scientists. In cases when the large
memory resources were available, the subsequent challenges were the long simulation time
and inability to analyse/optimise model parameters [138].

1.9 Current State of the Art in Simulation Frameworks

Computer simulation of neuronal networks has established itself as a major method of
the scientific analysis in neuroscience. The simulation has been used to study how the
anatomical observations relate to the physiological information gathered. Simulation is also
used to research dynamic systems that are difficult to investigate with the current analytical
methods. The first software simulators and neural models designed to study complex neural
systems became popular among scientists at the end of 1990’s. Most of the analyses of
the brain’s neural networks were done on data from the partial models of the brain of a
monkey [68], cat [189] and rat [37]. At this point neuroscience realised that collecting and
studying experimental data was not enough to explain how neural circuits and columns work.
This realisation stimulated a more quantitative approach to study of neuronal networks, and
refocused scientists to build computational models to study network dynamics. As a result, a
new scientific domain was created that is called computational neuroscience [63].

The first significant computers-based network model of the whole neural system was
simulated with a model of the Caenorhabditis elegans (Ce) [200]. The Ce is a primitive,
free-living transparent nematode, that is about 1 mm long and lives in soil environments. The
organism has been studied intensively by the research group of Sydney Brenner since 1963.
It was selected due to its simplicity, as the whole organism consisted of only about 1000 cells



16 Modelling Networks of Spiking Neurons

and 302 neurons. This level of complexity was ideal for researching information processing
in neural networks [225].

The next jump in the simulation size came from the successful modelling of a full cortical
column of a rat brain [37]. As mentioned in Section 1.8 the recent notable advancement
in the simulation neural networks has come from the BBP and their simulation of the rat’s
cortical mesocircuit (100 neocortical columns), that was followed by the model of the whole
rat brain [156] in 2014. This progress cannot be undermined, although the whole HBP was
not developing without challenges and scientific critic [237].

As mentioned by Gaute T. Einevoll et al. [65] the HBP project has overall contributed
to the development of high-quality brain simulators like NEURON [39] and NEST [82].
Authors suggest that the infrastructure for brain simulations require long-term funding,
similar to that which was delivered to other branches of science in which many scales
have been bridged, listing the numerical weather prediction and the engineering underlying
cellular telephones as examples. It is not only the computational neuroscience that has been
almost totally dependent on mathematics and simulations to bridge models at different scales;
therefore as they [65] state “a natural question is, do we have a chance of ever understanding
brain function without the brain simulations?”

1.10 Simulation System

1.10.1 General Neural Simulation System

GENESIS [23, 86] is an object-oriented multi-function neural simulation software package
that allows scientists to flexibly build high-fidelity neurobiological models. These models are
capable of simulating brain functions on different levels, from the level of small sub-cellular
components to sophisticated large and complex neural networks.

GENESIS was originally developed in 1989 by Dr. James M. Bower in his laboratory at
California Institute of Technology (Caltech). GENESIS is designed to be easily extensible
and adaptable to run on different HPC clusters [22]. Apart from its maturity, one of the
key advantages of using GENESIS is its openness. The software is distributed under GNU
General Public License (GNU GPL), so its users have the freedom to run, share and modify
the simulation engine’s source code, and any derivative work must also be distributed under
the same or equivalent license terms.

There are two major flavours of the simulation engine. A standard GENESIS, and a
PGENESIS that runs on a wide range of hardware using the Message Passing Interface (MPI)
and the Parallel Virtual Machine (PVM) [21].
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Fig. 1.3 The equivalent circuit for a standard GENESIS neural compartment.

GENESIS simulations are programmed using objects that are fed inputs, perform some
type of mathematical operation on them, and then based on the result of the operation,
generate outputs which are input to the other objects. Neurons in GENESIS models are
built from these basic components in a compartmental fashion [15] using a GENESIS
Script Language Interpreter (SLI) that provides the programmer with a built-in language to
define and manipulate these GENESIS objects. In the compartmental approach, neuron’s
compartments in GENESIS are linked to their ion channels and the channels are linked
together to form multi-compartmental neurons of up to 50–74 compartments per neuron.
GENESIS simulations scale on super-computing resources to neural network sizes as large as
9 × 106 neurons with 18 × 109 synapses and 2.2 × 106 neurons with 45 × 109 synapses [44],
which can form any required complexity needed.

Individual neurons modelled using this approach are able to generate realistic electrical
activity in the 1-100 Hz frequency range. Their activity is computationally modelled through
a method called Equivalent Circuit of a Single Compartment. Fig 1.3 shows the equivalent
electrical circuit of a basic GENESIS neural compartment, as presented in the Book of
GENESIS [23] on page 11.

Compartmental modelling of single neurons has been in focus for computational neuro-
science since 1990s. The idea of an equivalent electrical circuit for a cellular membrane is the
foundation of all compartmental modelling, and as such in modern neuroinformatics. This is



18 Modelling Networks of Spiking Neurons

because neuronal membranes have been demonstrating the behaviour of simple electrical
circuits with a given capacitance, resistance, and voltage sources. If used as model parameters
they define passive properties that are responsible for the way that electrical impulses are
transmitted along the neuron’s dendritic tree. Since its beginnings GENESIS supported
advanced cell modelling with a consideration for all the passive properties of a cell, as well
as active properties provided by ligand-dependent conductances, or different voltage. In this
way the software could be used to problematically model almost any structure, including
even more recent composite models [43], using ligand-gated ion channels, voltage-gated,
and voltage- and concentration-dependent conductances.

Fig. 1.3 shows the equivalent electrical circuit of a standard GENESIS neural com-
partment. Vm represents the membrane potential, or the potential inside of a neuronal
compartment in relation to a point outside of the cell. The ground loop symbol on the base of
the figure represents an external point with an exact zero potential.

The cell compartment acts as a capacitor, that is either charged or discharged by current
flowing into or out. The flow may come several directions:

1. from the adjacent compartment(s)

2. from the passage of ions through channels in the cell membrane

3. from the current injected using an electrode inserted into the cell

The membrane capacitance is indicated by Cm. It can cause a current flow into or out of
the compartment through the axial resistances Ra or R′a when there is a difference in potential
of V ′m - V ′′m between the two compartments.

The resistor (with the arrow) represents one of many possible variable channel con-
ductances that are specific to a particular ion; their combinations, once set, can give each
neuron its individual type, or as described in GENESIS documentation [15] its ’unique
computational properties’. Gk indicates conductance, and as conductance is the reciprocal of
resistance, it’s measured reciprocal ohms, or siemens1.

In a real neuron the difference in the concentration of the ion between the internal
and the external points of the cell result in an osmotic pressure which moves ions along
the concentration gradient. This results in a charge displacement that creates a potential
difference opposing this flow. The membrane potential at which there is no net move of the
ion along the concentration gradient is called the equilibrium potential Ek (or the reversal
potential). It is represented by a battery sign in the circuit.

11 Reciprocal Siemens (1/S) is equal to 1 ohm, while 1 Ohm (Ω) = 1 ohm.
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If no electrical input is provided to the cell Vm will be equal to a rest potential Er (ranging
from -40 to -100 mV ).

As described in the Book of GENESIS: Exploring Realistic Neural Models with the
GEneral NEural SImulation System [23], the equivalent circuit has the other resistor and
battery that link the exterior and the interior of the cell, and represent the combined effect
of passive channels (mainly those for chloride ions). In biological cells they are having a
relatively fixed conductance. This resistance is called the membrane resistance Rm, or a
leakage conductance Gl = 1/Rm. Em, the associated equilibrium potential is typically close
to the rest potential. In simulations, it is given a slightly different value (El) in order to
reduce the net channel current to zero when Vm = Er. The current source Ii represents an
optional injection current which could be provided by an electrode inserted directly into the
cell compartment. The ability to perform this operation is a great advantage of neuronal
simulations over the traditional, experimental approach. In a normal experimental setting,
a neuron would surely get destroyed after any mechanical attempt of injecting the current
directly into the cell compartment.

By defining the equivalent circuit for a neuronal compartment we can calculate a Vm at
any point of simulation using a differential equation. This differential equation expresses
the fact that the rate of change of the potential across Cm is proportional to the net current
flowing into the compartment to charge the capacitance. What GENESIS than calculates is
the current due to each of the sources shown in Fig. 1.3 using Ohm’s law:

Cm
dVm

dt
=

(Em−Vm)

Rm
+∑

k
[(Ek−Vm)Gk]+

(V ′m−Vm)

R′a
+

(V ′′m−Vm)

Ra
+ Ii (1.11)

The models based on the compartmental approach can achieve very high levels of com-
plexity, especially if we combine multiple cells together, to form more advanced structures.
Fig. 1.4 presents a neuron and its high fidelity, multi-compartmental model. The same
technique has also been successfully used in large simulations of the whole mammalian
visual cortex [230] or to build a Liquid State Machine (LSM) [229]. The method forms a
foundation, on which I build throughout this PhD thesis.

GENESIS employs a high-level simulation programming language to parameterise and
build individual neurons and their networks through its Script Language Interpreter (SLI).
The software can be used both interactively and in a batch mode [15]. GENESIS is written
in C, the Portable Operating System Interface (POSIX) for its I/O processing, and can
be configured to use either an X Window front-end called XODUS as its Graphical User
Interface (GUI), or UNIX console for its text-based user interface (TUI).
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(a) Purkinje neuron from mouse cerebellum injected with Lucifer Yellow and
imaged using confocal microscopy [158].

(b) A detailed multi-compartmental model of a cerebellar Purkinje cell, visualisa-
tion by Jason Leigh using the GENESIS Visualizer program [23].

Fig. 1.4 A Purkinje cerebellar cell with dendrites, soma, and axon and its simplified discrete
compartmental model built with GENESIS.
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Fig. 1.5 GENESIS’ high-level architecture.
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Fig. 1.5 shows an overview of the high-level architecture and modular structure of the
GENESIS neural simulator (i.e., scripting language interpreter and user interfaces used to
configure and construct the neuronal networks). This overview has been recreated from the
GENESIS documentation [23]. The workflow of a GENESIS simulation is broken into two
main phases:

Model initialisation During the initialisation phase, GENESIS launches the model’s input
scripts. The scripts hold the initial status and values of the model. After parameters
values have been initialised, the model proceeds to establish connections between
neurons according to probabilities outlined in the initialisation scripts. Once all
connections have been completed, the entire neural network is written to disk, if the
I/O setting in GENESES is set to on. This can be very time consuming.

Model computation Following writing the network out to disk, GENESIS enters the sim-
ulation phase. GENESIS runs for a predefined maximum amount of steps; solving
underlying model differential equations and updating simulation variables at every
time step. If I/O is on, GENESIS writes out performance and behavioural data to disk
at each time step.

Moreover, GENESIS from version 2.3 contains Kinetikit, an interface and utilities for de-
veloping simulations of chemical kinetics. This extension contains a comprehensive graphical
simulation environment for modelling biochemical signalling pathways using deterministic
and stochastic methods [220]. The extended GENESIS becomes a tool to investigate also
the bio-mechanics of the brain incl. its time-dependent temperature and pressure variations,
or the liquid behaviours in contrast to ideal conditions. As such the GENESIS/Kinetikit
simulations could be used to study the dynamics of cerebrospinal fluid flow and pressure,
which can provide valuable information for diagnosing and managing fluid disorders or
testing the effects of different interventions or optimising treatment strategies [171].

1.10.2 Other Simulation Frameworks

GENESIS is one of a few research tools that is able to simulate structurally realistic compu-
tations, delivered with large-scale parallel execution. It is recognised for its compartmental
design that offers high fidelity of simulations. Nevertheless, it is one of a few recognised
simulation tools that can be used to simulate SNNs [29].

Parallel simulations of spiking neural networks are also supported by BRIAN [87],
NEURON [163], NEST [82], NCS [29], SPLIT [29] Nengo [17], and GeNN [236]. In
spite of the existence of several tools, the research and development in parallel neuronal
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simulation have been relatively modest in comparison to multiple frameworks in the area of
e.g. (traditional) deep artificial neural networks. There has also been limited research with
regards to the study of the impact of neural network parameterisation on performance and
data generation, as well as computational steering [160].

Most publications in this area have focused on profiling the CPU communication, but have
not considered Input/Output (I/O). Authors like Hines [102] look at how inter-processor spike
communication affects total simulation time, by focusing on the spike exchange methods such
as MPI_Allgather, or non-blocking Mult-Send. Shehzad [193] focuses on inter-processor
spike communication to improve remote memory access for NEURON. This work analyses
the impact of different computing resources on compute performance, data generation, and
science delivered by the General Neural Simulation System (GENESIS) for increasingly
complex models of Liquid State Machines.

Fig. 1.6 presents the relationship between experiment setup and simulation run in compu-
tational neuroscience. As it can be seen, conducting experiment and running simulation are
two distinct iterative loops connected by a feedback process. This process uses interpretation
of output results to design new experiment setups and develop new cybernetic models.

GENESIS [22] supports the lower loop within the system as shown above, but it leaves a
gap for setting up and executing the simulations (e.g. setting up model parameter values,
different stimuli, storing the parameters and providing execution statistics). A similar gap was
identified for other popular simulation engines [215] like BRIAN [87], NEST [82] and NEU-
RON [103], or the most popular functional simulation engine called Nengo [17]). Moreover,
each simulator uses its own programming or configuration language, what leads to challenges
in porting models from one simulation engine to another and managing them [49]. These
problems triggered the idea of creating a more universal simulation pipeline called Neural
Simulation Pipeline (NSP).

1.11 Thesis Statement

In his thesis, the author claims that numerical simulations must integrate a robust model de-
velopment methodology, with adequate testing and simulation steering workflows to increase
scientific throughput, and improve utilisation of current and next-generation computational
infrastructure, available both on-premise and in-cloud. To this end, there is the need to
transform the end-to-end computational experiment workflow from one that is non-universal
and manual to one that is standardised and automated. To validate the thesis statement,
author:
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Fig. 1.6 The relationship between experiment and simulation in computational neuroscience.
Own figure, based on GENESIS documentation [24].

1. Study the modelling of different spiking neural networks forming Liquid State Ma-
chines to understand how the large-scale simulations of liquid models in brain mod-
elling could be improved;

2. Study the impact of different computing resources on model performance, and data
generation delivered by GENESIS for increasingly complex neuronal network models;

3. Integrates automation into the model development, testing and deployment process pro-
totypes the neural simulation pipeline using own neurobiological simulations of visual
system on GENESIS, with both on-premises and public cloud computing infrastructure.

Author investigates the following research questions:

• How to develop Liquid State Machine models using GENESIS programming language?

– How to efficiently design and simulate large, realistic neural columns built of
Hodgkin–Huxley neurons?

– How to build a model of visual system using a bio-cybernetic model that would
be simple enough to allow for understanding its operations, and at the same time
it could illustrate the most important functions of the retina and visual cortex?

• How to automate testing and deployment of such models?

• How to incorporate the prediction of input patterns using machine learning?
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• How to best prototype such models?

• What is the simulation cost, how to optimise simulation costs for larger models?

• How to reduce entry barriers to developing and performing large-scale neural simula-
tions for brain modelling?





Chapter 2

Liquid Computing in Brain Modelling

2.1 Introduction

In the second chapter of this PhD dissertation the author describes what the liquid computing
is, and why it is important for both brain modelling, and as a new computing paradigm. We
start with a bit of philosophical discussion on the computer metaphor, comparing the mind
to a modern-day digital computer, as well as refer to a wider computational theory of the
mind. We then define the concept of Liquid State Machines, highlight their mathematical
properties, as well as provide the other examples of liquid models to present the state of art.
We follow with the review of large-scale, scientific computer simulation projects using liquid
models incl. the famous Blue Brain Project and the Human Brain Project. Finally, the author
concludes with a short description of challenges and limitations for these models.

The chapter is organised as follows. This Section 2.1 provides a discussion of this
chapter. Section 2.2 focuses on the philosophical discussion of the “computer metaphor”
and computational theory of the mind, whereas Section 2.3 explains the concept of Liquid
State Machines. Section 2.4 highlights the structural components of Liquid State Machines.
Section 2.5 describes the idea and flow of liquid computations in Liquid State Machines.
Section 2.6 explains the mathematical properties of Liquid State Machines, whereas Sec-
tion 2.7 discusses the selected properties of Liquid State Machines. Section 2.8 presents
the role of the readout layer. Section 2.9 describes the state of practice and other liquid
models. Section 2.10 introduces the key large-scale computers simulation projects of liquid
models. Finally, Section 2.11 summarises why the liquid models presented are important,
and highlights both their key advantages and disadvantages.
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2.2 From Hardware and Software to Brain and Mind

In cognitive science there is a metaphor that “the mind is like a computer” [84]. Once
computers arose in early 1940-50s people started looking at them as information processing
devices, and a term neurocomputer was coined. The brain itself started being widely
understood as an information processing device, In these early days this approach was
especially influential in American behaviourist psychology, suggesting that one should not
talk about ideas that are internal to the mind, because they can not be seen or measured.
It was a rigid view, suggesting that if something cannot be seen or measured, it cannot be
subject to scientific investigation; so an organism could be treated as a black box device.

The cognitive revolution of mid-20th century was to change this [166], and allow scientists
to approach the brain and mind in a different way. If we could say that the mind is “like a
computer”, then considering we can write programs and study the behaviour of a computer,
in a similar way we could use those programs as metaphors for the operations of the mind.
This cognitive revolution allowed us to use a metaphor that “the software is to the hardware,
as the mind is to the brain”. In this way we could say that computers run software in a
metaphorically similar way to our brain “running the mind”.

McCulloch and Pitts, who published the first mathematical model of a neural network,
were also the first to state that neural activity is a digital computation, and that neural
computation explains cognition [181].

Advances in computing influenced an increasing number of scientists to believe that the
mind itself is a computational system, a position known as the computational theory of mind
(CTM). Computationalists, so scientists who support CTM, attempted to apply it to certain
important mental processes; and the theory itself become a central belief within cognitive
science during the 1970s, undergoing further development e.g into functionalism [186].

The idea of functionalism suggests that both mind and brain, similar to the software and
hardware, could be understood as systems of rules, states and computational elements. When
the software performs the functions via computations on some inputs to produce outputs,
running on usually electronic hardware, the brain performs its functions via its biophysical
and biochemical operations involving neurons and stimulus responses. How those elements
work together as a system is important, but the “physical machinery” in which those systems
are implemented doesn’t always matter.

A recent scientific discussion around this theory revolves around the language. Steven
Pinker, a psychologist, suggests that the brain’s neural activity functions like a computer,
motivating his view by stating that all languages are built on the same universal grammar and
that the language mechanism is built into the human brain [182].
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Our brain consists of approximately a hundred billion neurons. The data provided by
different authors have led to a broad range of 75–125 billion neurons in the whole brain
[141]. Neurons are organised in microcircuits, also known as neural columns. They differ by
purpose in the human brain [89].

Excitable media, as introduced by Holden [108] in the theory of synchronous concurrent
algorithms, provide a great framework for computations. A new approach to microcircuit
computing was suggested by Maass [151]. In Maass’s Liquid State Machine theory, the
brain, or its fragments, are treated as a liquid. The model provides an alternative to the
Turing machine [192]. Moreover, a mathematical analysis shows that there are in principle
no computational limitations of liquid state machines [151], and that they can simulate any
Turing machines [146].

Neural networks are a great tool for modelling different systems, including complex
biological or technological systems [203]. Artificial neural networks facilitate biomedical
signal processing, biomedical data analysis and interpretation, as well as models for the
analysis of system behaviour, including the prognosis of results of selected activities [206].

Several successful applications of the LSM framework have been delivered in the area
of artificial neural networks, or to solve engineering tasks such as the design of nonlinear
controllers [173]. Moreover, we know that cortical microcircuits seem to be very useful for
computing on perturbations [231].

Direct observation of neuronal activity of individual neurons is not possible given the
current state of art in human neuroimaging [4]. To achieve brain-scale simulations and to
investigate emergent properties of brain circuits we need better building blocks to simulate
the whole neural circuits with higher fidelity.

There has been an increased development in the performance and capability of neural
simulations in the past years. As a result, simulator and supercomputer technology have
now developed to the point where the actual process of setting up and simulating a realistic
neural model is now practical [98].

In spite of that some key challenges remain. One of them is that the number of synaptic
connections in the neural models offering higher fidelity have shown to exceed the current
memory capacity of hardware that is available to researchers [138]. The other major challenge
to the simulation of neuronal networks is handling both the computations and data generated
by the large number of synaptic inputs to a single neuron, and scaling these neurons to the
larger structures [125].

This thesis presents a framework for spiking neural network simulation and provides
a simple, extensible retina-cortex model. We also leverage a novel simulation setup, and
extend the prior work of Wójcik [230], in building a higher fidelity bio-inspired visual system
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resembling mammalian visual cortex. The new model has a more complex retina, allowing
process of input patterns generated by viewing a resolution of a MNIST size dataset [52].

Author achieves simulation results from different LSM columns. In Chapter 3, the author
presents more details about the models, that help in understanding the signal processing
phenomena within each LSM column, and how those models are extensible for further
research on signal processing in multiple hypercolumns of the brain. Chapter 4 presents
a calculation of the Euclidean distance of states between each of the columns of the LSM
system to illustrate the differences in spiking patterns.

2.3 Liquid State Machine Concept

The discovery of neuronal microcircuits in the mammalian cerebral cortex provided an
inspiration for the liquid computing theory. In 2002 Wolfgang Maass and his collaborators
published the paper on the computational abilities of such microcircuits [150]. The theory
of liquid computing they proposed does not require a task-dependent construction of neural
circuits [149]. The computational model they proposed explains how the brain can potentially
solve an infinite number of information processing tasks using a network of several simple
computational units [153, 150, 149, 148, 152].

The basic principles of Maass’s liquid computing theory can be explained by a metaphor
of a bucket of water or a lake [210]. Liquid may provide an important computational pre-
processing for subsequent linear readouts [147]. In such a metaphor scenario, initially, an
ideal, flat and transparent surface of the water is present. At this stage the water has no visible
surface deformations. However, at some point, the surface of a lake can become affected by
some time-varying disturbances, such as a sudden blow of wind, or by a number of stones
thrown into the water. In response, the ripples appear on the surface of the water. Apart
from them, the circular swirls appear around the area of where the stones had been thrown
into the water. In a short period of time the system arrived to a dynamic, but unstable state.
The creators of liquid computing theory intuitively felt that in such circumstances the water
surface will be mapping information about the history of its excitation in a form of the fading
memory, which was formally described in this paper [151].

It is important to note that when the interaction of reservoir with the time-varying
disturbances finishes, the surface of the reservoir will again start to calm down, and it will
ultimately return to its original flat and transparent state. A theoretically infinite number of
ripples may appear as a result of the interaction, evoking a different and unique response
each time such an interaction happens. Apart from the lake, other metaphors of liquids
are used [210] e.g. buckets, rivers, coffee cups, beer mugs. The abstract concept of liquid
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computing as a notion of a liquid state, is common in explaining the theory of liquid
computing. This state, although unstable, encodes and stores information about a time-
varying input and the type of liquid’s excitation in the form of a fading memory. Liquid
State Machine is also one of the three main computing models for neural microcircuits, with
other important models being the Echo State Network (ESN), and the Backpropagation-
Decorrelation Model [113].

2.4 Structural Components of Liquid State Machines

Building on the water surface metaphor from Section 2.3, one can imagine a team of experts,
who use high quality photographs of the lake’s surface to tell why certain disturbances
on the water had appeared. In such a scenario, one trained specialist could learn how to
estimate the direction from which the wind had blown, while another (also looking at the
same photo) could be trained to guess the number and weight of stones that had been thrown
into the water. The photo of the lake can therefore be treated as a record of the liquid state.
The team of experts corresponds to the readout layer in both the LSM model presented
by Maass [153, 150, 147] and the ESN model proposed by Jaeger [120]. This element is
indispensable for any liquid computations.

The creator of liquid computing theory Wolfgang Maass highlighted that each neuronal
microcircuit acts as an independent, real-time computation unit called Liquid State Ma-
chine [150]. Each LSM is capable of processing a continuous stream of multi-modal input
from a rapidly changing environment. As he describes, the framework [151] is not only
compatible with biological constraints (e.g. his parameters of neurons and synapses were
chosen to fit data from microcircuits in rat somatosensory cortex), but it actually requires
these biologically realistic features of neural computation to operate better than Turing
machines. The abstract model he proposed was inspired by our brains, where heterogeneous
columns of neurons are not task-specific [194]. This means that they may possess potentially
universal computational capabilities.

The Liquid State Machine simulated in a computer system is therefore a simplified model
of the cerebral cortex [235] in which individual neurons are arranged in hyper-columns.
These columns, similar anatomically and physiologically to each other, can process several
complex tasks in parallel. The general architecture of LSM is presented in Fig. 2.1. As per
definition each Liquid State Machine is built of the three main modules: an input layer, at
least one liquid column or reservoir, and the readout layer.
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Fig. 2.1 Diagram of Liquid State Machine as presented by Huang [113].

2.5 Liquid Computation with Liquid State Machines

The flow of liquid computations starts with a time-varying input signal i(t) that is fed to an
input layer, which is connected to selected neurons of a liquid column. In Maass’ original
work [153] the input signal was applied to 30% of randomly selected neurons of a column
containing 135 simple threshold neurons. Neurons in each column are connected to each
other in a unique way. The LSM models assume that for any two cells, the connection weight
decreases (often exponentially) using Euclidean distance. To avoid rapid synchronisation of
the system, the one-to-many connections model is usually avoided. The system’s synapses
are formed using a given, selected probability. To maintain biological accuracy the LSM
models often assume 80% of excitatory connections; so synapses strengthening the signal,
and 20% to the inhibitory connections, so synapses weakening the signal. Exactly that
configuration, build of simple I&F neurons described in Subsection 1.7.2 of this thesis, and
using the parameters drawn from the Markram’s Lab were used by Maass [152] to present
his alternative to traditional (von Neumann’s) style of computations.

To be more precise, an excitatory synapse is a synapse in which an action potential in a
presynaptic neuron increases the probability of an action potential occurring in a postsynaptic
cell. In contrast, an inhibitory postsynaptic potential is a type of synaptic potential that makes
a postsynaptic neuron less likely to generate an action potential [184].

The structure of connections within a neural column in the LSM model is usually defined
as a statistical process for any two cells in a given column, so without any external adjustments
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needed to set the exact connections’ parameters. The statistical distribution of connection
lengths within the recurrent circuit is for their separation property, and allows to design
different types of liquid circuits [151].

The stimulating signal injected into the liquid column propagates through a defined
architecture of connections. A system based on such columns does not rapidly synchronise;
rather it is dynamic and unstable. This state resembles the state of a hypothetical liquid,
and hence a comparison to the reservoir. There are two negative behaviours which could
drastically minimise the accuracy of the Liquid State Machine. It is a pathological synchrony,
an infinite positive feedback loop resulting in heavy continuous spiking activity, and over-
stratification, expressed in the opposite, inability to propagate the input signal through spiking
activity [226].

There are multiple physiological parameters that characterise both the biological neurons
themselves (e.g. resistance, capacitance, potential, conductance, physical characteristics
of soma like shape and diameter, or axon length), and the connections between them (e.g.
different types of synapses, including dynamic synapses). The term liquid computations was
formed because a microcircuit resembles a container of a specific liquid. This liquid can be
"generated" using different parameters to become a filter for LSM’s simple readout learning
function. Although there is no consistent method of generating liquids for all problems [176],
this approach has successfully been used for example for brain modelling in computational
neuroscience [70].

This liquid metaphor is valid mainly because of the type of interactions between different
neurons in cortical microcolumns, that act as different liquids. As proven by simulations, the
dynamics of activity decrease with the distance in a column. The other similarity of LSM to
the cortical structure is the fact that a system composed of the limited number of neurons can
assume multiple states, and reflect distance-dependent changes of noise correlations [195].

In spite of that, until now no published research has investigated neuronal columns using
approaches known from fluid mechanics. It is possible that such a novel approach could
shed a completely new light on the whole concept of LSMs, as different types of reservoirs
had already been investigated [134] (e.g. these made of a bucket of water, Escherichia coli
bacteria, material systems, brain, as well as photonic systems).

The input signal processed by the LSM column is directed to a single, or multiple readout
layers. These layers analyse information to detect patterns received to the reservoir, and
they perform classification of these patterns. The readout layer can be built of a traditional
neural network, or any other method leveraging more traditional machine learning (ML)
classification algorithms, usually using a simple learning function [177].
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2.6 Mathematical description of Liquid State Machines

Alan Turing showed that one can construct machines that are universal for digital sequential
offline computing [192]. In contrast to this common computational model, Maass’s Liquid
State Machine model introduced in 2002 [151] does not require information to be stored in
stable states of a computational system. In the same year a Liquid Computer term was coined
as a novel strategy for real-time computing on time series [173]. Such a computer consists of
the four main components:

• Input i(·), a continuous input stream.

• Liquid column, or a filter LN that maps the input into function Y N(t):

yN(t) = LN(i(t)). (2.1)

• Memory-less readout map mN .

• Output o(t):

o(t) = mN(yN(t)). (2.2)

In Maass’s LSM architecture described in “Real-time computing without stable states: A
new framework for neural computation based on perturbations” [151] the function of time
series i(·) is injected as input into the liquid column LN , creating at time t the liquid state
yN(t), which is transformed by a memory-less readout map mN to generate an output o(t).

Such approach to computations is much more suitable for parallel real-time computing
on analog input streams. It generated several new models of so called reservoir computing,
which are also often called liquid state machine, or LSM [173]. In general, these type of
models are created of two parts: the reservoir of a highly recurrent spiking neural network,
and a readout function characterised by a simple learning function.

The input always fed into the reservoir, often known as liquid, which acts as a filter. Then
the state of the liquid, called the state vector, is used as input for the readout function. As
a result, the readout function trains on the output of the liquid, with no training happening
within the reservoir itself.

This process has been analogised with dropping objects into a container of liquid and
subsequently reading the ripples created to classify the objects—this analogy popularised the
term Liquid State Machine [147, 176].
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2.7 Discussion of Selected Properties of Liquid State Ma-
chines

The theory of LSMs requires a few clarifications that author found in “Neurocybernetyka
teoretyczna” [210]. Firstly, the liquid column LN is not subject to a typical learning process
that we know from machine learning. The learning process, that can be used in building the
LSM based classifier can only take place in the readout layer mN . The liquid column LN can
therefore be considered special type of fading memory itself.

Secondly, multiple readout layers can be connected to a single LSM. Such layers can for
example be specialising in performing different tasks. This means that the LSM exhibits
inherent ability to process information in parallel using the same computational unit.

Finally, according to the theoretical analyses conducted on the framework [151], there
are no a priori limitation to the the computational power of the LSMs for real-time tasks
with fading memory. Based on that we can assume that for sufficiently complex calculations
requiring large memory capacity, computational units, or columns will need to be containing
a larger, adequate number of neurons. In their works, Maass and Markram presented a
mathematical proof, showing that LSM has the computational capabilities of a Turing
machine (Maass et al. [151]; Maass and Markram [149]; Maass, Natschläger and Markram
al. [152]).

One of the most useful properties of LSM is its ability to achieve different states for dif-
ferent input patterns. The distance between states of LSM is called separation property (SP).
A more detailed, mathematical description of this property is mentioned in Subsection 2.7.1
of this chapter. Unfortunately there are no privileged measures to study the distance between
the liquid states. As described by Maass [152] due to the dynamics and non-linearity of
the system, there is no simple, homomorphic translation of distances of input states into
liquid machine states. This means that even a small change to the liquid column stimulus can
result in very different liquid response. The use of different definitions of distance norms
provides different ways to analyse machine trajectories in their appropriate multidimensional
representations. One of the simplest distances that can be used to describe LSMs is the
Euclidean distance between the states of two networks for all time steps performed within
the simulation time. Author uses this distance in the Section 4.2. The formal representation
of this distance can be written as follows:

|| Y N
u (t)−Y N

v (t) ||, (2.3)

where Y N
u (t), Y N

v (t) denote the liquid states at time t for the input streams of u and v.
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The Euclidean distance of the column’s liquid states (or the states of input neurons) is the
distance of two multidimensional vectors, whose coordinates correspond to neurons’ change
over the time. There are other metrics that manifest the SP of LSMs much better than the
usual Euclidean norm, but I will not detail them in this sub-chapter. This aspect of separation
property can be useful for developing better classification algorithms, and it is discussed in
Chapter 4 of this thesis. For now, I will only mention that the literature (e.g. Wójcik and
Ważny [232]) suggest that the Bray-Curtis distance dissimilarity metric may perform better
than the traditional Euclidean distance.

Fig. 2.2a, derived from Maass’s work [151], presents the dependence of 4 LSM states
generated by 4 distinct input streams of varying similarity. In Fig 2.2b, we see why the
Bray-Curtis dissimilarity metric may perform better; the calculated distance is expressed in
larger values, so the level of dissimilarity for the same input stream is higher.

Maass suggested that SP is only dependant on the parameters of the liquid column. He
has also shown that when the dynamic synapses are used to build the column, then the SP
increases if compared to the LSMs containing static synapses only. This is in line with
common sense. The more internal parameters of LSM there are, the more states it can
potentially accommodate; so the use of dynamic synapses allows the machine to adapt to the
input signal better.

Apart from the separation property Maass introduced also the an approximation property
(AP), described in Subsection 2.7.2, that provides universal computational power regardless
of specific structure or implementation. To summarise, SP measures the dispersion between
projected liquid states from different classes, whereas the AP indicates the concentration of
the liquid states that belong to the same class.

As defined by Maass [151], the universal computational power is provided when the
two abstract properties are met: the class of basis filters from which the liquid filters LN are
composed satisfies the point-wise separation property, and the class of functions from which
the readout maps nN are drawn satisfies the approximation property.

2.7.1 Separation Property

We define that a class CB of filters has the point-wise separation property with regard to
input functions from Un if for any two functions u(·), v(·) ∈Un with u(s) ̸= v(s) for some
s≤ 0 there exists filter B ∈CB that separates u(·) and v(·), that is, (Bu)(0) ̸= (Bv)(0) for any
two functions u(·),v(·) ∈Un with u(s) ̸= v(s) for some s≤ 0. Examples for the classes CB
of filters that have this property are the class of all:

• delay filters u(·) 7→ ut0(·) for t0 ∈ R
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(a) The state distance increases with the distance d(u,v) between the two input
spike trains u and v. Plotted on the y-axis is the average value of Euclidean norm
as in Maass [151].

(b) The distance of states d(u,v) calculated in the Euclidean and Bray-Curtis
metrics for the probability of interconnections p = 0.5 as in [232].

Fig. 2.2 The separation property of Liquid State Machine in Euclidean and Bray-Curtis
measures of dissimilarity.
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• linear filters, with impulse responses of the form h(t) = e−at with a > 0

• non-linear filters, as defined in Neural Systems as Nonlinear Filters [153]

A liquid filter LN of an LSM N is said to be composed of filters from CB if there are
finitely many filters B1, . . . ,Bm in CB, to which we refer as basis filters in this context, so that
(LNu)(t) = (B1u)(t),. . . ,(Bmu)(t)) for all t ∈ R and all input functions u(·) in Un. In other
words, the output of LN for a particular input u is simply the vector of outputs given by these
finitely many basis filters for this input u.

2.7.2 Approximation Property

A class CF of functions has the approximation property if for any m ∈ N, any compact (e.g.,
closed and bounded) set X ⊆ Rm, any continuous function h : X → R, and any given ρ > 0,
there exists some f in CF so that |h(x)– f (x)| ≤ ρ , for all x ∈ X. The definition for the case
of functions with multidimensional output is analogous.

To summarise, the two theorems proposed by Maass [151] imply that there are no serious
a priori limits for the computational power of LSMs on a continuous functions of time, and
they provide a theoretical foundation for approximating any biologically relevant computation
on discrete spike trains in continuous time by LSMs.

In this approach only the synapses of the readout neurons need to be adapted for a
particular computational task, and the current state x(t) of a microcircuit at time t holds all
information about preceding inputs.

2.8 The Role of Readout Layer

A critical component of any LSM is its readout layer. This layer is needed for use of the
separation property, that is “embedded” into liquid column of the system, in order to enable
the system to perform classification tasks. Different ”readouts” can extract output spike
trains. As figuratively illustrated in “Neurocybernetyka teoretyczna” [210] this layer can
be compared to an expert standing by a lake, who can determine the nature of the lake’s /
liquid’s excitation based on observations of its internal state (e.g. waves on the lake).

The design of readout layer can be performed in three steps:

1. Identification of the neurons in the liquid column that should form the inputs to the
readout layer. This selection can range from a small fragment of the network, to all the
neurons in a border case.
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Fig. 2.3 Application of LSM model to the speech recognition, as presented by Maass [150].
Top row: input spike patterns. Second row: spiking response of the 135 I&F neurons in the
neural microcircuit model. Third row: output of an I&F neuron that was trained to fire as
soon as possible when the word “one” was spoken, and as little as possible else.

2. Recording the time-varying states of the machine yN(t) for different input patterns i(t).

3. Applying a supervised learning algorithm for the pairs (yN(t), o(t)) in order to train
the readout layer in such a way that its response mN(yN(t)) maximises similarity to
the desired output o(t).

The readout layer’s ability to classify correctly the LSM states is called the approximation
ability. Fig. 2.3 presents state plots of the input, microcircuit, and the readout layer of the
LSM system, whose column was built with 135 I&F neurons.

A sample application of this system, as explained by Maass [150] was in the speech
recognition task. The LSM was trained to recognise each of the 10 words spoken by 5
different female speakers 10 times. All of the 500 input files had been encoded individually
in the form of 40 spike trains for each input, with at most one spike per spike train signalling
onset, peak, or offset of activity in a particular frequency band. The network was able to
recognise the pattern of "one" with an error of 0.15. The result achieved by this simple LSM
system won a well known internet competition in 2000, and sparked interest in LSMs [110].

The top-most part of Fig. 2.3 illustrates that all the four input signals generated by
different speakers look alike for an untrained human eye. The spiking pattern of 40 input
neurons (represented by small, black points) are indistinguishable for the author of this
thesis, who wears glasses. The small points in the middle (’microcircuit’ layer) indicate



40 Liquid Computing in Brain Modelling

the time-varying activity of the individual neurons in the liquid column built of 135 I&F
neurons. Their spikes form visibly more complex patterns in this layer than in the top layer.
This is because of the dynamic reaction of the liquid, as well as the fact that there are simply
many more active neurons in the microcircuit in comparison to the input layer [150]. As it
can be seen on 2.3, the task of distinguishing the middle-layer’s patterns is also difficult for
an untrained observer. The bottom-layer is different. Even an untrained eye can observe
that both patterns of "one", generated by speaker 5 and speaker 3, look "similar". We can
also distinguish the input of "eight" from "five" easily, and both from the the original "one"
without much effort. It is much easier to distinguish the patterns if a trained readout layer is
applied to the model.

At the end it is worth mentioning that in spite of using a simplified neuron model, the
responses of the neural system proposed by Maass and Markram [150] look ’realistic’ if
compared to the responses of biological systems. As the authors claim, this allows computer
models not only to demonstrate dynamic effects such as synchronisation, oscillations or
neural coding, but the readout layer also allows these systems to run anytime algorithms, so
algorithms providing “provisional answers long before the input pattern has ended”. Such
behaviour is typical for biological systems.

As described by Wójcik and Garcia-Lazaro [228] the data obtained by recording the real
neurons of rat primary somatosensory cortex manifest the same Self-Organizing Criticality
phenomena that was obtained with the LSM simulation.

To summarise, the simple LSM system built by Maass [150] using only 135 I&F neurons
was able to distinguish between different words spoken by different female speakers, while
the other system of Wójcik and Garcia-Lazaro [228] built using 128 thousands I&F neurons
was able to realistically model complex phenomena present in biological systems. Obviously,
new classification systems or more advanced models of biological systems could be built
with LSMs using the capabilities provided by different readout layers.

2.9 Other Reservoir Models and State of Practice

Liquid computing models use sparse and recurrent SNN connections with synaptic delays
in networks of spiking neurons “to cast the input to a spatially and temporally higher
dimensional space”. The main advantage of these models is that they do not require a costly
training of their SNN component. Several spike-based liquid frameworks have proven their
effectiveness in temporally varying information processing tasks [191].

The LSM concept is under active development. Recently Wijesinghe et al. [226] proposed
to use a group of locally connected LSM reservoirs to form an ensemble of liquids. This
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approach could simulate higher levels of connectivity in LSMs that are in close proximity,
and lower levels of connectivity for these that are spatially further apart.

A good example of how LSM concept influences neuromorphic computing is Spiking
Temporal Processing Unit (STPU) [197], a novel neuromorphic processing architecture opti-
mised to implement neural networks and synaptic response functions of arbitrary complexity
using the temporal buffers.

Another recent example of extending the original LSM concept was presented by Ivanov
and Michmizos [117] in 2021. Authors call their machine Neuron-Astrocyte Liquid State
Machine (NALSM), as it addresses the LSM’s underperformance through self-organized
near-critical dynamics, similar to its biological counterpart, the astrocyte model. Such model
integrates neuronal activity and provides global feedback to spike-timing-dependent plasticity
(STDP), which self-organizes NALSM dynamics around a critical branching factor that is
associated with the edge-of-chaos. Such a LSM achieves a state-of-the-art accuracy without
the need for data-specific hand-tuning.

NALSM was reported to achieve a top accuracy of 97.61% on MNIST [52] dataset
(97.51% on N-MNIST [178], and 85.84% on F-MNIST [233]). This is significant, because
it means that a LSM achieved a classification performance comparable to the traditional,
fully-connected multi-layer artificial neural networks trained using the back-propagation
algorithm. If performance is the same, the authors [117] say that “LSM could soon reach
the performance of other deep learning models, with the added benefits of supporting the
robust and energy-efficient neuromorphic computing on the edge”. Their view seems to be in
line with the current scientific consensus about the next steps in development of deep neural
network architectures.

The other, alternative computational models inspired by or related to the liquid computing
concept are Echo State Networks and Extreme Learning Machine (ELM).

2.9.1 The Concept of Echo State Networks

Liquid computing has been extended by the concept of Echo State Networks. They are a type
of Recurrent Neural Network (RNN) with a sparsely hidden layer that give the architecture
a supervised learning principle while being part of the liquid computing framework. The
approach, created in 2001 by Herbert Jaeger [120] is sometimes also referred to as the Echo
State Machines (ESM). Although the concept of ESN is similar to LSM, it was proposed
independently from Maass.

Jaeger himself [122] compares both models in the following way: “these two models
had been designed independently, with different application types and different parameter
regimes in mind. Theoretical results on LSMs are quite general, and have been formulated
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Fig. 2.4 Jaeger’s basic ESN architecture, as presented in [120]; dashed arrows indicate
connections that are possible but not required.

within the mathematical frameworks of dynamical system theory and filtering theory. Hence
they apply in particular also to ESNs. But since the primary goal of the development of
LSMs was to provide a biologically plausible paradigm for computations in generic cortical
microcircuits, applications of this model have only been explored for circuits of spiking
neurons with a biologically characteristic large amount of internal noise. In contrast, ESNs
have been designed to provide high performance for a number of engineering tasks, and have
been primarily applied to recurrent artificial neural networks without internal noise, which
are better suited for such tasks.”

To summarise, both models compute using a distributed, nonlinear, recurrent neural
network with fixed weights (called a reservoir). The adaptation is restricted to the readout
layer, what greatly simplifies the training in practical applications.

The two main differences between the models relate to type of neurons used, and their
target applications. ESNs use either simple additive neurons with a sigmoid activation
function or leaky integrator neurons, whereas Maass consideres several different types of
neurons [121].

In terms of applications, the ESNs in contrast to the LSMs always use a single-layer neural
network as a readout layer. Jaeger’s approach also uses a slightly different naming convention;
rather than talking about liquid columns or microcircuits, he talks about reservoirs of states.
A functional diagram of ESNs is presented in Fig. 2.4
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Several engineering applications for ESNs have been presented [121]. They are similar
to the applications of other RNNs, so non-generative, and input-driven:

• dynamic pattern recognition,

• time series prediction,

• filtering,

• control.

Jaeger [121] suggests that ESN models for such applications should be set up without the
output feedback, and highlights that the stability of ESNs may become problematic when
the output feedback is introduced; and output feedback is mandatory for pattern generating
ESNs.

As a way of example, an ESN could be used as a tunable frequency generator [210]. In
this case, for a given, slowly varying input signals i(t) and the desired output responses of
o(t) we get a set of N input-output pairs:

N = (i(1),o(1));(i(2),o(2)); . . . ;(i(nmax),o(nmax)). (2.4)

The process is carried out in the three stages:

1. Create a recurrent echo state network containing several hundred neurons; randomly
select a number of input and output neurons. Create the return connections from the
output (readout) layer to the ESN. The network is called a reservoir.

2. Collect nmax reservoir states for a given set of input-output pairs (i(n),o(n)). We call
the internal states of our echo machine x(n).

3. Calculate the weights of the reservoir-readout connections in such a way that the
desired response o(n) is obtained from the set of internal states of x(n).

The input signals i(t) induce the desired responses at the output o(t), and the entire
system acts as a generator. The machine constructed as per Fig. 2.4 in the ready to be used.

2.9.2 Extreme Learning Machines

Another, more recent neurocomputing concept related to Liquid State Machine is called
Extreme Learning Machine (ELM). The idea was presented by Guang-Bin Huang, Qin-
Yu Zhu, and Chee-Kheong Siew from Nanyang Technological University (Singapore) in
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Algorithm 1 Extreme Learning Machine Algorithm

Require: Given a training set S = {(xi, ti)|xi ∈ Rm, i = 1, ...,N}, activation function g(x),
and hidden node number Ñ,

Ensure:
Step 1: Randomly assign input weight wi and bias bi, i = 1, ..., Ñ.
Step 2: Calculate the hidden layer output matrix H
Step 3: Calculate the output weight β .

2004 [111], so at a time, when reservoir computing was still considered a new and fresh
approach.

The main inspiration for ELM came from Jaeger’s and Maass’s [120, 150] realisation
that the mathematical requirements for the reservoir computing are (1) high dimensional
projection and (2) fading memory. Huang [111] was inspired by the idea that dynamical
systems possessing these characteristics “operate at the edge of chaos”, and he recognised
that this hyper-dimensional projection is a powerful computational tool in itself. In this sense
ELMs are similar to the reservoir layers, or liquid columns, but they act without their short
term memory component.

ELM are feed-forward neural networks using hidden nodes, whose parameters do not need
tuning [111]. In most cases, the output weights of the hidden nodes are learned in a single
step, which resembles the process of learning in a linear model [113], and overcomes the
slow training speed and over-fitting problems [54]. The definition of ELM, a simple learning
method for a single-hidden layer feed-forward neural networks (SLFN), as summarised by
Huang [112] is presented in Algorithm Listing 1. H† is the Moore–Penrose generalised
inverse of matrix H, and:

As used by Huang in his works [111, 112], the H is the hidden layer output matrix of the
neural network, β is the weight vector connecting the ith hidden node with the output nodes,
and T is the training data target matrix.

The relation between them can be written in the following way:

Hβ = T, (2.5)

where

H(w1, ...,wÑ ,b1, ...,bÑ ,x1, ...,xÑ) =

g(w1 · x1 +b1) · · · g(wÑ · x1 +bÑ)
...

...
...

g(w1 · xN +b1) · · · g(wÑ · xN +bÑ)


N×Ñ

(2.6)
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with

β =

β T
1
...

β T
Ñ


Ñ×m

and T =

tT
1
...

tT
N


N×m

(2.7)

ELM can be applied to different learning algorithms e.g. for classification, regression,
sparse coding, grouping, compression, and feature learning. Similarly to the LSM concept,
the ELMs have also been studied in relation to biological systems, and that research supports
some theoretical claims of ELM.

In 2013 Barak et al. [12] investigated intelligent behaviour. They assumed that such a
behaviour requires meaningful integration of several sources of information e.g. to integrate
the context with the stimulus, and shape with colour or size. This forces biological neurons
to perform both discrimination, so responding to similar inputs in a different way, and
generalisation, so maintaining a consistent response for noisy variations of the same input
at the same time. Authors used simulation tools to show that (1) it is the coding level,
also known as sparseness of neurons that controls a trade-off between generalisation and
discrimination, (2) the optimal coding level depends on the task, but usually the optimal
fraction of inputs to which a neuron responds is close to 0.1. To summarise, the intelligent
behaviour is driven by the capacity of integrating information, that in biological systems is
achieved through mixing sources of information via random connectivity, that form “an easy
to read representation of input combinations”. This resembles the approach proposed with
LSMs.

Random projections are extremely efficient at generating mixed selectivity and to expand
dimensionality, without compromising the ability to generalise. This fact stated by Fusi [76]
is important because high-dimensional neural representations are critical not only for learning
in ELMs, but also in all recurrent neural networks like ESNs or LSMs; and all these models
exhibit a very rich behaviour typical also for biological systems in cortical recordings. This
behaviour allows neural systems to solve complex tasks involving short term memory. The
alternative for generating high-dimensional neural representations is to introduce layers of
non-linear neurons that have random synaptic weights [76].

Finally, new approaches to modelling and approximating neural networks like Closed-
form Continuous-time (CfC) could soon completely revolutionise neural simulations, by
allowing to simulate brain dynamics composed of billions of neurons and trillions of synapses
with biologically realistic mechanisms [94]. This could be achieved by solving the differential
equations that describe the interaction of neurons and synapses in a closed-form. These new
types of “liquid time-constant network models” are expected to be between one and five
orders of magnitude faster than the current models.
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2.10 Large Scale Computer Simulations of Liquid Models

In mid-2000s the view that brain (initially it’s cerebellum, or little brain) can be considered a
liquid state machine was a promising viewpoint for obtaining a better understanding of brain’s
computational principles. Yamazaki and Tanaka [235] proved that when the neural network
structure was reconstructed based on anatomical and physiological data, the non-recurrent
dynamics and capability of time representation were reproduced for a little brain. Moreover,
such models were robust against Poisson spike input signals, and their robustness could be
improved by increasing the number of granule cells. In spite of simulating relatively simple
models, they have proven that all the basic dynamic features found in the realistic cerebellar
circuit model were retained when applying the liquid state machine concept.

Several prominent projects were investigating brain from computational perspective. In
author’s view the most interesting project focusing on the large scale simulations of the neural
microcircuits, so indirectly LSMs, was the Blue Brain Project (BPP) [101]. Its coordinator,
Henry Markram from École Polytechnique Fédérale de Lausanne (EPFL), is also one of the
co-creators of the liquid computing theory[149, 173].

Markram’s Blue Brain Project began in July 2005 as a Swiss research initiative at the
intersection of neuroscience and Big Data. The aim of the project was to use a supercomputer
to ultimately simulate the mammalian (human) brain to deepen our understanding of its
functions, and its key disorders [247]. The key achievements of the project until 2006 was a
biochemically realistic model of the neural column. The first phase of the of the project was
completed in 2007, by simulating a complete neocortical column of a two-week-old rat. The
simulated brain structure was based on 10000 biologically realistic neurons with 30 million
synaptic connections, all of them embedded in a three-dimensional space.

The simulations in the BBP were run on the IBM BlueGene supercomputers using 8000
microprocessors. The two versions of that machine are presented in Fig. 2.5. As the number
of neurons simulated at each stage of the project was relatively modest (a few neurons
per core) and the machine was relatively powerful, the system was able to perform all the
calculations required for the biologically realistic models in the real time. Higher density of
neurons per the single simulation node was planned for the next stage of the project, that was
named Human Brain Project (HBP) [222], and is discussed later in this section.

The models simulated with IBM BlueGene supercomputer could have been much more
complex, and could even consist of millions of neurons. The selection of smaller models was
justified by the willingness of running them in real time.

The benefits of the Blue Brain project were expected in medicine, engineering, computer
science, and other related fields. The project gave opportunity to verify 100 years of
experiments conducted on neuronal tissues using computer simulation. It created a library



2.10 Large Scale Computer Simulations of Liquid Models 47

(a) IBM BlueGene/L supercomputer used in the early stages of the Blue Brain
Project.

(b) IBM BlueGene/Q supercomputer used in the later part of the project.

Fig. 2.5 IBM BlueGene supercomputers from Brain and Mind Institute at EPFL in Switzer-
land used by the Blue Brain Project [91].
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that recorded all the reactions of a simulated neocortical column to all the possible stimulus.
The project was primarily intended to provide neurophysiological information for brain
scientists and doctors. Project’s large computer simulations were reproducing behaviour of a
living brain, but it was not a brain with all its cognitive properties.

BBP was therefore not an artificial intelligence project. It was never a goal for BBP
to simulate consciousness. As described on the project website at EPFL [247]: “We do
not know what is needed for consciousness so no one can really answer the question, let
alone whether a digital model can become conscious. One can only speculate. If it turns
out that, every atomic interaction in the brain is important to become conscious then one
will need to simulate all these interactions to simulate consciousness, which is unlikely to
become possible for decades, if not centuries. If, however one only needs to simulate the
basic interactions between the neurons then one could begin seeing something that would
look like consciousness. But simulating consciousness is not the same as consciousness itself,
so it would mostly be useful for us to study the mechanisms that underlie the emergence of
consciousness.”

Therefore, although the focus on the mechanisms that underline the emergence of con-
sciousness could be an interesting area of study in future, the main focus of the BBP was to
answer biomedical and physiological questions; to help us understand the fundamentals of
brain operation.

In 2013 the European Union’s (EU) Commission awarded the new initiative of Henry
Markram a 1 billion Euro grant. As a result of that the BBP has officially been re-branded to
HBP, with a much higher ambitions [222]. The goal of this flagship European project with a
10-year time horizon was to improve our understanding of the human brain and to translate
neuroscience knowledge into medicine and technology [7].

Apart from attempts to improve the available simulation infrastructure, and in spite of
the generous funding, the project contributions were largely related to proving evidence of
relationships between neuronal connectivity and functionally relevant brain activity. The
BBP ended up with simulating 100 neural columns which consisted of 1 million neurons, and
approximately 1 billion of neuronal connections with IBM BlueGene supercomputers. This
was roughly the size of a bee brain. The simulations allowed for experimental observation of
neural firing patterns, as well as neuronal plasticity [79].

If only looking at the resources spent on HBP, this large project had a limited success.
This is because it was not trying to address any particular research questions, or test any
specific hypothesis about how the brain works [237].

Nevertheless, one of the findings related to engineering was that balancing the need
for the model fidelity and performance becomes increasingly important as model size and
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Fig. 2.6 Key Milestones of the Blue Brain Project evolving into the Human Brain
Project [222].
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complexity grows [247, 91]. To achieve an efficient operation of models built of billions
of neurons, we need a clearer understanding of how model features impact computational
performance and data generation, and how to automate the the neural simulation pipeline,
potentially using multiple simulation engines and compute platforms.

There have been other scientific projects focusing on improving our understanding of
how brain microcircuits operate. Brain Research through Advancing Innovative Neurotech-
nologies (BRAIN) [169] worked on simulating selected, important brain parts. The project
used popular commodity computing resources to simulate networks of up-to hundreds of
thousands of neurons at the same time, with a goal to understand mammalian brains through
reverse engineering.

2.11 Summary

Maass’s Liquid State Machine concept is both a new computing paradigm, and a method to
simulate large neuronal microcircuits. Mass showed that it is possible to construct recurrent
circuits of spiking neurons that can simulate arbitrary Turing machines [146].

It is also the first concept that provided a model-based explanation of the computational
abilities of the brain. In 2002 it was used to explain how a continuous stream of multi-modal
input from a rapidly changing environment can be processed by stereotypical recurrent cir-
cuits of integrate-and-fire neurons in real-time [150]. The model allows to build microcircuits
of any complexity with virtually any level of biological realism. Moreover, the simulation
results of the large neuronal networks confirm the biological fidelity of such networks, in
both the ability of their neurons to oscillate and synchronise [88].

The Maass’s generalised approach that defines microcircuits as computational units is
an attempt to explain almost unlimited information processing capabilities of our brains. At
the same time, it provides a theoretical foundation for explaining operations of our nervous
system, as well as researching the process of encoding and processing information [150].

As summarised by Jaeger [120], in the traditional approach when a dynamical system is
built using an artificial neural network, the architecture is usually complex as we need to:

1. Train a feed-forward neural network to predict the system output based on the network’s
input that is drawn from a few delayed instances of the same system’s I/O (e.g. based
on Takens embedding theorem).

2. Use selected recurrent network architectures for which specialised learning algorithms
are known (e.g. a gradient descent on error function), that bring the following chal-
lenges:
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(a) Local optima,

(b) Slow convergence,

(c) Disruption and slowdown of the learning process when the network is driven
through bifurcations during learning,

(d) Difficulties to learn long-range temporal dependencies due to vanishing (or
exploding) gradient problems.

3. Use custom-designed network architecture that overcomes some of the common prob-
lems relating to (a-c).

The resulting architectures are often complex, and focus only on solving a single, specific
problem. According to Jaeger [120], a good example of such complexity is visible in Long
Short Term Memory (LSTM) networks, which have specialised linear memory units with
learnable read/write gates to achieve very long memory spans.

The Liquid State Machine, as well as Echo State Network concepts are more univer-
sal [120, 153]. They promote a neuromorphic engineering approach [117]. It does not
suggest to "engineer" (in a traditional way) any complex neural structures within the reservoir.
The liquid of the neural column is general purpose. The time-varying inputs are passed into
the column in a natural way, resembling the flow of information observed in real biological
systems. This gives computer applications requiring real-time processing of complex input
streams (e.g. in robotics) the ability to use simple tapped delay lines for storing information
about past inputs, and a variety of adaptive readout devices to execute multiple tasks in
parallel [151]. As a result the same network can be reused to solve problems of different
types, and in diverse time scales [56].

Nevertheless, there are also critics of Maass’s theory, who have suggested a few areas
for improvement of the liquid state machine concept. Konkoli [133] wonders why the exact
limits of reservoir computing, and the computing capacity of LSM devices have not been
described in literature. He suggests that in fact little is known about exploiting properties of
reservoir computing. Although he confirms that the LSM concept is indeed Turing universal
(e.g. in the sense of fading memory), that universality is only provided when the whole
class of machines (understood as the base filters) is considered. He also mentions that there
seems to be a general lack of interest in the mathematical foundations of reservoir computing,
“which is strange given that these play a prominent role in formulating the concept”.

The key disadvantage that is being listed for the LSM concept is the limited ability to
steer the machine’s internal processes. This makes it almost impossible to explain how the
LSM operates on the level of individual neurons, and as researched by Hazan [96], even
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small damages to the LSM’s neurons reduce the accuracy of LSM training dramatically, even
to “essentially random values”.

The other criticism is also that while the theory explains how computational units of
the brain function, it does not answer the fundamental question of how the brain processes
information as a whole; reaching the cerebellum as the largest biological counterpart to the
Liquid State Machine [235].

Moreover, the original LSM model as defined by Maass [153, 150] was also experimen-
tally proven to not to be robust to damages, so it cannot always be seen as a universal model
for biological computations. The original results published by Maass only showed robustness
to noise in the input data. Hazan [96] has shown that specifying certain types of non-random
topological constraints, architectures of connectivity like feed forward with hubs or two way
power law can restore LSM’s robustness and its ability to maintain pertinent information
over time.

Additionally, at present the implementation of LSM requires considerable computing
power. There are also only a few LSM models can outperform conventional neural networks
in solving real-world classification or regression problems. The challenges with LSMs or
ESMs are often attributed to the complex training, the lack of optimal architecture of the
LSM (reservoir), and a little research on hyperparameters [117].

Some of the tasks that can be solved using LSMs can still be solved more efficiently with
the typical multi-layer artificial neural networks, using the traditional backpropagation of
gradients [204]. Regardless of the controversies surrounding the liquid computing concept,
the LSM theory has firmly established itself in both neurocybernetics and in the neuromorphic
computing [117], as one of the key computing paradigms.

As summarised by Schuman [191], at present (so in 2022) there are several variants
of liquid computing, that span from simple reservoir networks for bio-signal processing
and prosthetic control applications to using hierarchical layers of liquid state machines
interconnected with layers trained in supervised mode for advanced applications in audio or
video information processing.



Chapter 3

Liquid State Machine Models

3.1 Introduction

In the third chapter of this dissertation the author focuses on the Liquid State Machines
models created as part of his PhD research, and their simulation setting. The chapter
describes cybernetic models of a visual system. We start with a description of why and how
to model the biological (neural) systems, and why the the size of such systems is not always
their most important quality. We continue with a short discussion of the order of growth in
brain simulations. This aspect is important, because such simulations can very easily become
computationally intensive e.g. if some larger parts of the brain networks are considered.
We follow with the presentation of author’s two simple models of visual system. Each of
these models consists of a retina (input), and a cortex (a processing column). The first model
called RetNet(28x28,4) is equipped with a retina of 28x28 cells, and four identical LSM
columns. The second model is called RetNet(8x5,1), and it has a simplified retina (4x8 cells),
but a single column of varying size. Finally, the author concludes with a description of the
simulation setting.

The chapter is organised as follows. This Section 3.1 provides a discussion of this
chapter. Section 3.2 discusses modelling of biological systems, and why although the most
interesting results could be produced by networks with a high level of similarity to the real
brain structures, many interesting results and applications could also be achieved by much
simpler artificial neural networks. Section 3.3 focuses on the key measure of complexity
in computer science, that is the order of growth, and its applicability to the brain network
simulations. Section 3.4 highlights the RetNet(28x28,4) model built of Hodgkin-Huxley
neurons. Section 3.5 describes the RetNet(8x5,1) model, whereas Section 3.6 explains its
variation called DeepRetNet(8x5,1), having a varying column size. Finally, Section 3.7
focuses on the simulation setting for all the experiments described in this PhD thesis. The last
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subsection is organised into four parts: Subsection 3.7.1 focusing on the initial experimental
setup with Google Colab, Subsection 3.7.2 introducing Single Board Computers and Clusters,
Subsection 3.7.3 highlighting the on-premise computational resources received from the
Future SOC Lab, and Subsection 3.7.4 explaining AWS Cloud Computing Services used in
this PhD thesis.

Overall, this chapter presents the biocybernetic modelling, simulation setup, and high-
lights why they create entry barriers to the simulation of brain networks.

3.2 Modelling of Biological Systems

In complex systems, the simplicity of a model can be treated as one of its key advantages. This
is because for such complex systems we are often simply unable to understand "the whole"
system easily. As a way of example, the brain is often considered a complex, multi-element,
multi-function system. We are still unable to fully understand the brain. Author of this
thesis believes that even simplified brain models e.g. these based on liquid columns, but built
using high fidelity Hodgkin–Huxley neurons, can give us new insights into understanding
the dynamic processes in the brain, as well as potentially new knowledge on how to build
neuromorphic systems.

As expressed by Tadeusiewicz [206, 205] the volume or size of the system is not always
its most important quality: “if something is proven to work in a small drop, it would also
work in a huge ocean”; so studying the behaviour of relatively small networks of neurons
using the right architecture, could allow us to discover new knowledge about these complex
systems. With reference to Psychology [205], Tadeusiewicz suggests that artificial neural
networks could help us explain the brain-based neuro-psychological phenomena like:

• learning – defined as a knowledge building process, that could be observed through its
unsupervised form in both humans and machines.

• “artificial dreams” – defined as spontaneous and unexpected processes, automatically
emerging from the natural self-learning procedures.

He suggested that the study of these learning processes could be perceived not only as the
way leading to the goal (e.g. of building the most efficient classifier), but as a goal itself. It is
especially important for science, because normally the authors rarely describe what happens
to the neural network during the self-learning process, or when the neural system operates
as normal. The most interesting results could be investigated by networks with a high level
of similarity to the real brain structures. However, even without that, as long as the neural
networks are to certain extent similar to the structures operating in the brains, we could still
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consider analogies between processes in the brains and in neurocomputers to be able to build
more intelligent systems [207]. This is also what sparked author’s initial interest in the LSM,
and the related neural concepts.

The simulations of neural networks can be used in several aspects of medicine [212].
Apart from facilitating the ambient intelligence of the environment [165], the neural networks
can also be used to study the neural basis of disorders such as Alzheimer’s disease, or Autism
spectrum disorder, as well as to explore the mechanisms underlying brain development and
plasticity [57]. The computer simulation can also be used to investigate the effects of drugs
and other interventions on brain function, and to identify potential therapeutic targets for
the treatment of central nervous system (CNS) disorders, e.g. using different boundary
conditions [83].

Alzheimer’s disease is a progressive brain disorder that causes problems with memory,
thinking, and behaviour. It is the most common cause of 60% to 70% of cases of progressive
cognitive impairment in older adults, and it is estimated to affect at least 2.3 million (range,
1.09-4.8 million) people in the United States [45]. The prevalence of Alzheimer’s disease
increases with age, and it is estimated that approximately 1 in 10 people over the age of 65
and nearly half of those over the age of 85 have the disease [224].

Autism spectrum disorder is a neuro-developmental disorder characterised by difficulties
with social interaction and communication, as well as repetitive behaviours and interests [106].
It is estimated to affect 2.3% of children aged 8 years and approximately 2.2% of adults in
the United States, with boys being four times more likely to be diagnosed with ASD than
girls. The prevalence of ASD has increased significantly over the past few decades, although
it is not clear whether this is due to an actual increase in the number of cases or due to the
improved detection and diagnosis [140].

There were several attempts to use computational approach to tackle Alzheimer’s dis-
ease [57, 42], or Autism spectrum disorder (ASD) [60, 59, 55, 58]. This PhD project aims to
deliver new tools facilitating the study of brain function through software containerisation
based on Docker, and could be used to inform the development of new therapies and interven-
tions in medicine for a variety of CNS disorders, including Alzheimer’s disease or Autism
spectrum disorder. However, the anticipated advance goes beyond just brain network simula-
tions, and in author’s view it also includes computational neuropharmacology [8], as well as
an increasingly important computational psychology, based on the “neuron-like” processing
principles; complementing its “traditional” computational neuroscience background [179].

Apart from psychology, the other prominent applicability areas of neural networks
modelling biological systems are [209, 208, 210, 211]:

• biomedical signal processing (e.g. electrocardiogram signal classifier),
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• biomedical data analysis and interpretation (e.g. through medical image analysis),

• therapy results forecasting (e.g. based on a neural model of the disease and patient’s
characteristics),

• treatment enhancement (e.g. through personalization),

• modelling human or animal behaviour (e.g. in social informatics, through applying
big-data to social sciences),

• automating repetitive cognitive tasks (e.g. through an improved human-machine/human-
computer interaction),

• modelling gene expression (e.g. in genomics, through mapping gene dependencies and
interactions).

3.3 Brain Simulations and Order of Growth

The computer simulated LSM models based on the architecture of rat primary somatosensory
cortex gave experimental results that were “in agreement with the dynamics recorded in neu-
rophysiological experiments on real brains” [227]. The validation of simulations happened
on electrophysiologial data provided by Jose Albert Garcia-Lazaro and his lab at Oxford
University [228].

In a general sense, the approach to science based computer simulations is based on the
work of the Dutch mathematician Luitzen Egbertus Jan Brouwer. He suggested that one
cannot talk about the existence of any mathematical entities until, one provides a way to
construct them. As a result, the mathematical modelling becomes the construction of formal
descriptions for real entities[32].

We now know that simulating these processes in brains is extremely complex. Even the
well established simulation engines like GENESIS [24] often struggle with simulating neural
networks larger than 10000 neurons [44], that is required to simulate a single cortical column.
Reducing the entry barriers to, and the complexity of the large scale simulations seem an
important long term goal for the author of this thesis.

One of the key questions that one has to ask prior to start working on larger computational
models of brain networks is how hard the problem really is, assuming the current state of
computing technology. To assess that it’s worth returning to some well known measures of
complexity in computer science. The formal definition of complexity in which computer
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scientists talk about problems relates to the order of growth, and is expressed with Big-O or
Big-θ notations [132].

In this approach the complexity of a problem is approximated by the relationship between
the size of the input (e.g. data or function), and the measure (e.g. time) that it takes for
a given approach, often formally expressed in a form of an algorithm, to terminate. The
complexity can be estimated to be an upper bound or exact. Big-O notation gives only
an asymptotic upper bound (not an asymptotically tight bound), whereas when the Big-θ
notation produces an asymptotically tight bound on the running time. Both Big-O and Big-θ
notations are standard methods of approximating algorithmic complexity in a way that is
independent from hardware or operating system software [131].

It means that as the computational problem gets larger, at where we measure the size
of the problem (e.g. through some number n), the amount of time that it takes to solve that
problem grows as some constant times n, or lower. It means that the problem won’t get
harder by more than a factor of some number times n (e.g. square for O(n2), or cube for
O(n3)). A problem that is O(n3)) has a larger order of growth than a problem that is O(n2),
and a problem that’s O(n2) is a harder problem, than a problem that’s O(n). In the same way,
a problem that is O(n) is a harder, than a problem O(logn), that grows logarithmically.

The computational complexity (e.g. O(n2)) gives us an approximate, but informative
notion of how difficult a computational problem is to resolve, as the problem gets larger. This
notion is especially important for modern-day simulations, when several computationally
expensive neuronal network models are used. Different algorithms, driven by different neuron
models might reside behind these large neural network models of today. Smaller networks
might form parts of larger networks, that have a complex set of parameters applied to them,
to make the behaviour of the simulated neural system resemble its biological counterpart.
To sum up, in author’s view it’s important to understand the approximate complexity of the
brain network models, if they are ever to be productionised.

A crucial element of this understanding is to differentiate between problems that are
polynomial in their order of growth (meaning they grow as O(n2,n5,n100,) to the problems
that grow exponentially, so where a problem grows as the exponent (meaning they grow as
O(2n,5n,100n), for n larger than 1).

A problem that grows exponentially is always computationally more difficult to resolve in
a large-scale, than a problem that grows in a polynomial time. We know that the algorithms
with logarithmic complexity perform faster than algorithms with polynomial complexity,
which are faster than algorithms with exponential complexity. Computer engineers might
be tempted to avoid exponential-time problems, because these could only be addressed in
a very small version, unfit for a real-world application or industrial scale. This realisation
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often leaves the problems of this type for consideration in future, and with the theoretical
interest only. There is however, a hope to address at least a few of them, thanks to the notion
of linking these two groups of problems by NP-Completeness.

NP-Complete problems are especially interesting problems [78], because although such
problems can be resolved in exponential time, they express properties allowing us to guess
an answer in polynomial time, and validate if that answer is correct, also in a polynomial
time. Nevertheless, if we repeatedly and reliably want to receive all the correct answers,
the programme will generate them in exponential time. This is a valuable distinction of
computational problems, as some hard computational problems might actually turn out to be
realistic to resolve using spiking neural networks [142], as they result to be NP-Complete
problems. Author believes, that this approach could be applied practically one day in
the simulation of the whole brain, whose different elements could be approximated using
different network models or neuron types.

There is also a linkage between machines and brains in the sense that brain is a highly
parallel structure. If one, as Maass [152] thinks of the individual neural columns as tiny
computational elements, then there are 2–4 million (2×106−4×106) cortical columns in
the human neocortex working all at once in parallel [218]. This is an idea of a true parallel
computation. The computer science could benefit from drawing from concepts on how brain
operates through new neuromorphic architectures. The concept of parallel computational
columns, structures that resemble computers with multiple processors, or sometimes clusters
of multiple computers, all trying to solve a problem simultaneously and potentially even
sharing these partial answers. That’s often a very good strategy for reducing the time needed
to solve a computational problem, or simply learn from temporal data streams [245].

Nevertheless, in theory this approach does not really solve the difficulty of going from
a polynomial to an exponential-time problem. Parallelism as a computational strategy can
reduce the time needed to solve a problem, but it can’t change an exponential-time problem
to a polynomial problem [71], so the distinction remains very important.

In the field of realistic brain network modelling, the current requirements of modelling
have overgrown the simplicity of the earliest approaches. Author hopes that within his lifetime
we achieve a technological level that will allow us to simulate the whole brain. Nevertheless,
if looking at the current state of brain modelling, there will be several problems with mapping
the appropriate connections and sub-models. This is because different researchers might
develop different parts of that large computational model of “a reference brain”, and the
simulations of various networks/sub-networks will need to be independently validated and
tested before being combined in a single large model.
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If such a reference brain can be simulated in reasonable time, the next steps could be to
simulate the whole, thinking brain in real time, with the following steps being to simulate
that brain faster than in real-time.

Author wonders what the implications of such a technical tool would be for both technical
and social sciences. Would they create the super-intelligence? The objectives of this thesis,
are much less ambitions, but it seems an interesting open question for a consideration in
future.

3.4 RetNet(28x28,4)

The main objective of RetNet(28x28,4) is to examine a large, modular artificial neural
network of spiking neurons in a simulation of a LSM system processing visual signals on a
computational cluster. The secondary goal is to explore the properties of LSM.

We propose a bio-inspired model of a visual system that consists of two main modules.
Our approach is in line with the LSM architecture proposed by Maass [151]. There are two
main components of our model:

1. Input (Retina, as presented in Fig. 3.1).

2. Liquid (Cortex, built of four identical LSM columns, each as presented in Fig. 3.2).

Similar to the model presented in [230], the new RetNet(28x28,4) Hodgkin-Huxley
Liquid State Machine (HHLSM) model uses the same high fidelity multi-compartmental
neurons. The soma of each neuron uses biologically similar voltage-activated sodium and
potassium channels. Author builds on a well known conductance-based model describing
how action potentials in neurons are initiated and propagated in electrical circuit [239]. The
GENESIS parameters we used in our simulations are presented in Tab. C.1.

The Retina was built on a 28×28 square-shaped grid and divided into four patches
(2×2). Each patch is connected to one of the four HHLSM columns which simulate Lateral
Geniculate Nuclei (LGN), and later the ensemble of cortical microcircuits. The retinal cells
are only connected to the LSM column through the LGN layer. Each HHLSM consists of
1024 neural cells placed in a cuboid of 8×8×16. The structure of each column in the models is
the same (Fig. 3.2). The model contains four columns in total that form the Liquid stimulated
by Retina.

There are 90% of excitatory connections established among layers and neurons of each
layer and 10% of inhibitory connections. Additionally, Layers L6 of LSM columns are
connected with LGNs of other HHLSMs in the same way (i.e. with the synaptic probability
of 10%), simulating the corticothalamic feedback. For simplicity, we did not implement
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Fig. 3.1 Retina of the proposed visual system with the stimulating patterns (Input).
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Fig. 3.2 Structure of the LSM column, a fundamental computational microcircuit of our
model (Liquid).
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Fig. 3.3 Retina of the proposed visual system with the stimulating patterns (Input).

the pathway of the possible inter-column connections. Each connection in the model is
characterised with a delay parameter and random weight. We can treat the Liquid as a single
hyper-column made of four independent neural columns, a part of periodic structure of the
simulated cortex.

All the simulations for this model discussed were programmed using GEneral NEural
SImulation System (GENESIS) [23]. All the neurons used in the simulations were built
according to the Hodgkin-Huxley model [107].

3.5 Wide RetNet(8x5,1)

Author proposes a modular, bio-inspired model of a visual system that consists of two
main components, an Input (acting as a retina of the system) and Liquid (acting as a visual
cortex, built of a single LSM column). The new RetNet(8x5,1) Hodgkin-Huxley Liquid State
Machine (HHLSM) model uses high fidelity multi-compartmental neurons with voltage-
activated sodium and potassium channels. Author has built on a well known conductance-
based model describing how action potentials in neurons are initiated and propagated in
electrical circuit [239]. The simulation parameters are organised into five groups in Tab. C.1.
The exact values for these parameters were achieved experimentally by Yorozu [239] to
provide a high biological fidelity of the model. A detailed description of the Hodgkin-Huxley
model can be found in [107].

This model is different to prior models e.g. the one presented in by Wójcik in 2006 [230]
and the RetNet(28x28,4) presented in Section 3.4. The new model called RetNet(5x8,1) is
designed around a single LSM column, as it is intended to become a building block of a
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much larger and more complex model that could scale to 1M+ neurons. The final Retina of
that target model was built of smaller RetNet(5x8,1) models on a 125×16 rectangle-shaped
grid and divided into 5 patches (25×16), with each patch connected to 10 HHLSM columns
forming Lateral Geniculate Nuclei (LGN) and the ensemble of cortical microcircuit. A view
of this is presented in Fig. 3.3

The retinal cells are only connected to the LSM column through the retina’s top LGN
layer. Each HHLSM consists of 1024 neural cells placed in a rectangular cuboid of 8×5×25
(1000 HH neural cells). The structure of each column in the models is the same. The target
model therefore contains 50 columns forming the Liquids stimulated by Retina(s).

There are 90% of excitatory connections established among layers and neurons of each
layer and 10% of inhibitory connections. For simplicity, we did not implement the pathway
of the possible inter-column connections. Each connection in the model is characterised with
a delay parameter and random weight. We can treat the Liquid as a single hyper-column
made of 60 independent neural columns, a part of periodic structure of the simulated cortex.

3.6 Deep RetNet(8x5,1)

The Deep RetNet(8x5,1) model is different to the prior models e.g. the RetNet(28x28,4)
presented in Section 3.4 and the Wide RetNet(8x5,1) presented in Section 3.5. This time each
HHLSM was built with just a single column in 9 versions using NSP variables described in
Chapter 5 Section 5.4.2:

1. 1040 neural cells placed in a rectangular cuboid of 8×5×25.

2. 2040 neural cells placed in a rectangular cuboid of 8×5×50.

3. 3040 neural cells placed in a rectangular cuboid of 8×5×75.

4. 4040 neural cells placed in a rectangular cuboid of 8×5×100.

5. 8040 neural cells placed in a rectangular cuboid of 8×5×200.

6. 12040 neural cells placed in a rectangular cuboid of 8×5×300.

The research on the RetNet(8x5) family of models is important especially for the larger
Type 5 and 6 models, as these sizes resemble the real cortical columns, that are cylindrical
structures in the brain’s cerebral cortex. Although NSP allows for a dynamic change of
the size of the RetNet model, this PhD thesis uses 6 standard column sizes in the experi-
ments. In the task simulated, each model’s retina receives 3 different stimulation patterns of
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“0”, “A”,“1”. This gives us an opportunity to evaluate the LSM system built of an increasing
number of neurons in a standardised way.

3.7 Simulation Setting

3.7.1 Initial Setup at Google Colab

In this first approach author proposed to combine the LSM architecture with Apache Spark
[242]. Apache Spark can be used as a distributed, fault tolerant data processing engine for
extracting insights at scale with near-real time speeds [243]. It is an open source computing
framework that unifies streaming, batch, and interactive big data workloads. We use it to
improve the analysis of outputs generated by neural columns simulated with GENESIS [23]
programming framework.

The fundamental building block of Spark architecture is Resilient Distributed Dataset
(RDD). RDDs are in-memory objects on which all the operations on Spark platform are
performed, and it happens in a distributed way [241].

An RDD is a collection of entities, similar to rows or records. RDD functionality makes
the distributed processing possible by allowing to split the data it contains across all the data
nodes of a Spark cluster. RDDs are immutable; once created they cannot be edited, updated,
or appended to. They are considered resilient because they tolerate node failures within the
cluster, and can be reconstructed in case of a node failure [241, 244].

From the programming perspective they are similar to Java collections, but under the
Spark layer they are partitioned and distributed across multiple computing nodes. Unlike in
the case of Hadoop and HDFS, Spark RDDs represent the data in-memory for each of the
machines in the cluster. The distribution of the data across the computational nodes allows
Spark to process the data in parallel. Several processes can be run on an individual subset of
data by a cluster [244].

RDDs can be mutated (be appended or changed). There are only two operations that are
permitted on an RDD: [243]:

• Transformation (resulting in creation of a new RDD, with all the edits that are needed).

• Action (or request for a result, which causes Spark to execute a set of transformations
defined for a dataset).

Spark follows lazy evaluation of operations by keeping a record of the series of transforma-
tions requested by the user on the dataset. It groups the transformation in an efficient way
when an action is requested. This allows an RDD to be reconstructed even if the node it lives
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on crashes. RDDs can be created when a file is read, or a transformation of another RDD is
called. Each RDD holds metadata in which it keeps track of where it came from. This feature
is called the RDD lineage, and it allows an RDD to reconstruct itself through re-performing
all the recorded transformations [241].

Since its beginnings, the platform offers machine learning libraries. Spark 1.x provides
support for ML with spark.mllib. Spark 2.x, the current version works with spark.ml and
it offers an entirely new set of APIs for developers, which can work with data frames, and
not directly with Resilient Distributed Datasets. The other advantage of the platform for
machine learning is that Spark offers libraries for hyper-parameter tuning, allowing us to
choose the best model for a given use case [161]. Moreover, the recent developments in the
Spark project increased the execution speed on the platform between 10 and 100 times [244].

We performed all the initial simulations described in this paper for RetNet(28x28,4), our
first signal processing model, using a simple Spark cluster with a single master node, and two
worker nodes. The system was built around computing resources available on a free Google
Colaboratory Cloud platform [19]. The machine was equipped with the Intel Xeon processing
units running at 2.30 GHz, using 256KB L2 Cache in a single computing component, and
having 2 cores per chip. The 64-bit system had 12 GB of RAM, and worked under the control
of Linux (Ubuntu 18.04.5 LTS) with the kernel version of 4.19.112+. We installed the latest
Spark-3.0.2 with hadoop 2.7 using OpenJDK Runtime Environment 11.0.10. The model
was implemented in GEneral NEural SImulation System GENESIS v.2.41. Both results and
source code for the simulations are available on GitHub repository2. Fig. 3.4 presents a
diagram with simulation setup, including GENESIS and Spark components, along-side their
relative roles in the overall approach.

The initial setup allowed us to assess both the components and data generated by the
framework. This allowed the author to understand what the difference between conducting
experiments and running simulations is, where the gaps in the current framework are, as well
as which of the components are mandatory, and which are interchangeable.

3.7.2 Raspberry Pi and ROCKPro64 Single Board Computers

Exactly a decade ago, scientists from the field of automation and electrical engineering have
been excited, praising innovations brought forward at an increasingly rapid rate, and opening
new realities by introducing the Programmable System on Chip (PSoC) micro-controllers
into the engineering education [219]. They said that “engineers’ and educators’ dreams
come true of having all their project needs covered in single chip”, because at that time (in

1GENESIS v.2.4 https://github.com/dbeeman/genesis-2.4beta-files.
2LiquidComputer https://github.com/KarolChlasta/LiquidComputer.

https://github.com/dbeeman/genesis-2.4beta-files
https://github.com/KarolChlasta/LiquidComputer


66 Liquid State Machine Models

Fig. 3.4 High level simulation setup including GENESIS and Spark components of the
framework.

2012) they could use two classes of devices: (1) high-performance PSoC with 32-bit ARM
Cortex-M3 microprocessor from Cypress Semiconductors (now Infineon), and (2) ultra-low
power RISC mixed-signal microprocessors from Texas Instruments, “an ultimate solution for
a wide range of low power and portable applications”.

In the same year, University of Cambridge’s Computer Laboratory together with The
Raspberry Pi Foundation released the credit-card size computer called Raspberry Pi (RPi).
The machine was sold for $35, with an attempt to “change the world”, by revolutionising
computer science education in schools with low-cost and high performance [31]. The original
model B was equipped with a powerful Broadcom BCM2835 ARM microprocessor (1 core,
1 thread, and a maximum frequency of 1.0GHz), and up-to 512 MB of RAM. It was also able
to run Linux in a graphical environment and provided general purpose I/O (GPIO) connectors
for sensors and motors.

Raspberry Pi computing platform was highly successful in several applications: deliv-
ering high-quality, low-cost education [234], in higher (engineering) education to build
real-time hardware-in-the loop simulators [198], building the scale models for cloud com-
puting infrastructures [217], as wireless sensor nodes [221], or distributed computer vision
monitoring systems [214].
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The detailed comparison by Maksimovic et al. [154] of RPi and other SBCs have shown
that this “ultra-cheap-yet-serviceable computer board is the perfect platform for computing
and interfacing with many different devices in a wide range of applications”. Authors suggest
that RPi has all the advantages of a PC, but it needs to be provided with the electrical current
of only 700 mA. Its performance is better than some popular SBCs development platforms
like Udoo (Quad), Arduino, BeagleBone Black or Phidgets “on a general level by computing
power, size and overall costs of the solutions” [154].

All the initial experiments in GENESIS were performed using the Raspberry Pi 4 Model
B board that is described in Table B.1. The exact configuration of the SBC board was selected
and ordered in December 2020, but the computer was only shipped to the author in Feb
2021. This was because the most powerful version of RPi Model B (with 8 GB of RAM)
available was available in limited quantity, what increased the waiting time. The board
proved very useful for performing neural simulations in the home environment. It was (1)
powerful enough to run any Linux distribution with GENESIS, (2) equipped with a 4 core
CPU allowing for parallel simulations, and (3) most importantly, the board required very
little electrical power (low cost), and (4) could work in the home environment without any
active CPU cooling fan, allowing the computer to run simulations 24/7 unnoticeable to the
other household members.

When author ordered the additional RPi boards to build a cluster on Jan 15th, 2022, he
was soon informed that “the collection of SBC boards had to be postponed until to the end
of February 2022”, only to be postponed again to the March 18th, 2022, and subsequently
cancelled due to “the lack of availability of the products”.

This is why, in spite of a positive initial assessment of the RPi board, the author of this
thesis had to seek for a more available, but equally powerful alternative single board computer.
A comparison for various SBCs [127] suggested that their different versions have already
been successfully applied and evaluated for education, edge computing and distributed neural
network execution.

One of the interesting devices found in the review [127] was ROCKPro64 [115] (RPr).
Released in June 2018, it was used by Khaydarova et al. [128] in 2021 to design a cluster
of 22 nodes called ROCK-CNN. The machine was used as an execution environment for
a locally distributed convolutional neural network applied to object recognition, sentiment
analysis and time-series data. This is how the idea for was inspired.

To summarise, the research on bio-cybernetic models described in Chapter 3 of this thesis,
whose results are presented in Chapter 4 had been performed under the home conditions
using the the Neural Simulations Cluster (NSC). The author decided to configure the first RPi
board as the master node of the cluster, because this board could provide internet connectivity
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through an integrated, dual band (2.4 GHz and 5 GHz) WiFi adaptor out of the box, while
the other RPr boards need a special WiFi addition. A more detailed description of the NSC
architecture is provided in Chapter 5, Subsection 5.3 of this thesis.

3.7.3 HPI Future SOC Lab HPC Resources

The other computing resource that was used in this PhD project is the Ubuntu 18.04.5
bionic virtual machine (vm-20211005-001.fsoc.hpi.uni-potsdam.de, running Linux 4.15.0-
143-generic on x86_64 architecture). It was used as a development workstation, and the
on-premise execution environment. Author received access to the machine from Hasso
Plattner Institute, allowing him to compile and install all the required software e.g. the
latest version of GENESIS simulation environment [24] (version 2.4 from May 2019) and
Docker [162] platform (version 20.10.08 from July 2021). The machine was equipped with
8 CPUs: 8 x 2.00 GHz, memory (RAM): 7.79 GB, local disk of 69.38GB.

The second resource used in the experiments described in this thesis was the 1000-Core
cluster consisting of 25 Nodes, each 40 CPU cores, 1 TiB RAM (Quanta QSSC-S4R Server
System).

Finally, author used some supporting IT infrastructure of the HPI Future SOC Lab. The
pipeline was developed using the Docker Registry at HPI at registry.fsoc.hpi.uni-potsdam.de.
Some initial exploration has also been done with the Machine Learning capabilities of SAP
HANA database management system. [67]. Author managed to connect to that database
management system using Python interface, but as per the prior exposure to Spark described
in Subsection 3.7.1, limited amounts of data generated when measuring the dynamics of
the visual system (spikes), a decision was not to load any data neither to SAP HANA, nor
to Spark. That was to avoid building a pipeline using a (proprietary) SAP or (more open)
Databricks (Spark) software, with an intention to refocus the efforts on setting up a more
universal simulation pipeline.

3.7.4 AWS Cloud Computing Services

Throughout the last three years Amazon Web Services (AWS) has remained the biggest
Infrastructure as a Service (IaaS) Public Cloud provider in the world, if measured by both
reported revenue and market share. The company achieved a revenue of $35.4 billion and
a market share of 38.9% last year. They were followed by Microsoft, Alibaba, Google
and Huawei, collectively amounting to the 80% of the cloud computing market globally
last year [80]. These numbers are significant, because AWS is the biggest, while, as the
report suggest “cloud-native becomes the primary architecture for any modern computing

registry.fsoc.hpi.uni-potsdam.de
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Fig. 3.5 Author’s Raspberry Pi 4 Model B single-board computer that was used in simulations,
and as part of Neural Simulation Cluster.
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Fig. 3.6 The cell membrane potential in the first 300 ms of the parallel test simulation of two
Hodgkin-Huxley neurons, executed on two nodes of Neural Simulation Cluster.
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workloads”. In the author’s view this should, and will affect the way large scale computer
simulations are performed in future. There might be no return to the large and expensive HPC
projects like the Blue Brain Project [155] described in Section 2.10, that simulated a single
neural column of 10000 neurons using 8000 cores of the IBM Blue Gene supercomputer
(that is 1.25 neuron per core).

The author of this PhD thesis provisioned several services to perform the containerised
execution of NSP in AWS, as presented in Figure 3.7. These services are documented
on AWS Cloud Products website3. They are: Amazon Elastic Container Service (ECS),
Amazon Elastic Compute Cloud (ECC), Amazon Elastic Load Balancing (ELB), whose task
definitions were used by Amazon ECS Cluster, AWS Secrets Manager, AWS CodePipeline,
AWS CodeBuild, AWS CodeDeploy, Amazon Elastic Container Registry (ECR), Amazon
CloudWatch, AWS Simple Cloud Storage (S3), AWS Identity and Access Management
(IAM), Amazon Virtual Private Cloud (VPC), and Amazon Route 53 (R53). All these services
were used to provision a physical Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz with 14
GB RAM that run each container using a task configured to use 1 CPU (task_cpu = 1024),
and 8 GB of RAM (task_memory = 8192). To summarise, author executed the simulations
on Amazon Elastic Compute Cloud (machines), using Amazon Elastic Container Service
(Docker), through Amazon Elastic Load Balancing (load balancing) and Amazon Elastic
Container Registry (Docker registry) in Amazon Virtual Private Cloud (networking).

All the AWS services were managed through Infrastructure as Code approach [136] with
Terraform v1.0.11. As a result, the whole configuration of the NSP cloud environment is
stored as Terraform code in the main NSP repository (nsp-code), under infra\core-infra sub-
folder for the VPC configuration, and under infra\nsp-lb-service for all the other associated
services. This configuration can be used as a reference point for any future deployments of
NSP by other members of scientific community.

3AWS Cloud Products website https://aws.amazon.com/products/

infra\core-infra
infra\nsp-lb-service
https://aws.amazon.com/products/
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Fig. 3.7 NSP architecture for a full public cloud (AWS) experiment execution (above), and
an on-premise execution (below).



Chapter 4

Experimental Work

4.1 Introduction

In the fourth chapter of this PhD dissertation the author describes his experimental work. The
chapter presents the computer simulations based on the cybernetic models and simulation
setups introduced in Chapter 3. We start with a presentation of how biological neuronal
networks respond to stimulation with random spike trains of the average rate of 200 Hz,
forming a shape of “0” on retinal cells, and how these signals are passed to the subsequent
parts of the RetNet(28x28,4) system having four Liquid State Machine columns. We follow
with the experiments on a RetNet(4x5,1) system having a variable size of LSM column. We
then report on how the LSM readout process has been constructed, what machine learning
algorithms were used in the readout’s training,and what evaluation metrics were selected.
Finally, author concludes with a description of detailed results for each algorithm evaluated.

The chapter is organised as follows. This Section 4.1 provides a discussion of this
chapter. Section 4.2 describes initial LSM experiments with RetNet(28x28,4), whereas
Section 4.3 focuses on measuring computational complexity of a single LSM column in
RetNet(4x5,1) model. Section 4.4 highlights experiments with RetNet(4x5,1). Section 4.5 de-
scribes measurement of Liquid State Machine Approximation Property using RetNet(5x8,1)
model. Section 4.5.1 explains how the LSM Readout Process was constructed, whereas its
Subsection 4.5.2 provides the overview of twelve machine learning algorithms used in the
readout layer’s training, so that our LSM could perform the desired visual task of viewing and
differentiating the three patterns of “0”, “A”, “1”. Subsection 4.5.3 presents all the experiment
evaluation metrics. Subsection 4.5.4 describes the detailed results of LightGBM algorithm.
Subsection 4.5.5 describes the detailed results of Gradient Boosted Trees. Subsection 4.5.6
describes the detailed results of XGBoost algorithm. Subsection 4.5.7 describes the detailed
results of Extra Trees algorithm. Subsection 4.5.8 describes the detailed results of Random
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Forest algorithm. Subsection 4.5.9 describes the detailed results of Logistic Regression fitted
with Max Entropy algorithm. Subsection 4.5.10 describes the detailed results of Logistic
Regression fitted with Stochastic Gradient Descent algorithm. Subsection 4.5.11 describes
the detailed results of Multi-layer Perceptron algorithm. Subsection 4.5.12 describes the
detailed results of LASSO-LARS algorithm. Subsection 4.5.13 describes the detailed results
of Support Vector Machines algorithm. Subsection 4.5.14 describes the detailed results
of Decision Tree algorithm. Subsection 4.5.15 describes the detailed results of AdaBoost
algorithm. Finally, Section 4.6 focuses on the summary of experimental work.

Overall, this chapter presents all the experimental results for the RetNet(4x8,1) and
RetNet(28x28,4) in a pattern recognition task. The key contribution is in the analysis of
different algorithms used for a supervised training of the Liquid State Machine’s readout, as
evaluated through all the key classification performance metrics.

4.2 Experiments with RetNet(28x28,4)

As described in Chapter 3 Author created the RetNet(28x28,4) system using 784 cells to
programmatically build the Retina, and 1024 cells to build each of the LSM’s 4 computational
columns. In contrast to the original Maass’s LSM using integrate and fire neurons, this
architecture was built of a more biologically realistic model of neural cells proposed by
Hodgkin-Huxley [107].

The RetNet(28x28,4) visual system was built using 4880 artificial neurons to process
input signals through a square-shaped grid of 28x28 pixels. The task in the initial experiment
was to stimulate the retinal cells with a pattern resembling the digit of 0. The input signal
(Fig. 3.1) was encoded in the Liquid state, and a unique pattern of spikes was observed in
each of four LSM columns, as visualised in Fig. 4.3 and 4.4, and measured in Table 4.1.

Fig. 4.1 and 4.2 present two views of the spiking response of our retina grid. Retinal
cells chosen for each pattern were stimulated with random spike trains with the average rate
of 200 Hz. The spikes marked in black were triggered by input signals simulating the pattern
of ’shorter part’ of the 0 shape (2∗12 stimulating spike trains), whereas the spikes marked
in blue were generated by the ’longer parts’ of the 0 shape stimulating our retina model
(2∗22 stimulating signals). This is important to observe, because it shows that our retina
response generates expected signals when stimulated, and these signals can be passed to the
subsequent parts of the system, as presented in Fig. 3.2.

Fig. 4.3 and 4.4 present cumulative spiking activity for each of the LSM columns. We
performed a 2D kernel density estimation to visualise the structure of cumulative spikes with
contour lines. We observe different dynamics of these spikes generated within each LSM
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Fig. 4.1 Number of spikes generated by Retina (Input) stimulation for a 2D (28x28) setup
within the simulation time of 1 second.
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Fig. 4.2 Cumulative number of Retina spikes in each ms of simulation reaching 40000 before
the end of simulation time of 1 second.
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Table 4.1 Euclidean distance between vectors of states of all four LSM columns in Ret-
Net(28x28,4).

Euclidean Distance Column 1 Column 2 Column 3 Column 4

Column 1 0 3.822376 4.308967 4.375152
Column 2 3.822376 0 1.556321 7.617872
Column 3 4.308967 1.556321 0 8.062106
Column 4 4.375152 7.617872 8.062106 0

column. Such behaviour is typical for LSMs, and can be measured for each column, using
their vectors of states.

Finally, Table 4.1 presents the matrix of euclidean distances between four vectors of states
of each LSM column during the time of experiment. This different pattern is an important
feature for the downstream processing of visual information because we confirm the liquid
computing abilities of neural microcircuits. We observe that the spiking pattern of each of
the four columns is slightly different, what is numerically expressed in the distance values
calculated for each pair of columns.

To summarise, the initial experiment simulated a single second of this simple visual
system in 20000 steps using 4 LSM columns. We measured that using the initial setup of
the system based on Google Colaboratory Cloud platform, and the simulation time step
of 0.00005 second, a single second of the simulation required 285 CPU seconds (4:45
min). Each LMS column generated on average 1.34 MB of spiking data, with retina adding
additional 113 KB. Apart from gathering the spiking times for each neuron, our system can
also measure cell membrane potential for each neural cell in the simulation. In this approach,
the amount of data generated increases approximately by 165 times, so the additional stream
generated in this way reaches 1 GB per second. The author has not noticed any unexpected
changes of the data stream over the time of the initial runs. The system was stable, able to
export output data into the file system, one file per retina and each LSM column.

4.3 Computational Complexity of Single LSM Column

This section attempts to explore the complexity of a single LSM column. At the outset,
the author wants to estimate how complex the computational complexity of a single LSM
column is. This is important because the human brain’s neocortex consists of an estimated
number of 2 to 4 million cortical columns, all working in parallel [218].

As per the discussion in Chapter 3.3, the computational complexity of a problem in
computer science is defined by the relationship of how the time needed to obtain a solution
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Fig. 4.3 Visual signal processing in the first and second LSM column of the RetNet(28x28,4)
system.
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Fig. 4.4 Visual signal processing in the third and fourth LSM column of the RetNet(28x28,4).
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Fig. 4.5 Computational complexity measured in CPU time consumed by RetNet(8x5,1)
model simulated with a gradually increasing number of HH neurons ranging from from 84 to
12044.

changes with the growth of the problem. In our case it is the CPU time, time spent on
executing the simulation code, without waiting time needed for its turn on the CPU, so “real”
net time required to simulate a single second of a single neural column; measured 58 times as
the complexity of the computational column grew, the column was simulated with a growing
number of HH neurons ranging from 84 to 12044, but stimulated with the same pattern of “0”.
This relationship is presented in Fig. 4.6, in terms of the spiking activity of such a growing
column; and in Fig. 4.5 in terms of its growing simulation time (CPU time).

Both measures, the CPU seconds and the number of spikes have been generated by the
RetNet(8x5,1) system using the tools presented in Chapter 5. This allowed for an easy
parametrisation of the computer simulation, and its multiple execution using the proposed
queuing mechanism. As a result the parabola visible in Fig. 4.5 was estimated using the
curve fitting method [93], and the author was able to approximate that the simulation of
our single LSM column is a polynomial time problem, that grows O(0.000679468 ∗ n2−
1.09334∗ x+716.782); so the problem won’t get harder by more than a factor of a number
times “n square”.
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Fig. 4.6 Total number of spikes in RetNet(8x5,1) model simulated with a gradually increasing
number of HH neurons ranging from 84 to 12044.

4.4 Experiments with RetNet(8x5,1)

4.4.1 Wide RetNet(8x5,1)

Author built and ran the initial building blocks for the larger LSM models. Initially the
small RetNet(5x8,1) blocks were tested using 2 LSM columns in total. These columns can
execute in parallel, without using the designated CPU steering commands that are provided
by GENESIS ("@1, @2").

A baseline model RetNet(28x28,4) takes about 8 mins 18 seconds to execute on author’s
own NSC (Raspberry Pi 4B) introduced in Section 5.3. Simulation of a single second of
the RetNet(5x8,1) block takes on average 1 min and 29 sec with HPI’s VM, and 2 mins 3
seconds on own NSC (Raspberry Pi 4B).

HPI’s Future SOC VM running on the HPI cluster is on average only 37.79% faster than
the own NSC (Raspberry Pi 4B). The detailed results are presented in Table 4.2.

This initial experiment measured that for a relatively simple base model containing a
single LSM hyper-column - RetNet(8x5,1), the difference in execution time is low, even
though it was built with multi-compartmental HH neurons (each of the cells contained 2
compartments and 3 channels). An additional simulation time of 34 seconds on Raspberry Pi
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Table 4.2 Summary of RetNet(8x5,1) and RetNet(28x28,4) simulations (1 second of LSM
system, 20000 steps). Execution in CPU seconds, memory in MBytes, HPI vs NSC.

Computer Model Pattern Neurons Execution Memory Spikes

HPI RetNet(8x5,1) 0 1040 70.25 s 3.48 (19.07) MB 20828
1 1040 71.23 s 3.48 (19.97) MB 20814

NSC RetNet(8x5,1) 0 1040 96.63 s 3.48 (679.81) MB 20822
1 1040 96.50 s 3.48 (903.52) MB 20820

HPI RetNet(28x28,4) 0 4880 345.09 s 16.42 (458.66) MB 98838
1 4880 308.67 s 16.42 (531.45) MB 98821

NSC RetNet(28x28,4) 0 4880 474.68 s 16.42 (549.70) MB 98829
1 4880 418.18 s 16.42 (499.99) MB 98806

(vs HPC cluster) seems negligible in an educational or research setting, if one just needs to
prototype a model.

Author built and ran 15 RetNet(8x5,1) blocks consisting of 15 LSM columns and 15600
biologically realistic, spiking HH neurons. The results show that the LSM model re-
act differently to 15 different input patterns that were numbers (“0” to “9”) and letters
(“P”, “J”, “A”, “T”, “K”). 225 simulations was executed using the Type 1 model. Author
measured the CPU Time and memory consumption for the models, as well as validated the
simulation setup. The aggregated results of the simulations are presented in Fig. 4.7, Fig. 4.8,
and Fig. 4.9. The final version of the RetNet(8x5,1) Type 1 model was evaluated using 4
versions of the liquid column:

1. 1040 neural cells placed in a rectangular cuboid of 8×5×25.

2. 2040 neural cells placed in a rectangular cuboid of 8×5×50.

3. 3040 neural cells placed in a rectangular cuboid of 8×5×75.

4. 4040 neural cells placed in a rectangular cuboid of 8×5×100.

The structure of synaptic connections in each column described above is the same. As
the column can have 4 sizes, assuming 15 stimulating patterns connected at the same time, it
is possible to evaluate the LSM system built of progressively 15600, 30600, 45600 or 60600
neurons.

4.4.2 Deep RetNet(8x5,1)

That version of the bio-inspired RetNet(8x5,1) model, built using 4880 Hodgkin-Huxley
neurons with two main components; an Input (acting as a retina of the system) and Liquid
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Fig. 4.7 The box plot presenting RetNet(8x5,1) simulation time at HPI vs NSC (RPi4B).
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Fig. 4.8 The box plot presenting RetNet(8x5,1) simulation time for different input patterns at
HPI infrastructure.
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Fig. 4.9 The box plot presenting RetNet(8x5,1) simulation time for different thread types on
HPI infrastructure.
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(acting as a visual cortex, built of a single LSM column) was used in the next set of simulations
at HPI and in AWS cloud to evaluate the NSP (presented in more details in Chapter 5).

In the simulated task, we used NSP to provide each model with three different stimulus
patterns of “0”, “A”,“1” (through different values of NSP $modelInput$ variable). This gave
us the opportunity to evaluate the LSM system built with an increasing number of neurons in
a standardised way. We simulated 1 second of this biological system (using the NSP variable
$simulationTime$) across different execution environments.

The approach allowed to focus on the much larger models, with progressively larger
liquid column. The structure of each column in the model is the same, but the size has been
adjusted through the NSP variable $columnDepth$, and built in six versions:

1. RetNet(8x5,1,25) with 1040 neural cells placed in a rectangular cuboid of 8×5×25.

2. RetNet(8x5,1,50) with 2040 neural cells placed in a rectangular cuboid of 8×5×50.

3. RetNet(8x5,1,75) with 3040 neural cells placed in a rectangular cuboid of 8×5×75.

4. RetNet(8x5,1,100) with 4040 neural cells placed in a rectangular cuboid of 8×5×100.

5. RetNet(8x5,1,200) with 8040 neural cells placed in a rectangular cuboid of 8×5×200.

6. RetNet(8x5,1,300) with 12040 neural cells placed in a rectangular cuboid of 8×5×300.

4.5 Evaluating Liquid State Machine in RetNet(8x5,1)

4.5.1 Constructing LSM Readout Process

This subsection describes the data acquisition and pre-processing process that were executed
to construct and evaluate readout for the LSM model. The data acquisition process is based on
GENESIS [24] routines designed to write data from within the simulation environment to the
operating system files. The event_tofile and spikehistory objects were used for recording spike
event times to a file named through NSP variables (described in more detail in Section 5.4.2).
The SPIKESAV E output routine was used. The details of that routine are described in
GENESIS Manual1. The simulation results are stored in .dat files, whereas any errors in .err,
and outputs in .out files (e.g. RetNet40-0-retina.dat, RetNet40-0-column.dat, RetNet40.err,
RetNet40.out).

Next, the data generated by the liquid column of the RetNet(8x5,1) model have been
prepossessed in Data Science Studio (DSS) [114] and divided into the training set and test

1GENESIS Manualhttp://genesis-sim.org/GENESIS/Hyperdoc/Manual-7.html.

http://genesis-sim.org/GENESIS/Hyperdoc/Manual-7.html
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Table 4.3 Neural Simulation Pipeline - Bare-bone Execution on HPI infrastructure.

On-Premise HPI
Model Neurons Pattern Spikes Execution [s] Memory [MB]

RetNet(8x5,1,25) 1040 0 20829 132.27 18.78

A 20827 136.13 37.97

1 20818 124.69 21.25

RetNet(8x5,1,50) 2040 0 61191 239.34 44.56

A 61236 205.75 52.51

1 61234 231.47 49.77

RetNet(8x5,1,75) 3040 0 121605 628.24 53.28

A 121646 536.32 65.27

1 121627 648.69 53.42

RetNet(8x5,1,100) 4040 0 202045 1269.55 88.81

A 202036 1269.12 94.99

1 202056 1321.30 72.24

RetNet(8x5,1,200) 8040 0 6512454 34082.88 1766.86

A 6512440 34065.61 1791.56

1 6568685 26548.51 1760.26

RetNet(8x5,1,300) 12040 0 14568366 102669.1 17482.09

A 14568498 97643.23 17582.11

1 14568473 101909.68 17169.67
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Table 4.4 Neural Simulation Pipeline - Containerised Execution on HPI infrastructure.

Containerised HPI
Model Neurons Pattern Spikes Execution [s] Memory [MB]

RetNet(8x5,1,25) 1040 0 20834 45.66 26.37

A 114427 185.05 46.51

1 114403 214.94 71

RetNet(8x5,1,50) 2040 0 61215 150.40 57.97

A 428368 1679.33 150.17

1 428500 1659.42 146.53

RetNet(8x5,1,75) 3040 0 121659 495.38 63.01

A 942366 3949.42 292.29

1 942452 3957.19 80.70

RetNet(8x5,1,100) 4040 0 202014 938.60 73.91

A 1656397 7253.15 139.56

1 1656444 7467.51 437.87

RetNet(8x5,1,200) 8040 0 6512411 33000.14 1766.57

A 6512452 33434.70 1766.35

1 6512401 33198.74 437.87

RetNet(8x5,1,300) 12040 0 14568503 87163.24 4745.92

A 14568712 86226.93 4810.72

1 14457211 87213.56 4756.54
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Table 4.5 Neural Simulation Pipeline - Containerised Execution on AWS Cloud Computing
infrastructure.

Containerised AWS
Model Neurons Pattern Spikes Execution [s] Memory [MB] Cost [USD]

RetNet(8x5,1,25) 1040 0 114431 253.14 67.84 0.02

A 114425 253.53 46.07 0.02

1 114407 89.81 67.24 0.01

RetNet(8x5,1,50) 2040 0 428380 427.58 128.9 0.10

A 428390 998.58 138.48 0.10

1 428454 980.13 130.53 0.09

RetNet(8x5,1,75) 3040 0 942445 1879.22 280.51 0.22

A 942371 2033.78 291.59 0.19

1 942416 1737.16 273.31 0.17

RetNet(8x5,1,100) 4040 0 1656346 3749.97 443.96 0.40

A 1656455 4104.38 436.08 0.39

1 1656388 3802.45 421.46 0.36

RetNet(8x5,1,200) 8040 0 6512417 16913.23 1788.44 1.62

A 6512400 16564.92 1757.01 1.58

1 6512453 16850.31 1818.64 1.61

RetNet(8x5,1,300) 12040 0 14568482 41814.32 17592.19 4.00

A 14568446 41916.18 17592.21 4.01

1 14568446 41824.63 17179.87 4.00
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Fig. 4.10 Model selection during the LSM readout prototyping stage.

set using the 80/20 principle. 80% of randomly selected records have been selected into
the training and testing set, whereas the remaining 20% become the validation set. The
whole process of model selection during the LSM readout prototyping stage is presented in
Fig. 4.10.

As mentioned in Subsection 2.8, the design of readout layer can be performed in three
steps:

1. Identification of the neurons in the liquid column that should form the inputs to the
readout layer.

2. Recording the time-varying states of the machine for different input patterns.

3. Applying a supervised learning algorithm for the pairs in order to train the readout
layer in such a way that its response maximises similarity to the desired output.

In case of this experimental stage of the thesis, all the neurons in the column were used,
and five numeric input features were derived from the dataset generated through simulation
of 1 second as the biological system, that was repeated 3 times. The sixth feature, that is an
input pattern (e.g. 0, A, 1), was defined for the simulation as an input parameter through NSP
variables described in Section 5.4.2. As a result the LSM generated a total of 11.8 MB of
spiking data points, that are organised in 273519 distinct spike observations, as per Fig. 4.10.

The numeric avg-std re-scaling has been performed prior to training using scikit-learn [1],
as there were large differences in the absolute values of the features in the dataset. Standard
re-scaling scales the feature to a standard deviation of 1 and a mean of 0 to improve model
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performance. This approach was not selected for algorithms that are based on decision trees,
as re-scaling has no effect on decision trees.

4.5.2 Machine Learning Algorithms

Author has evaluated twelve supervised learning algorithms to construct the optimal readout
process. The implementation of these algorithms comes from Scikit Learn [1], Xgboost [36]
and LightGBM [126]. There are: Light Gradient-boosting Machine (LightGBM), Gradient
Boosted Trees, eXtreme Gradient Boosting (XGBoost), Extra Trees, Random Forest, Logistic
Regression, Stochastic Gradient Descent (SGD), Multi-layer Perceptron (MLP), LASSO-
LARS, Support Vector Machines (SVM), Decision Tree, and AdaBoost.

Table 4.6 provides a total training time for each supervised learning algorithm. All
models have been trained using DSS2. The total training time includes the time needed for
the following steps: loading train set, loading test set, collecting statistics, pre-processing
train set, pre-processing test set, fitting the model, saving the model, scoring the modes. The
vast majority of time was spent on fitting each model; all the remaining tasks always took
approximately a second or less. The following subsection provides an overview of all the
experiment evaluation metrics.

4.5.3 Experiment Metrics

The problem that the LSM readout solves is classification. Although, the dataset described
in 4.5.1 is balanced, the classification will be evaluated through a few key, computed as
follows:

• Accuracy metric:

A =
T P+T N

N
, (4.1)

• Precision metric:
P =

T P
T P+FP

, (4.2)

• Recall (Sensitivity) metric:

R =
T P

T P+FN
, (4.3)

• F1 Score:
F1 = 2

π×ρ

π +ρ
(4.4)

2DSS at PJAIT: http://dataiku.pjwstk.edu.pl:11000/.

http://dataiku.pjwstk.edu.pl:11000/


92 Experimental Work

where
π =

T P
T P+FP

, (4.5)

ρ =
T P

T P+FN
. (4.6)

N is the number of observations, TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives and FN the number of false negatives. As
the algorithms selected for evaluation produce prediction probabilities, the Multi-class Area
under the ROC curve (AUC or MAUC) scores is also presented.

The first classification metric is Accuracy, that is a ratio of correctly predicted observations
to the total observations. Precision is the ratio of correctly predicted positive observations
to the total predicted positive observations. Recall indicates the ratio of correctly predicted
positive observations to the all observations in the actual class.

Finally, in author’s view the most important F1 Score, that is an error metric calculating
model performance using the harmonic mean of Precision and Recall for the minority positive
class. Importance of F1 Score is derived from fact that it returns accurate results for both
balanced and imbalanced datasets. F1 score can be interpreted as a single measure of overall
model performance ranging from 0 to 1, where 1 is the best result. In other words, F1 Score
indicates model’s balanced classification ability to capture both the positive cases (Recall),
while being accurate with the cases it does not capture (Precision). For the purpose of this
thesis the interpretation of F1 Score is as follows (1) > 0.9 Excellent (2) 0.8 - 0.9 Very good
(3) 0.5 - 0.8 Good, (4) < 0.5 Not good.

All the evaluation metrics that are reported in Table 4.6 were calculated using the 10-fold
Cross-Validation method [75] using sckit-learn [1, 180]. This method was selected to ensure
a proper quality of results for all the twelve classifiers reported in this chapter. As one can
see in Table 4.6 our LSM readout using LightGBM [126] algorithm consistently achieves
the best classification accuracy of 81% (the exact accuracy of 0.8096). For the current LSM
design, there are also two other methods that consistently achieve the results over 66% for the
three-class classification problem. These are Gradient Boosted Trees [73] and XGBoost [36]
methods (the exact accuracy of 0.6896 and 0.6653 respectively). The results in Table 4.6
have been ordered descending by the F1 Score, to highlight the overall best results in the top
rows of the table.

The subsequent subsections, from the Subsection 4.5.4 to 4.5.15 provide a deep-dive into
performance of each of the twelve algorithms evaluated, that is combined with an overview
of the parameters used to achieve these results, as well as a few additional figures. A single
figure that is presented for every algorithm is the Receiver Operating Characteristic (ROC)
curve [85]. It was done to allow for an easy (visual) comparison all the classification results.
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Table 4.6 Summary of LSM Readout classification performance for RetNet(5x8,1) seeing
’0’,’1’,’A’ after 10-fold cross-validation.

Algorithm Accuracy Precision Recall F1 Score ROC AUC Training [s]
LightGBM 0.8096 0.8099 0.8096 0.8095 0.9483 1082.6

Gradient Boosted Trees 0.6896 0.6911 0.6896 0.6900 0.8695 359.7

XGBoost 0.6653 0.6664 0.6658 0.6653 0.8533 655.2

Extra Trees 0.5061 0.5118 0.5066 0.5057 0.6946 124.1

Random Forest 0.4754 0.4787 0.4756 0.4751 0.6796 221.0

Logistic Regression 0.3563 0.3563 0.3566 0.3563 0.5293 52.3

SGD 0.3570 0.3574 0.3573 0.3551 0.5290 45.4

Multi-layer Perceptron 0.3618 0.3625 0.3610 0.3548 0.5364 125.7

LASSO-LARS 0.3551 0.3552 0.3543 0.3528 0.5294 531.8

SVM 0.3564 0.3591 0.3580 0.3489 0.5330 160978.8

Decision Tree 0.3819 0.4649 0.3813 0.3283 0.5590 21.7

AdaBoost 0.3708 0.3715 0.3703 0.3692 0.5456 118.6

The curve shows the true positive rate (Sensitivity) on the Y axis, against the false positive
rate (Specificity) on the X axis. The interpretation of the figure is that the "faster" the curve
climbs, the better a classifier is. On the other hand, the closer to the diagonal line the curve is,
the worse a classifier is. Such an interpretation of “steepness” of the ROC curves is coined,
because for a given classifier it is optimal to maximise the true positive rate, while minimising
the false positive rate. The Figures from 4.11b to 4.22b exhibit each ROC curve for each of
the LSM readout supervision methods presented in Table 4.6. As these ROC curves were
drawn for a multi-label classification task, it was is necessary to binarize the output, so that a
single ROC curve could be drawn by considering each element of the label indicator matrix
through micro-averaging, which gives equal weight to the classification of each label. For
the purpose of this thesis the interpretation of Multi-class Area Under the Curve is as follows
(1) > 0.9 Excellent (2) 0.8 - 0.9 Very good (3) 0.6 - 0.8 Good, (4) < 0.6 Not good.

To summarise, author decided to calculate and report the following classification met-
rics [143]: Accuracy, Precision, Recall, ROC - AUC Score, F1 Score; that were comple-
mented with the Log loss, Calibration loss and Hamming loss. All of them are reported in
the subsequent subsections from 4.5.4 to 4.5.15.
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Table 4.7 Model parameters and detailed performance metrics for LSM readout using Light-
GBM algorithm.

Parameter Value Metric Value
Booster gbdt Precision 0.8099 (± 0.0070)

Actual number of trees 76 Accuracy 0.8096 (± 0.0071)

Maximum number of leaves 31 Recall 0.8096 (± 0.0070)

Learning rate 0.2 ROC - MAUC Score 0.9483 (± 0.0023)

α (L1 regularisation) 0 F1 Score 0.8095 (± 0.0070)

λ (L2 regularisation) 0 Log loss 0.4564 (± 0.0083)

Minimal gain to perform a split on a leaf 0 Hamming loss 0.1904 (± 0.0071)

Min sum of instance weight in a child 0.001

Subsample ratio of the training instance 1

Fraction of columns in each tree 0.9

Table 4.8 Confusion matrices for LSM readout using LightGBM algorithm (% of predicted
classes vs. % of actual class).

Act.⧹Pred. 0 A 1 Act.⧹Pred. 0 A 1 Total
0 80% 7% 10% 0 83% 7% 10% 100%

A 9% 85% 12% A 10% 79% 12% 100%

1 10% 8% 79% 1 11% 8% 81% 100%

Total 100% 100% 100%

4.5.4 Detailed Results for LightGBM

The LightGBM readout was calculated using a tree-based gradient boosting library [126]
designed by Microsoft3 to be “distributed and efficient”. It provides three distributed learning
algorithms: data parallel, feature parallel, and voting parallel, and uses the leaf-wise tree
growth algorithm.

The calculated Accuracy is 0.8096 (81%), while the F1 Score is 0.8095 (± 0.0070), that
is a very good result. The calculated MAUC for the LightGBM LSM readout is 0.948 (±
0.002), which is an excellent result.

3LightGBM Documentation https://lightgbm.readthedocs.io/en/v3.3.2/.

https://lightgbm.readthedocs.io/en/v3.3.2/
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(a) LightGBM hyperparameter search pairwise dependency plots.

(b) LightGBM Receiver Operating Characteristic curve. The AUC for class ’0’ is 0.950.

Fig. 4.11 Additional performance and model details for LSM readout using LightGBM
algorithm.
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Table 4.9 Model parameters and detailed performance metrics for LSM readout using Gradi-
ent Boosted Trees algorithm.

Parameter Value Metric Value
Loss Deviance Precision 0.6911 (± 0.0152)

Feature sampling strategy Default (friedman_mse) Accuracy 0.6896 (± 0.0143)

Number of boosting stages 100 Recall 0.6896 (± 0.0141)

Eta (learning rate) 0.1 ROC - MAUC Score 0.8695 (± 0.0046)

Max trees depth 3 F1 Score 0.6897 (± 0.0145)

Minimum samples at leaf 1 Log loss 0.8334 (± 0.0045)

Hamming loss 0.3104 (± 0.0143)

Table 4.10 Confusion matrices for LSM readout using Gradient Boosted Trees algorithm (%
of predicted classes vs. % of actual class).

Act.⧹Pred. 0 A 1 Act.⧹Pred. 0 A 1 Total
0 67% 15% 14% 0 71% 16% 13% 100%

A 18% 69% 14% A 19% 68% 13% 100%

1 15% 16% 71% 1 16% 17% 67% 100%

Total 100% 100% 100%

4.5.5 Detailed Results for Gradient Boosted Trees

The Gradient boosted trees (GBT) readout was calculated using the GBT ensemble method
based on decision trees implemented in scikit-learn [180]. In this approach the trees are
added to the ensemble in a sequential way, with each tree attempting to improve the overall
classification performance of the model4.

The calculated Accuracy for the GBT readout is 0.6896 (69%), while the F1 Score is
0.6897 (± 0.0145), that is a good result. The calculated MAUC for the GBT LSM readout is
0.870 (± 0.005), which is a very good result.

4.5.6 Detailed Results for XGBoost

XGBoost is an advanced gradient boosted tree algorithm [36]. It supports parallel computa-
tions, regularisation, early stopping which makes it a fast, scalable and accurate algorithm,
that is also implemented as a package for several programming languages.

4Gradient Boosted Trees Documentation and Parameters https://scikit-learn.org/stable/
modules/ensemble.html.

https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/ensemble.html
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(a) Sample GBT giving prediction of 1.81 for spike_num > 1.50. Samples count 1599 (0.73%), class
’0’.

(b) Gradient Boosted Trees Receiver Operating Characteristic curve. The AUC for class ’0’ is 0.876.

Fig. 4.12 Additional details and model performance for LSM readout using Gradient Boosted
Trees algorithm.
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Table 4.11 Model parameters and detailed performance metrics for LSM readout using
XGBoost algorithm.

Parameter Value Metric Value
Booster gbtree Precision 0.6664 (± 0.0126)

Actual number of trees 53 Accuracy 0.6653 (± 0.0138)

Max trees depth 3 Recall 0.6658 (± 0.0134)

Eta (learning rate) 0.2 ROC - MAUC Score 0.8533 (± 0.0140)

α (L1 regularisation) 0 F1 Score 0.6653 (± 0.0140)

λ (L2 regularisation) 1 Log loss 0.8582 (± 0.0356)

γ (Min loss reduction to split a leaf) 0 Hamming loss 0.3347 (± 0.0138)

Min sum of instance weight in a child 1

Subsample ratio of the training instance 1

Fraction of columns in each tree 1

Replace missing values with NaN

The calculated Accuracy for the XGBoost readout is 0.6653 (67%), while the F1 Score
is 0.6653 (± 0.0140), that is a good result. The calculated MAUC for the XGBoost LSM
readout is 0.8533 (± 0.0140), which is a very good result.

Figure 4.13a presents the calibration loss of predicted probabilities for the class ’0’, so
the first of three classes evaluated by the algorithm. In this context the calibration indicates
the consistency between predicted probabilities and their real frequencies in the test dataset,
so that a perfectly calibrated readout will have a calibration curve equal to the diagonal line.
However, in real life scenarios the calibration curve is always distinct from the diagonal
line [19]. As the average distance between the curve and the diagonal line, averaged over the
test set, and weighted by the number of elements is treated as a measure of the quality of the
calibration our calibration line indicates the average calibration of the XGBoost algorithm5.

4.5.7 Detailed Results for Extra Trees

Extra Trees, similarly to Gradient Boosted Trees and Random Forests, are an ensemble
methods of Machine Learning. In contrast to other ensemble algorithms, apart from feature
sampling at each stage of splitting the tree, the method also samples random threshold at

5XGBoost Documentation and Parameters https://xgboost.readthedocs.io/en/stable/index.
html.

https://xgboost.readthedocs.io/en/stable/index.html
https://xgboost.readthedocs.io/en/stable/index.html
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(a) XGBoost calibration curve. The calibration loss for class ’0’ is 0.1037.

(b) XGBoost Receiver Operating Characteristic curve. The AUC for class ’0’ is 0.827.

Fig. 4.13 Additional model performance details for LSM readout using XGBoost algorithm.
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Table 4.12 Confusion matrices for LSM readout using XGBoost algorithm (% of predicted
classes vs. % of actual class).

Act.⧹Pred. 0 A 1 Act.⧹Pred. 0 A 1 Total
0 60% 17% 19% 0 66% 15% 19% 100%

A 24% 65% 18% A 25% 57% 18% 100%

1 16% 18% 64% 1 17% 17% 66% 100%

Total 100% 100% 100%

Table 4.13 Model parameters and detailed performance metrics for LSM readout using Extra
Trees algorithm.

Parameter Value Metric Value
Number of trees 100 Precision 0.5118 (± 0.0210)

Max trees depth 8 Accuracy 0.5061 (± 0.0200)

Min samples per leaf 1 Recall 0.5066 (± 0.0199)

Min samples to split 3 ROC - MAUC Score 0.6946 (± 0.0150)

Split quality criterion Gini F1 Score 0.5057 (± 0.0204)

Use bootstrap Yes Log loss 1.0607 (± 0.0034)

Feature sampling strategy auto Hamming loss 0.4939 (± 0.0200)

which to make the splits. This is because the additional randomness might improve the
generalisation capabilities of the model6.

The calculated Accuracy for the Extra Trees readout is 0.5061 (51%), while the F1 Score
is 0.5057 (± 0.0204), that is still a good result. The calculated MAUC for the Extra Trees
based LSM readout is 0.695 (± 0.015), which is a good result.

4.5.8 Detailed Results for Random Forest

Random Forest decision tree is a simple classification algorithm which creates a decision
tree in the way that each node of the decision tree includes a condition on one of the input
features7. Random Forests are considered to deliver good classification results, at the cost
of explainability of the model. As a result, figures like Fig. 4.15a presenting a sample tree

6Extra Trees Documentation and Parameters https://scikit-learn.org/stable/modules/
ensemble.html.

7Random Forest Documentation and Parameters https://scikit-learn.org/stable/modules/
ensemble.html.

https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/ensemble.html
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(a) Extra Trees calibration curve. The calibration loss for class ’0’ is 0.0449.

(b) Extra Trees Receiver Operating Characteristic curve. The AUC for class ’0’ is 0.695.

Fig. 4.14 Additional model performance details for LSM readout using Extra Trees algorithm.
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Table 4.14 Confusion matrices for LSM readout using Extra Trees algorithm (% of predicted
classes vs. % of actual class).

Act.⧹Pred. 0 A 1 Act.⧹Pred. 0 A 1 Total
0 47% 20% 27% 0 58% 17% 25% 100%

A 26% 58% 23% A 32% 48% 21% 100%

1 27% 22% 50% 1 34% 19% 47% 100%

Total 100% 100% 100%

Table 4.15 Model parameters and detailed performance metrics for LSM readout using
Random Forest algorithm.

Parameter Value Metric Value
Number of trees 100 Precision 0.4787 (± 0.0214)

Max trees depth 12 Accuracy 0.4754 (± 0.0205)

Min samples per leaf 10 Recall 0.4756 (± 0.0206)

Min samples to split 30 ROC - MAUC Score 0.6796 (± 0.0177)

Split quality criterion Gini F1 Score 0.4751 (± 0.0204)

Use bootstrap Yes Log loss 1.0289 (± 0.0057)

Feature sampling strategy auto Hamming loss 0.5246 (± 0.0205)

giving a prediction of ’1’ with 97.36% certainty, are often created. All the results for this
algorithm are based on the scikit-learn [180] implementation of the algorithm.

The Accuracy calculated for the Random Forest readout is 0.4754 (48%), while the F1
Score is 0.4751 (± 0.0204), that is not a good result. The MAUC for the Random Forest
LSM readout is 0.685 (± 0.018), which is still a good result.

4.5.9 Detailed Results for Logistic Regression Max Entropy

The Logistic Regression or Max Entropy readout algorithm was computed using the scikit-
learn [180] linear model. The algorithm calculates the target feature as a linear combination
of the input features8. The algorithm minimises either a logit or sigmoid function, to allow
for classification. As the algorithm is susceptible to over-fitting and sensitive input errors,
the regularisation on weights is often used [240].

8Logistic Regression Documentation and Parameters https://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.LogisticRegression.html.

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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(a) Sample Random Forest tree giving prediction of ’1’ (97.36%), ’0’ (2.64%), and A (0%) based on
decision rule spike_num > 1.50 and activation_value ∈ (0.99,1.00>. Samples count is 615 (0.45%).

(b) Random Forest Receiver Operating Characteristic curve. The AUC for class ’0’ is 0.685.

Fig. 4.15 Additional model details and performance for LSM readout using Random Forest
algorithm.
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Table 4.16 Confusion matrices for LSM readout using Random Forest algorithm (% of
predicted classes vs. % of actual class).

Act.⧹Pred. 0 A 1 Act.⧹Pred. 0 A 1 Total
0 45% 23% 27% 0 55% 20% 25% 100%

A 28% 53% 24% A 33% 44% 22% 100%

1 27% 24% 48% 1 34% 21% 46% 100%

Total 100% 100% 100%

Table 4.17 Model parameters and detailed performance metrics for LSM readout using
Logistic Regression algorithm.

Parameter Value Metric Value
Penalty L2 Precision 0.3563 (± 0.0045)

C 0.01 Accuracy 0.3563 (± 0.0046)

Recall 0.3566 (± 0.0045)

ROC - MAUC Score 0.5293 (± 0.0042)

F1 Score 0.3563 (± 0.0046)

Log loss 1.0962 (± 0.0008)

Hamming loss 0.6437 (± 0.0046)

The Accuracy calculated for the Logistic Regression readout is 0.3563 (36%), while
the F1 Score is 0.3563 (± 0.0046), that is not a good result. The MAUC for the Logistic
Regression LSM readout is 0.529 (± 0.004), which is not a good result.

4.5.10 Detailed Results for Logistic Regression Stochastic Gradient De-
scent

The Stochastic Gradient Descent (SGD) algorithm [20] is a simple and often efficient way
to fit linear classifiers under convex loss functions such as linear Support Vector Machines
or Logistic Regression. SGD is an optimisation technique, rather than a specific family of
machine learning models, that uses several parameters9. In this particular case our LSM
readout uses logistic regression, which is fitted using SGD instead of being trained by a
cross-entropy loss function and newton-cg solver; the case that is detailed in Subsection 4.5.9.
The results for SGD were computed using the scikit-learn [180] package. A basic hyper-

9SGD trained Logit Documentation and Parameters https://scikit-learn.org/stable/
modules/sgd.html.

https://scikit-learn.org/stable/modules/sgd.html
https://scikit-learn.org/stable/modules/sgd.html
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(a) Logistic Regression hyperparameter optimization. The model was trained using a grid search
on 5 combinations of parameter C: 0.01, 0.1, 1, 10, 100. The Plot presents averages across other
dimensions.

(b) Logistic Regression Receiver Operating Characteristic curve. The AUC for class ’0’ is 0.534.

Fig. 4.16 Additional model details and performance for LSM readout using Logistic Regres-
sion algorithm.



106 Experimental Work

Table 4.18 Confusion matrices for LSM readout using Logistic Regression algorithm (% of
predicted classes vs. % of actual class).

Act.⧹Pred. 0 A 1 Act.⧹Pred. 0 A 1 Total
0 36% 33% 31% 0 36% 32% 32% 100%

A 34% 35% 32% A 34% 33% 33% 100%

1 30% 32% 36% 1 31% 31% 37% 100%

Total 100% 100% 100%

Table 4.19 Model parameters and detailed performance metrics for LSM readout using
Stochastic Gradient Descent.

Parameter Value Metric Value
Loss function log Precision 0.3574 (± 0.0093)

Penalty l1 Accuracy 0.3570 (± 0.0084)

Stopping tolerance 0.001 Recall 0.3573 (± 0.0093)

Max iterations 1000 ROC - MAUC Score 0.5290 (± 0.0052)

Actual iterations 7 F1 Score 0.3551 (± 0.0078)

Log loss 1.0964 (± 0.0009)

Hamming loss 0.3551 (± 0.0078)

parameter optimisation was applied using a grid search on five combinations of α parameter,
as present in Fig. 4.17a.

The Accuracy calculated for the SGD trained logit readout is 0.3570 (36%), while the F1
Score is 0.3551 (± 0.0078), that is not a good result. The MAUC the Stochastic Gradient
Descent train logit LSM readout is 0.529 (± 0.005), which is not a good result.

4.5.11 Detailed Results for Multi-layer Perceptron

Artificial neural networks like Multi-layer Perceptron (MLP) are the class of ML models
which are inspired by the functioning of neurons. These networks are built with several so
called hidden layers of neurons, which receive inputs and transmit them to the next layer.
MLP mixes the inputs, allowing for complex decision scenarios, as well as using several
interesting and well documented gradient-descent procedures to adjust the weights [105].
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(a) Stochastic Gradient Descent hyperparameter optimization. This model was trained using a grid
search on 3 combinations of parameter alfa: 0.00001, 0.0001, 0.001. The Plot presents averages
across other dimensions.

(b) Stochastic Gradient Descent Receiver Operating Characteristic curve. The AUC for class ’0’ is
0.535.

Fig. 4.17 Additional model details and performance for LSM readout using Stochastic
Gradient Descent algorithm.
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Table 4.20 Confusion matrices for LSM readout using Stochastic Gradient Descent algorithm
(% of predicted classes vs. % of actual class).

Act.⧹Pred. 0 A 1 Act.⧹Pred. 0 A 1 Total
0 37% 33% 31% 0 28% 42% 30% 100%

A 34% 35% 33% A 26% 43% 31% 100%

1 30% 32% 36% 1 23% 41% 36% 100%

Total 100% 100% 100%

The results for MLP were computed using the scikit-learn [180] package, based on
several parameters10 listed in Table 4.21 and Adam optimiser [129].

A partial dependence graph presents the dependence of the predicted response on a
single feature. The value of that dependence for a given class indicates by how much the
log-probability for a class differs from the average class probability. As 10-fold cross-testing
was applied, the partial dependence was computed on the full dataset. As it can be seen on
Fig. 4.18a, the MLP readout is not particularly depended on activation_value feature.

The Accuracy calculated for the MLP-based LSM readout is 0.3618 (36%), while the F1
Score is 0.3548 (± 0.0092), that is not a good result. The MAUC for the MLP-based LSM
readout is 0.536 (± 0.008), which is not a good result.

4.5.12 Detailed Results for LASSO-LARS

The LASSO-LARS is a scikit-learn [180] computed linear Lasso model fit with the Least
Angle Regression (LARS). The algorithm, proposed in the 2003 by Bradley Efron et al. [64]
computes so called Lasso path for all values of the regularisation parameter using LARS
regression. It requires a number of passes on the data equal to the number of features. Its key
parameters is maximum f eatures, that indicates the number of kept features. The value of 0
will enable all features, so will force no regularisation11.

The Accuracy calculated for the LASSO-LARS LSM readout is 0.3551 (36%), while the
F1 Score is 0.3528 (± 0.0042), that is not a good result. The MAUC for the same readout is
0.530 (± 0.0041), which is not a good result.

10Multi-layer Perceptron Documentation and Parameters https://scikit-learn.org/stable/
modules/generated/sklearn.neural_network.MLPClassifier.html.

11LASSO-LARS Documentation and Parameters https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.LassoLars.html.

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLars.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLars.html
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Table 4.21 Model parameters and detailed performance metrics for LSM readout using
Multi-layer Perceptron.

Parameter Value Metric Value
Activation ReLU Precision 0.3625 (± 0.0103)

α 0.001 Accuracy 0.3618 (± 0.0079)

Max iterations 200 Recall 0.3618 (± 0.0079)

Convergence tolerance 0.0001 ROC - MAUC Score 0.5364 (± 0.0080)

Early stopping No F1 Score 0.3548 (± 0.0092)

Solver Adam Log loss 1.0947 (± 0.0018)

Shuffle data Yes Hamming loss 0.6382 (± 0.0079)

Intial Learning Rate 0.001

Automatic batching Yes

Batch size 200

Hidden layer sizes 100, 50, 25

β1 0.9

β2 0.999

ε 1e-8

Table 4.22 Confusion matrices for LSM readout using Multi-layer Perceptron (% of predicted
classes vs. % of actual class).

Act.⧹Pred. 0 A 1 Act.⧹Pred. 0 A 1 Total
0 37% 32% 33% 0 23% 54% 23% 100%

A 33% 36% 29% A 21% 60% 19% 100%

1 30% 31% 38% 1 20% 54% 27% 100%

Total 100% 100% 100%
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(a) Partial dependence graph for Multi-layer Perceptron readout. The figure presents 50 bins for
activation_value, computed on the 10000 random sample.

(b) Multi-layer Perceptron Receiver Operating Characteristic curve. The AUC for class ’0’ is 0.536.

Fig. 4.18 Additional model details and performance for LSM readout using Multi-layer
Perceptron.
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Table 4.23 Model parameters and detailed performance metrics for LSM readout using
LASSO-LARS algorithm.

Parameter Value Metric Value
Max number of features 0 Precision 0.3552 (± 0.0047)

Accuracy 0.3551 (± 0.0043)

Recall 0.3543 (± 0.0043)

ROC - MAUC Score 0.5294 (± 0.0041)

F1 Score 0.3528 (± 0.0042)

Log loss 1.0960 (± 0.0007)

Hamming loss 0.6449 (± 0.0043)

Table 4.24 Confusion matrices for LSM readout using LASSO-LARS algorithm (% of
predicted classes vs. % of actual class).

Act.⧹Pred. 0 A 1 Act.⧹Pred. 0 A 1 Total
0 36% 33% 31% 0 29% 41% 30% 100%

A 34% 35% 33% A 27% 42% 31% 100%

1 30% 32% 36% 1 24% 40% 35% 100%

Total 100% 100% 100%
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(a) Partial dependence graph for LASSO-LARS readout. The figure presents 50 bins for
activation_value, computed on the 10000 random sample.

(b) LASSO-LARS Receiver Operating Characteristic curve. The AUC for class ’0’ is 0.534.

Fig. 4.19 Additional model details and performance for LSM readout using LASSO-LARS
algorithm.
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Table 4.25 Model parameters and detailed performance metrics for LSM readout using
Support Vector Machine algorithm.

Parameter Value Metric Value
Kernel rbf Precision 0.3591 (± 0.0064)

Kernel coef scale Accuracy 0.3564 (± 0.0050)

C 1 Recall 0.3580 (± 0.0047)

Stopping tolerance 0.001 ROC - MAUC Score 0.5330 (± 0.0049)

Max iterations -1 F1 Score 0.3489 (± 0.0058)

Log loss 1.0955 (± 0.0009)

Hamming loss 0.6436 (± 0.0050)

Table 4.26 Confusion matrices for LSM readout using Support Vector Machine algorithm (%
of predicted classes vs. % of actual class).

Act.⧹Pred. 0 A 1 Act.⧹Pred. 0 A 1 Total
0 36% 31% 31% 0 53% 19% 28% 100%

A 33% 37% 32% A 49% 22% 29% 100%

1 31% 32% 36% 1 47% 20% 33% 100%

Total 100% 100% 100%

4.5.13 Detailed Results for Support Vector Machines

Support Vector Machines (SVM) are a type of supervised learning algorithms that can be
used for classification or regression tasks. The goal of an SVM is to find the best possible
hyperplane that can linearly separate a dataset into different classes. The hyperplane is
chosen so that it maximises the margin, or distance, between the nearest data points of
different classes. Once the hyperplane is chosen, new data points can be easily classified
by determining on which side of the hyperplane they fall. SVMs are universal, effective in
high-dimensional spaces and often used for text or image classification [190]. The calculation
of SVM LSM readout was performed with scikit-learn [180] package, using a number of
pre-selected parameters12.

The Accuracy calculated for the Support Vector Machines LSM readout is 0.3564 (36%),
while the F1 Score is 0.3589 (± 0.0058), that is not a good result. The MAUC for the same
readout is 0.5330 (± 0.0049), which is not a good result.

12Support Vector Machines Documentation and Parameters https://scikit-learn.org/stable/
modules/svm.html#support-vector-machine.

https://scikit-learn.org/stable/modules/svm.html##support-vector-machine
https://scikit-learn.org/stable/modules/svm.html##support-vector-machine
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(a) Partial dependence graph for Support Vector Machine readout. The figure presents 50 bins for
activation_value, computed on the 10000 random sample.

(b) Support Vector Machine Receiver Operating Characteristic curve. The AUC for class ’0’ is 0.533.

Fig. 4.20 Additional model details and performance for LSM readout using Support Vector
Machine algorithm.
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Table 4.27 Model parameters and detailed performance metrics for LSM readout using
Decision Tree classifier.

Parameter Value Metric Value
Max tree depth 5 Precision 0.4649 (± 0.0264)

Split criterion gini Accuracy 0.3819 (± 0.0070)

Min samples per leaf 1 Recall 0.3813 (± 0.0058)

Splitter best ROC - MAUC Score 0.5590 (± 0.0051)

F1 Score 0.3283 (± 0.0090)

Log loss 1.0620 (± 0.0050)

Hamming loss 0.6181 (± 0.0070)

4.5.14 Detailed Results for Decision Tree

A Decision Tree (DT) classifier works by constructing a tree-like model of decisions and
their possible consequences, including the predicted outcome for each possible decision.
The decision tree algorithm splits the training data into subsets based on the most important
attributes, and uses these splits to make predictions about the target variable for new data.
The calculation of the DT LSM readout was performed with scikit-learn [180] package.

The key parameters of a DT classifier [26] include the criterion used to split the data,
the maximum depth of the tree, the minimum number of samples required to split a node,
and the minimum number of samples required to be at a leaf node. The criterion determines
how the algorithm selects the most important attributes for each split, and can be either the
Gini index or the entropy. The maximum depth of the tree controls the complexity of the
model, and can be used to prevent overfitting. The minimum number of samples required
to split a node and the minimum number of samples required to be at a leaf node are used
to control the amount of data used to build the model, and can also help prevent overfitting.
These parameters can be tuned to improve the performance of the model on unseen data13.

The Accuracy calculated for the DT LSM readout is 0.3819 (38%), while the F1 Score is
0.3283 (± 0.0090), that is not a good result. The MAUC for the same readout is 0.5590 (±
0.0051), which is not a good result.

13Decision Trees Documentation and Parameters https://scikit-learn.org/stable/modules/
tree.html#decision-trees.

https://scikit-learn.org/stable/modules/tree.html##decision-trees
https://scikit-learn.org/stable/modules/tree.html##decision-trees
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Table 4.28 Confusion matrices for LSM readout using Decision Tree classifier (% of predicted
classes vs. % of actual class).

Act.⧹Pred. 0 A 1 Act.⧹Pred. 0 A 1 Total
0 37% 28% 24% 0 68% 30% 2% 100%

A 31% 40% 12% A 57% 42% 1% 100%

1 32% 31% 64% 1 60% 34% 7% 100%

Total 100% 100% 100%

(a) Sample Decision Tree readout. The rightmost leaf presents the prediction of target classes: ’0’
(100%), ’A’ and ’1’ (0%) using the decision rule activation_value > 0.99. Samples count 19 (0.01%).

(b) Decision Tree Receiver Operating Characteristic curve. The AUC for class ’0’ is 0.570.

Fig. 4.21 Additional model details and performance for LSM readout using Decision Tree
algorithm.
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Table 4.29 Model parameters and detailed performance metrics for LSM readout using
AdaBoost algorithm.

Parameter Value Metric Value
Estimators 20 Precision 0.3715 (± 0.0061)

Accuracy 0.3708 (± 0.0052)

Recall 0.3703 (± 0.0056)

ROC - MAUC Score 0.5456 (± 0.0092)

F1 Score 0.3692 (± 0.0059)

Log loss 1.0979 (± 0.0003)

Hamming loss 0.6292 (± 0.0052)

Table 4.30 Confusion matrices for LSM readout using AdaBoost algorithm (% of predicted
classes vs. % of actual class).

Act.⧹Pred. 0 A 1 Act.⧹Pred. 0 A 1 Total
0 37% 32% 31% 0 35% 40% 28% 100%

A 33% 37% 30% A 31% 45% 29% 100%

1 30% 31% 39% 1 27% 40% 33% 100%

Total 100% 100% 100%

4.5.15 Detailed Results for AdaBoost Classifier

AdaBoost, short for “Adaptive Boosting” is a type of ensemble learning algorithm that can
be used for classification or regression tasks [72]. It combines multiple weak learners to
create a strong learner that can make accurate predictions. A weak learner is a model that is
only slightly better than random guessing, while a strong learner is a model that has a low
error rate. AdaBoost works by weighting the training data points and iteratively training
the weak learners on different subsets of the data. The weak learners are then combined to
form a final strong learner, which makes predictions by taking a weighted majority vote of
the weak learners. This LSM readout uses the scikit-learn [180] implementation known as
AdaBoost-SAMME [95] with 20 estimators.

The Accuracy calculated for the AdaBoost LSM readout is 0.3708 (37%), while the F1
Score is 0.3692 (± 0.0059), that is not a good result. The MAUC for AdaBoost LSM readout
is 0.546 (± 0.009), which is not a good result.
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(a) Partial dependence graph for AdaBoost readout. The figure presents 50 bins for activation_value,
computed on the 10000 random sample.

(b) AdaBoost Receiver Operating Characteristic curve. The AUC for class ’0’ is 0.552.

Fig. 4.22 Additional model details and performance for LSM readout using AdaBoost
algorithm.
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4.6 Experimental Summary

In this experimental chapter, author focused, among some other introductory experiments, the
performance of twelve machine learning algorithms used in the training of own LSM model
RetNet(5x8,1) for the classification task differentiating 3 input patterns consisting of the
numbers (“0”, “1”) and a letter (“A”). The algorithms evaluated in detail include LightGBM,
Gradient Boosted Trees, XGBoost, Extra Trees, Random Forest, Logistic Regression, SGD,
Multi-layer Perceptron, LASSO-LARS, SVM, Decision Tree, and AdaBoost.

The dataset with labelled samples was used, and as described in Subsection 4.5.1, a
10-fold cross-validation was performed to evaluate the classification accuracy, precision,
recall, F1 score, ROC AUC, as well as the training time of each algorithm.

The results showed that the best performing algorithms in terms of accuracy were
LightGBM (81%), with Gradient Boosted Trees, and XGBoost, all of which achieved over
67% accuracy. Random Forest and Extra Trees also performed relatively well, achieving
accuracies of around 50%. Logistic Regression, SGD, Multi-layer Perceptron, LASSO-
LARS, SVM, and Decision Tree had lower accuracy, ranging from 36% to 38%, with the
SVM, basic Decision Trees and AdaBoost being the worst performers.

In terms of training time, the fastest algorithms were Decision Trees, SGD, and Logistic
Regression (less than 1 minute), while the slowest were SVM (44 hours), LightGBM (18
minutes), and XGBoost (11 minutes).

Overall, the results suggest that LightGBM, Gradient Boosted Trees, and XGBoost are
good choices for this LSM classification task, with LightGBM being the most accurate (81%
and 18 minutes of training), while Gradient Boosted Trees being also accurate, and relatively
fast (68% and a three times smaller training time of 6 minutes).





Chapter 5

Neural Simulation Pipeline

5.1 Introduction

In the fifth chapter of this PhD dissertation the author describes the details of Neural
Simulation Pipeline (NSP). The chapter explains the purpose and architecture of the NSP,
as well as its limitations. We start with a description of why prototyping with Single Board
Computer Clusters is a good idea, and we introduce some details about the Neural Simulation
Cluster (NSC). We continue with the introduction of Neural Simulation Pipeline that runs our
selected simulation engine (GENESIS). We follow with a characterisation of the pipeline, its
components, architecture, scripts, as well as the different aspects of Docker containerisation.
Finally, author concludes with a description of NSP’s limitations and general challenges.

The chapter is organised as follows. This Section 5.1 provides a discussion of this
chapter. Section 5.2 explains why prototyping with Single Board Computer Clusters is
important for neural computations, whereas Section 5.3 summarises how Neural Simulations
Cluster was built. Section 5.4 introduces Neural Simulation Pipeline. Subsection 5.4.1
describes the components of Neural Simulation Pipeline. Subsection 5.4.2 explains the
architecture of the pipeline, whereas Subsection 5.4.3 focuses on the containerisation with
Docker. Subsection 5.4.4 presents key elements of the Docker architecture. Subsection 5.4.5
describes kernel internals, while Subsection 5.4.6 focuses on Docker Engine and Neural
Simulation Pipeline’s scripts. Finally, Section 5.5 describes the results of experimental
evaluation of Neural Simulation Pipeline, while Section 5.6 highlights the key limitations of
the solution.

Overall, this chapter presents the details about Neural Simulation Pipeline and Neural
Simulations Cluster, that there proposed to lower the entry barriers to the simulation of brain
networks.
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5.2 Prototyping with Single Board Computer Clusters

Single Board Computer Clusters (SBCC) are increasingly popular, as they provide an
inexpensive alternative to traditional large scale HPC clusters. The large systems are often in
high demand, and it’s often difficult to book cluster time. This new class of tiny, low-cost
computers are used in a number of ways. As newer and more capable boards are frequently
released, these SBCCs are now used not only to build clusters for educational purposes,
but also as a lower cost test environments for the new data centre technologies e.g. high
core-density architectures [124].

These clusters are becoming increasingly popular and powerful. In 2018 Linux.com [34]
reviewed the new projects, and concluded that on most SBC clusters are between 5 to 25
boards. A typical project of this type, as mentioned in the SBCC review [34] was Balena’s
Beast v21. It is a testing and demo rig built of 144 RPi nodes. The system’s weight is 150 kg,
measuring almost 2 meters.

The most important SBCC projects worldwide was deployed to Los Alamos National
Laboratory. It was based on 750 RPi nodes encapsulated into five rack-mount cluster
modules2, each containing 150 quad-core ARM processors. This gave Los Alamos HPC
software developers access to a 3,000-core cluster3 for a fraction of cost needed to build
a proper petascale development environment. The alternative would cost a quarter billion
dollars and use 25 megawatts of electricity, so the machine is now increasing to 4,000-cores.

Although research centres and universities around the world have developed SBCC for
research into parallel computing, deep learning, medical research, weather simulations,
crypto-currencies mining, software-defined networks, distributed storage, redundancy or to
simulate massive Internet of Things (IoT) networks for a couple of years now, the interest on
the commercial IT vendors’ side was a bit smaller.

This is changing, as since 2019 even leading IT vendors like Oracle started using and
promoting SBC clusters. A few projects from Oracle touched upon building so called multi-
purpose "supercomputers" [168]. A good example of that was The Oracle Raspberry Pi
Supercomputer Project4, built of 1060 RPi SBCs running Oracle Linux and Java to “help
with prototyping, and open embedded computing to a wide audience”. The machine was
built of 2 rack units (RU) containing 21 Raspberry Pi 3B+ nodes each, that had their carriers

1Balena’s Beast RPi Project https://www.balena.io/blog/the-evolution-of-the-beast-continues/
2Raspberry Pi Newsroom https://www.raspberrypi.com/news/

raspberry-pi-clusters-come-of-age/
3Los Alamos RPi Supercomputing Project https://top500.org/news/

lanl-turns-to-raspberry-pi-for-supercomputing-solution/
4Oracle Raspberry Pi Supercomputer https://www.servethehome.com/

oracle-shows-1060-raspberry-pi-supercomputer-at-oow/

https://www.balena.io/blog/the-evolution-of-the-beast-continues/
https://www.raspberrypi.com/news/raspberry-pi-clusters-come-of-age/
https://www.raspberrypi.com/news/raspberry-pi-clusters-come-of-age/
https://top500.org/news/lanl-turns-to-raspberry-pi-for-supercomputing-solution/
https://top500.org/news/lanl-turns-to-raspberry-pi-for-supercomputing-solution/
https://www.servethehome.com/oracle-shows-1060-raspberry-pi-supercomputer-at-oow/
https://www.servethehome.com/oracle-shows-1060-raspberry-pi-supercomputer-at-oow/
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3D printed. Each individual Oracle cluster node was connected through the 48-port Ubiquiti
UniFi switches with SFP+ 10 Gb Ethernet cables. Both clusters are presented in Fig. 5.1

However, in any recent SBCC reviews author has not found an indication of any such
project being specifically focused on simulating cybernetic models; neither in the area of
research, nor even in teaching neuroinformatics, biomedical engineering or computational
neuroscience. This might be because the scientific community as a whole still does not really
consider SBCC to be a practical tool for performing computer simulations due to its low
compute performance offered. This notion is changing. In 2020 Bastford et al. [13] showed
that the performance improvements of SBC mean that “for the first time SBC clusters have
moved from being a curiosity to a potentially useful technology”.

These SBCC systems typically use the same MPI library [77] that is installed in HPC
environments. The library is used as an interface for exchanging messages between comput-
ing nodes to deploy a parallel programs across distributed memory. Although SBC clusters
are not as computationally powerful as HPC clusters, author believes that these systems
can still play an important role in neural simulations. As described in Chapter 1.4 and 2.10
neural simulations require not only the top performance, but also the scale provided by a
combination of separate cores running in parallel.

As mentioned by Johnston et. al [124], in the era of IoT the computer architectures
“tend to move away from a centralised compute resource, to an architecture where the
computational power is pushed out closer to the edge”. Authors suggest that the two main
advantages of the SBCC in this environment are (1) their low power consumption and (2)
size. In addition to that, these SBCCs can be flexibly powered on e.g. only when certain
computational resources are needed, so that they can both be energy efficient, and cope
with peak computational demands resulting e.g. from bursting of audio, video or seismic
data processing based on trigger events. The authors foresee new, even more powerful and
specialised SBCCs to appear in the upcoming years. There are four key reasons why a
specialised cluster, built of SBCs could be useful:

• Cost-effectiveness - SBCs are generally much cheaper than traditional computers,
making it more cost-effective to build such a cluster of them.

• Portability - SBCs are small and lightweight, which makes them easy to transport
and set up in different locations. This could be very useful in dialectics and for
demonstrations, as such a cluster can easily be used in a classroom setting.

• Power efficiency - SBCs are also known for their low power consumption, which
makes them more energy-efficient than traditional computers. This is important for
neural simulation, which can be computationally intensive and require a lot of power.
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(a) Oracle Raspberry Pi Supercomputer built of 1060 Raspberry Pi 3B+ computers.

(b) A single node of Los Alamos National Laboratory’s 3000 Raspberry Pi cluster.

Fig. 5.1 Two exemplary SBCC Cluster projects: HPC development environment for Los
Alamos National Laboratory, as well as an Oracle Raspberry Pi Supercomputer presented at
Oracle OpenWorld in 2019 [34].
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• Scalability - It is easy to add more SBCs to the cluster as the need for more compu-
tational power grows. This allows the cluster to scale up as needed, making it more
flexible and adaptable.

Overall, the author of this PhD thesis thinks that building a specialised SBC cluster
focused on neural simulation can be a cost-effective, energy-efficient, portable, and scalable
way to perform simulation tasks.

5.3 Neural Simulation Cluster

As mentioned in the previous Section 5.2, there are a few reasons why building a specialised
cluster of SBCs could be useful in designing, developing and prototyping large neural
simulations of brain networks. This section introduces the key design considerations and
system components of the specialised SBCC called Neural Simulations Cluster (NSC).

When designing the NSC for a home environment, author considered several factors such
as power consumption, space, access to internet and networking, cooling, noise, and overall
cost to ensure that such a cluster could be built with a limited budget, and used effectively in
author’s home environment. The design had to be simple and flexible. Fig. 5.2 presents the
result of these considerations, a level design diagram of this machine, that was used for all
the prototyping needed for this PhD thesis in author’s home environment. The cluster was
also used to execute and evaluate Neural Simulation Pipeline (NSP).

All the technical details related to building the NSC have been gathered in the Appendix B
of this thesis. The author selected a single four-core Raspberry Pi 4 Model B board, marked
in blue on the Fig. 5.2 (a full specification of the board in Appendix B.1), and the three
hexa-Core ROCKPro64 boards, marked in green on the Fig. 5.2 (a full specification of the
board in Appendix B.2), both based on the same ARM64 architecture. All boards of the
cluster have been connected using a Gigabit Ethernet switch. The SBC boards were selected
and procured not without challenges, as described in Appendix “Building Neural Simulations
Cluster” B.1.

The RPi board was selected as a control node of the cluster, due to its out-of-the box
connectivity using a DualBand WiFi (2,4 GHz and 5 GHz), as well as the Bluetooth 5.
Moreover, in author’s view the quad-core Broadcom BCM2711 ARM-8 Cortex-A72 CPU
running at 1.5 GHz offers a satisfactory performance for prototyping parallel situations.

On the other hand, the three RPr boards, each equipped with a Rockchip RK3399
(quad-core ARM Cortex A53 CPU running at 1.4 GHz, and dual-core ARM-8 Cortex-A72
running at 1.8 GHz), offer 18 additional cores to enhance performance of prototyping more
complex (e.g. distributed) simulations. Nevertheless, as per the initial tests in author’s home



126 Neural Simulation Pipeline

Fig. 5.2 High Level Design Diagram for Author’s Neural Simulations Cluster.

environment, this additional computing power is available not without its disadvantages. The
RPr board generate noticeably more heat, and in contrast to the RPi, they do not run in a
stable way without an active cooling system.

The result configuration of NSC is therefore a hybrid of “a silent” RPi, perfect for author’s
home environment, and “a noisy” (due to a case fan) ROCKPro configuration, that could
however be switched off easily when not needed for any simulations. This aspect impacted
the selection of the cluster case (PicoCluster), and its modification for the RPi, as presented
in Fig. 5.4. Author assembled all the hardware elements from the SBC kit described in
Appendix B.1.1. The complete, working NSC system is presented in Fig. 5.3.

As per the bill of materials presented in Appendix B.1, the total cost of NSC was PLN
4492.44 only. The configuration proposed allows for prototyping both the parallel, and
distributed simulations.

The system uses five NSC scripts that facilitate some standard operations on the cluster,
all gathered below in this Subsection 5.3.

Neural Simulation Cluster Scripts

1. testNscNodes.sh - Bash script that performs the uptime and df -h commands on each
node of the cluster to validate if that node is up and running.
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(a) Neural Simulation Cluster, room light on.

(b) Neural Simulation Cluster, room light off.

Fig. 5.3 Photos of the assembled Neural Simulations Cluster in author’s home environment.
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Fig. 5.4 Technical drawing of Neural Simulation Cluster’s top cover modification.
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• Inputs: N/A

• Outputs:

(a) Node’s up-time, number of users, and system load summary sent to standard
output.

(b) Node’s amount of disk space available on the file system sent to standard
output.

2. stopNscNodes.sh - Bash script that shuts down all of the NSC nodes. The script needs
to be run before turning off and unplugging the cluster to avoid a high risk of corrupting
the Micro SD cards.

• Inputs: N/A.

• Outputs:

(a) NSC is ready to be switched off (using the power switch).

3. restartNscNodes.sh - Bash script that restarts all the nodes of NSC.

• Inputs: N/A.

• Outputs:

(a) NSC restarted.

4. resizeNscNodes.sh - Bash script that resizes the root file system of the NSC node to be
of a size matching the desired micro SD card. This allows using standard operating
system and application images. The underlying resizeNscFs.sh script needs sudo
privileges to execute; it’s based on the best practice provided by the supplier of cluster
kit [33].

• Inputs:

(a) Desired root file system size.

• Outputs:

(a) Root file system resized.

5. genNscKeys.sh - Bash script that generates the SSH key for the control node. This key
has to be copied to all other nodes in the cluster, that are added to the known_hosts file.

• Inputs: N/A.

• Outputs:
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(a) NSC’s SSH identification is generated and saved to the home directory
in /.ssh/id_rsa.

(b) NSC’s SSH public key is generated and saved to the home directory in /.ssh/id_rsa.pub.

5.4 Neural Simulations Pipeline

5.4.1 Components

As already mentioned building, testing and deploying cybernetic models often requires
different software libraries as dependencies, and the ability to consume significant amounts
of parallel or distributed computing power to speed up the long running computations. This
is especially visible when developing larger, and more complex scripts that research human
brain elements through long running simulations.

Author believes that the resolution of problem of building, testing and deploying cyber-
netic models, as well as their different software dependencies could by facilitated by using
Docker [162]. Docker, that is described in Sections 5.4.3, 5.4.4, 5.4.5 and 5.4.6 is the most
popular container platform; as suggested in the recent IDC’s white paper [40], it has already
attracted “a significant amount of industry recognition”, and it has the opportunity to “define
the road map for all container platforms”. It also has a potential to become a key component
of “all the enterprise IT environments globally”, due to its operating system neutrality. The
same report mentions that “the container revolution is under way”, with a forecast of 1.8
billion enterprise container instances deployed by the end of 2021.

The complexity not only creates entry barriers for people, who want to start with brain
simulations, but it can also impact smaller research or clinical centres working on brain
research, that may be challenged by the technical issues and multiple resources required
to implement the suitable pipelines in practice. This thesis presents a case study on how
such a framework, using GENESIS simulator can be applied to brain simulations as a
Neural Simulations Pipeline (NSP). The subsection also discusses the cloud-based elements,
automation, testing and deployment resources available to researchers.

One of the practices used in modern software development is CI/CD. This approach
focuses on automating the development cycle to reduce the likelihood of accidental human
error in the process, as well as to save time through [199]:

• Enforcing the preparation of tests at multiple levels.

• Enforcing a regular execution of these tests to give developers, as well as the wider
team an immediate feedback on the progress.
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• Automating the testing through a standard process.

• Automating the deployment to production itself.

As a result, in a common scenario, thanks to the ability of seeing that a feature that has
just been added breaks the whole build process, the bug can be fixed immediately, without
bringing any new risk to the subsequent elements of the development cycle. If CI/CD is
successfully used by the development teams, and a pipeline to automate the process is fully
introduced, both time to market and human interactions can be reduced.

The following sections will introduce the architecture of Neural Simulation Pipeline
(NSP), that automates some repetitive tasks in developing cybernetic modes and setting up
experiments. The pipeline was developed with Bash [185].

NSP manages experiments and allows them to be saved and defined for different simu-
lation engines in a unified way. The framework allows for the queue of experiments to be
managed centrally, regardless of which hardware platform they are running on, in particular
whether it is a Docker container in the cloud, or running on-premise. This approach also
enables faster analysis of experimental data, as (1) all the experiment results are centrally
stored and (2) the experiment data is partially pre-processed for further analysis, by aggre-
gating the results together with the statistics on the execution environment (e.g. experiment
run-times, detailed information about CPUs, memory and operating system processes).

5.4.2 Architecture

The high level design diagram of Neural Simulation Pipeline is presented in Figure 5.5.
Different components of NSP connect to the AWS cloud via the AWS CLI (AWS Command
Line Interface); sending requests to the AWS services by using HTTPS on TCP port 443.
For security reasons we propose to create at least two types of user accounts with AWS IAM
Service: an account for a user persona, focused on simulation design and execution (the data),
and a separate one for a developer and maintainer persona, focused on the development
of simulation models and administration of the pipeline through the code. We propose that
these two different types of personas interact with the system via different interfaces:

• A user persona, via NSP scripts described in Table 5.1.

• A developer and maintainer persona, via Git client (code), AWS CLI and AWS
Management Console (actions)5.

5AWS Cloud Products website https://aws.amazon.com/products/

https://aws.amazon.com/products/
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Fig. 5.5 Schematic diagram of Neural Simulation Pipeline showing how the pipeline is
managed across the different components. Different types of users interact with the system
via different interfaces.

Fig. 5.6 Schematic diagram of Neural Simulation Pipeline showing a user workflow. This
persona interact with the system via NSP scripts.
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Fig. 5.7 Schematic diagram of Neural Simulation Pipeline showing a developer and main-
tainer workflow. This persona interact with the system via Git client (code), AWS CLI and
AWS Management Console.

Figures 5.6 and 5.7 illustrate an architectural blueprint of Neural Simulations Pipeline.
They explain how different elements of the pipeline run, and interact with the two categories
of the users. The first, Figure 5.6 focuses on a user workflow, whereas Figure 5.7 highlights
a developer and maintainer workflow; explaining what the key actions are, and if they are
performed by the users or by the pipeline itself.

A user workflow in Figure 5.6 presents all the key user interactions with the NSP through
solid lines and straight arrows. These key actions are: installing the software pre-requisites,
downloading our NSP scripts, pulling our NSP Docker image from the DockerHub registry,
starting a local container, defining a local or remote simulation queue, as well as monitoring
the status of execution, and finally downloading the simulation results. After all the local
simulations are finished it is a good practice is to stop the container to release system
resources. The user workflow is supported by NSP User Scripts described individually in
Subsection 5.4.2.

However, if a remote cloud-based execution is attempted, the NSP Docker image from
the DockerHub is not needed. The pipeline provides the automated build and management of
NSP image through a native Amazon ECR service, what guarantees the optimal performance
and connectivity to other AWS services. All the repetitive actions related to data movement
to/from a NSP container have been automated through NSP Container Scripts, described
individually in Subsection 5.4.7; the Figure 5.6 shows these actions with dotted lines. The
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figure also presents two simulations queues available in NSP (localSimulationQueue.nsp or
remoteSimulationQueue.nsp, in yellow), with the local queue being active since the local
container start, and the remote queue being checked for the simulation tasks in a definable
interval.

Figure 5.7 shows key actions performed in a developer and maintainer workflow. The
persona configures and operates the cloud-based execution environment. Our AWS NSP
infrastructure is created on-demand via Terraform [30] using IaC approach. The Terraform
configuration covers all the required services incl. the network components of VPC, Amazon
Elastic Container Service cluster setup and the configuration of AWS CodePipeline, using
AWS CodeBuild and AWS CodeDeploy. The AWS CodePipeline task is triggered automati-
cally by a commit done to the ’main’ branch of nsp-code repository. The AWS CodePipeline
downloads the nsp-code repository from the of ’main’ branch, and runs the AWS build task
that executes Docker commands from the Dockerfile defined in the repository. As a result,
the new NSP Docker image is created and pushed into the Amazon Elastic Container registry.

Figure 3.7 complements the architectural overview with a list of services needed to
execute the simulations either (1) through the public cloud (AWS), or (2) using on-premise
infrastructure. In both use cases, we adopt a central storage service (Amazon S3). That
storage infrastructure holds:

• The simulation data (understood as both the input parameters, and the results of
simulations).

• The model’s source code, to reference the exact version of the simulation to the results.

• The task queue for simulations, that are executed by Docker containers.

• Supplemental experimental data incl. environment statistics, and cost reports.

Each type of execution requires provisioning a different set of services:

1. Cloud execution (upper part of Figure 3.7) - in this use case, we are using stan-
dard AWS services, allowing for an automated build of the Docker image (based on
the Dockerfile, defining the compilation and installation steps of all the necessary
libraries, and software components; file available in the main nsp-code repository).
It provisions AWS CodePipeline, AWS CodeBuild, CodeDeploy, that produces the
container image available in Amazon Elastic Container Registry. The container im-
age is maintained through Amazon ECR service, with individual containers being
managed through AWS Fargate engine. All the logs from simulation processing, as
well as from the containers and the pipeline, are stored in AWS CloudWatch. Af-
ter NSP is configured in the AWS cloud, the simulations can be run through AWS
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containers using the remote simulation queue, that is defined as a text file at s3://nsp-
project/requests/remoteSimulationQueue.nsp. This queue, when populated with a list
of simulations, will be executed by AWS containers.

2. On-premise execution (lower part of Figure 3.7) - in this use case we execute simula-
tions on own, or shared computer such as a laptop, workstation, or a computational
cluster. As a result a local Docker client needs to be installed, and a public DockerHub
service can be used to download our NSP image6 containing the latest, pre-configured
version of GENESIS simulation engine.

There are three functional components of NSP: (1) simulation preparation, (2) simulation
execution and (3) simulation post-processing. The preparation component manages the
simulation’s input data into a format suitable for the simulation, while the execution module
performs the actual simulation execution using a selected engine. The current version of NSP
also allows to select either the standard or parallel version of GENESIS simulation engine.
The selection is performed via a parameter of runSim.sh script; with value parallelMode = 1
indicating a parallel run. Finally, the post-processing module facilitates the analysis of output
data, and generates the final results for a given simulation.

These components are built around two types of scripts. These are the container
scripts, automating the simulation tasks within the application container, and the user scripts,
responsible for the interaction with pipeline’s end-user. Both types of scripts are summarised
in Table 5.1 and described in Subsection 5.4.2 (user scripts) and Subsection 5.4.7 (container
scripts). All the NSP scripts are installed automatically with our Docker image.

1. Developer creates new simulations scripts using GENESIS object model and program-
ming syntax that are similar to these from object-oriented programming languages.
New script file with the simulation code is created, a code change is committed to the
source control repository.

2. Script buildNspServerImage.sh picks up the commits and triggers a new build.

3. Checkout of the code is initiated by the script and validation of code (if required) is
done. The process of building the image is partially automated using the standard tools
like AWS Pipeline.

4. Automated tests on the new image are run. A few sample experiments are run, so
that the image is tested for expected results against; output files are validated (e.g.
experimentInfo.out, modelName.out and .dat files)

6Official DockerHub NSP Image https://hub.docker.com/r/karolchlasta/genesis-sim/tags

https://hub.docker.com/r/karolchlasta/genesis-sim/tags
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Table 5.1 Full list of scripts in Neural Simulation Pipeline.

Component User Scripts Container Scripts
Simulation Preparation buildNspImage.sh configAWSCLI.sh

listModels.sh (.ps1) validatePositiveInteger.sh

loadModels.sh (.ps1) validateRealNumber.sh

pullNspImage.sh (.ps1) validateRange.sh

pushNspImage.sh

runUnitTest.sh (.ps1)

runUnitTestCheck.sh

startNspContainer.sh (.ps1)

getAWScredencials.ps1

Simulation Execution loginNspContainer.sh (.ps1) runSim.sh

runSimLocally.sh (.ps1) runSimLocally.sh

runSimRemotely.sh (.ps1) runSimulationsManagerS3.sh

runSampleSim.sh (.ps1) showStat.sh

showNspQueue.sh (.ps1) showSystemInfo.sh

calculatePeriod.sh

writeDebug.sh

writeOutput.sh

Simulation Post-processing downloadSim.sh (ps1) downloadSim.sh

listSim.sh (ps1) downloadModel.sh

showNspContainerLogs.sh (.ps1) listSim.sh

stopNspContainer.sh (.ps1) saveStat.sh

deleteNspImages.sh (.ps1)
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Fig. 5.8 Schematic, high-level view of Neural Simulations Pipeline.

5. Deployment to a Test environment is initiated within the Compute Infrastructure (using
a Test container from the top of Fig. 5.8).

6. Full simulation tests of GENESIS programme are run against the model deployed to
the test environment (e.g. target model, reduced simulation time for the neural system).

7. GENESIS programme is deployed to for a production run: on-premise or in the cloud
(larger instance).

8. The NSP can be run for the experiments with or without containerisation.

The NSP facilitates an automated testing of the simulation code (models) through ru-
nUnitTest.sh and runUnitTestCheck.sh.These files contain sample tests. If a new model is
developed, then the new test scripts might need to be created in an analogous way. Ideally the
model will have full test coverage, what gives confidence that a given model is tested, and any
bug is identified early in the development process. Applying this best practice is especially
important for the long running brain simulations, whose bugs could often only be identified
post-hoc e.g. after running for several days (or weeks) on expensive supercomputers. These
are three scripts to facilitate parameter validation: validateRange.sh, validatePositiveInte-
ger.sh, and validateRealNumber.sh). There are also other scripts supporting the simulation
setup and execution. All the 34 Bash, and 16 PowerShell NSP scripts are listed by component
in Table 5.1, as well as presented together with the cluster scripts in Appendix Table D.1.
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The NSP scripts are also described individually in sections Neural Simulation Pipeline User
Scripts (5.4.2) and Neural Simulation Pipeline Container Scripts (5.4.7) of this chapter.

As already mentioned, even the current version of NSP allows for a choice of simulation
engines. The pipeline was tested with standard and parallel GENESIS simulation engines.
The simulator is selected via the parameter of runExp.sh script with flag parallelMode = 1
for a parallel run.

The pipeline also allows to define and reuse certain variables that are universal and
independent from the simulation engine. We call them NSP variables. These variables
should be added to the model’s source code between the special character of “$ $” (e.g.
“$nspVariableName$”). As a result the models’ code can be more standardised, even across
different simulation engines. Moreover, new possibilities could be created for boundary
conditions investigation to improve brain simulation process, similarly to what was proposed
in [83]. The current version of the pipeline recognises twelve NSP variables:

1. $modelName$

2. $simSuffix$

3. $simDesc$

4. $simTimeStepInSec$

5. $simTime$

6. $columnDepth$

7. $synapticProbability$

8. $retX$

9. $retY$

10. $parallelMode$

11. $numNodes$

12. $modelInput$

There are two types of statistics managed by the pipeline automatically through the showSys-
temInfo.sh NSP script generating the aggregated simulationInfo.out per simulation. These
are:
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• Operating system level statistics - describing the execution environment incl. process
timings. These are generated using parameterised Linux commands of date, uname,
lshw, lscpu, lsblk, df, lspci and smem. The script also uses calculatePeriod.sh subscript
to calculate the exact time of simulation.

• Simulation engine specific statistics - they are triggered by the NSP through GENE-
SIS showstat routine7.

The conceptual components in NSP are:

• Testing Framework: NSP image testing (regression testing); unit, integration, smoke
testing (a group of new components combined to produce an output at a shorter
simulation time) through dedicated scripts.

• Source Control Management: Author decided to use a Git repository to store the GEN-
ESIS programme code, hosted at GitHub, but any other source control management
systems could be used. This repository will be synchronised with AWS S3 through
scripts.

• CI/CD tool: NSP uses a partially automated AWS Pipeline for cloud deployment.
Other tooling could be used (e.g. GitHub Actions), as long as it supports executing a
shell command as part of the build.

• Compute Infrastructure: on-premise or in-cloud.

A best practice encouraged by the Neural Simulation Pipeline is Test Driven Develop-
ment [9] (TDD). This practice requires writing tests before writing the GENESIS (or any
other) simulation programme. Although such form of programming requires a shift in the
mindset of a model developer, in author’s view this additional effort is justified by the longer-
term benefits brought into the project through improved standardisation and automation. To
elaborate on that, the practice of preparing a bio-cybernetic model often requires considering
the model functionality, and the output, before designing the final shape of a complex neural
network. In such cases, NSP promotes so called “loose coupling”, by allowing the model
developer to start thinking outside a single simulation engine, through applying the set of
unified NSP variables.

As presented in Fig. 5.8, there are a few steps in the pipeline and the Compute Infrastruc-
ture. In order to build a Neural Simulation Pipeline we conceptually also need the following
items:

7GENESIS showstat routine http://genesis-sim.org/GENESIS/Hyperdoc/Manual-25.
html#showstat

http://genesis-sim.org/GENESIS/Hyperdoc/Manual-25.html#showstat
http://genesis-sim.org/GENESIS/Hyperdoc/Manual-25.html#showstat
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• GENESIS programme tests: these tests will call and validate all the elements of the
simulation programme, so all script file that relate to a single GENESIS programme,
and all the objects of a simulated cybernetic system. These tests build on the unit
tests, and they will validate if a GENESIS programme code will run in context of the
production like environment, prior to executing all the simulation steps on a target
infrastructure.

• Prototyping with a Sandbox: the NSP tooling is not only a pipeline to deploy the
simulation code, but it also allows to execute the simplified simulation (e.g. certain
aspects of a cybernetic model), so that a model developer can run the simulation code
from a local machine, as if the programme was deployed to a large supercomputer of a
simulation cluster. This is useful if one needs to ensure that a model is properly tested
prior to executing it on an expensive (cost-wise or time-wise expensive) computer
infrastructure in order to test all aspects of the system, and to be able to see notifications
about different experiment related statistics (e.g. about file storage or processes of
the simulation). The NSP pipeline ensures that all the elements are tested using the
predefined tests, and executed both on-premise, and in any remote cloud infrastructure.

• Model branching support: model developer might want to branch out a feature to work
on its different version. NSP supports this by allowing to use different branches in the
code repository. Each branch can be deployed to a different compute infrastructure.

• Automated Tests: the initial testing of the model code ensures that syntax and semantics
of the model’s code are of an acceptable quality. The next step is to ensure that all
the remaining aspects of the system are tested prior to deployment of the model for a
long term execution on a supercomputer or on a computational cluster. This process
resembles load testing, and ensures that our model is capable of performing well in
the target computational environment. These tests don’t need to be executed every
time, nevertheless they should run at least once prior to the deployment of model to
the target computational environment.

To conclude, thanks to adopting a CD paradigm into the neuronal simulations, the quality
of cybernetic models is expected to improve, as the model developers will receive feedback
faster. As the NSP automates individual actions, these actions are performed faster and
human error is eliminated. NSP therefore enables its users to benefit from the advantages of
the modern development practices like TDD and elements of CI/CD processes.
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The pipeline’s source code is stored in nsp-code repository available publicly at GitHub8.
This is the main application repository used for all the container builds, and it contains the
Dockerfile describing the automated build process for GENESIS (in nsp-server/Dockerfile).
The other repository used in the project is called nsp-model9. It stores the source code of all
the RetNet models used in our simulations.

The pipeline’s configuration is managed on different levels. The local Docker containers
are configured through the config.nsp file, while the remote AWS containers are configured
via Terraform configuration file (modules\ecs-service\variables.tf). The minimum required
configuration includes the AWS access and secrets keys for authentication, as well as the
basic metadata about the project incl. the scientist’s name, surname, email. This information
is automatically added to the simulation results. One of the useful NSP configuration
parameters is a debug mode flag, enabled via nsp_debug parameter.

To summarise, author haa built the NSP image for GENESIS simulator using the official
Canonical Ubuntu bionic (version bionic-2022101) from DockerHub10. The automated build
process installs: csh, g++, libxt-dev, libxt6, libxtst6, libxtst-dev, libxmu-dev, mpich, gcc,
bison, flex, libncurses5-dev, libxt-dev. As a result, both GENESIS and its parallel version
PGENESIS are compiled with all the dependencies, and our official, publicly available NSP
image can be found in DockerHub. The image uses 424.83 MB and can be pulled from the
DockerHub with the below command:

1 $ docker pull karolchlasta/genesis -sim:prod

Author welcomes new pushes of the updated NSP image with a ’test’ tag to DockerHub11,
so that they can go through a review process, and can be made available to the other members
of scientific community to facilitate their simulations.

Neural Simulation Pipeline User Scripts

Simulation Preparation Component

1. buildNspImage.sh - Bash script that clones the repository with the source code of
cybernetic models (nsp-model12) and builds a Docker image of the simulator from a

8NSP Code Repository, containing a source code of the pipeline https://github.com/
KarolChlasta/nsp-code.git

9NSP Model Repository, containing a source code of the simulations https:
//github.com/KarolChlasta/nsp-model.git

10Official DockerHub Linux Image https://hub.docker.com/_/ubuntu18.04
11Official DockerHub NSP Image https://hub.docker.com/r/karolchlasta/genesis-sim/tags
12NSP Model Repository, containing a source code of the simulations https:

//github.com/KarolChlasta/nsp-model.git

nsp-server/Dockerfile
modules\ecs-service\variables.tf
https://github.com/KarolChlasta/nsp-code.git
https://github.com/KarolChlasta/nsp-code.git
https://github.com/KarolChlasta/nsp-model.git
https://github.com/KarolChlasta/nsp-model.git
https://hub.docker.com/_/ubuntu 18.04
https://hub.docker.com/r/karolchlasta/genesis-sim/tags
https://github.com/KarolChlasta/nsp-model.git
https://github.com/KarolChlasta/nsp-model.git
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DockerHub registry (karolchlasta\genesis-sim13) by compiling the simulation software
with all the required libraries (from the ’main’ branch) and building the container
with the input tag name e.g. ’prod’ (production) tag. The script generates locally
usable container image with GENESIS and PGENESIS simulation engines, models
and build logs. The build logs are named using the ID of the build process (unique)
e.g. docker_build17048.log.

• Inputs:

(a) Tag name for the container: ’prod’, ’test’.

(b) Branch name with source code for the image.

(c) Login credentials to a remote Git repository with the source code of cyber-
netic model(s); only needed if the repository is not public. Currently: the
password to the nsp-model repository.

• Outputs:

(a) A ready to run Container image in the local repository of images.

(b) Build logs in folder called ’docker_build_logs’.

2. listModels.sh - Bash script that shows the model’s names loaded into NSP storage
service in Amazon S3.

• Inputs: N/A.

• Outputs:

(a) Model’s names loaded into NSP storage service in Amazon S3.

3. loadModels.sh - Bash script that downloads the content of the repository with models
(nsp-model14) and uploads them to the NSP storage service in Amazon S3.

• Inputs: N/A.

• Outputs:

(a) Remote code repository with models copied to the NSP’s storage service in
Amazon S3.

4. pullNspImage.sh - Pulls the NSP remote image to the local Docker repository.

13Official Docker Image Distribution Registry https://hub.docker.com/r/karolchlasta/
genesis-sim

14NSP Model Repository, containing a source code of the simulations https:
//github.com/KarolChlasta/nsp-model.git

https://hub.docker.com/r/karolchlasta/genesis-sim
https://hub.docker.com/r/karolchlasta/genesis-sim
https://github.com/KarolChlasta/nsp-model.git
https://github.com/KarolChlasta/nsp-model.git
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• Inputs:

(a) Image tag name (default karolchlasta/genesis-sim:$TAG_NAME).

• Outputs:

(a) Image in the local Docker repository.

5. pushNspImage.sh - Bash script that pushes a tested image to the remote Docker registry
(karolchlasta\genesis-sim:input_tag_name).

• Inputs:

(a) Tag name of the local image to be pushed to a remote Docker registry
(repository of images).

• Outputs:

(a) Container ’prod’ image in the remote Docker registry.

(b) Build logs in the folder docker_build_logs.

6. runUnitTest.sh - Bash script that runs a few simple simulations to validate a new
container image. The script is designed to automate a regression test, to check if the
simulation engine works as expected, after the changes to the image definition have
been applied.

• Inputs:

(a) The container’s unique name; for the existing container, that we want to test
on (default is the latest container created).

• Outputs:

(a) Simulation results (all output files) uploaded to the Pipeline’s storage service
in Amazon S3.

(b) The file historyOfSimulations.nsp containing the execution history of all the
batch simulation commands.

7. runUnitTestCheck.sh - Bash script that checks for the completeness of data generated
by the simulation.

• Inputs:

(a) Name of simulation model.

(b) Name of simulation pattern.

(c) URI of simulation folder name with results stored in Amazon S3.
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• Outputs:

(a) Simulation results uploaded to storage service in Amazon S3.

(b) Confirmation of the completeness of the simulations written to a standard
output.

8. startNspContainer.sh - Bash script that starts the NSP container based on the image
with a given tag. the name of the container will be nsp_genesis.

• Inputs:

(a) Tag name (default ’prod’).

(b) Unique flag allows to create another container with an unique name nsp_genesis_process_id.

(c) Config file with NSP configuration.

• Outputs:

(a) Running container.

9. getAWScredencials.ps1 - PowerShell script that gets an AWS session token and returns
AWS credentials. Useful if the development machine runs on Windows.

• Inputs: N/A.

• Outputs:

(a) AWS AccessKeyId.

(b) AWS SecretAccessKey.

(c) AWS SessionToken.

Simulation Execution Component

1. loginNspContainer.sh - Bash script that allows to login to the NSP container console
based on the unique name or id.

• Inputs:

(a) The container’s unique name or id; for the existing container, that we want
to show console output (default the latest created container).

• Outputs:

(a) Output of the Container’s console.
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2. runSimLocally.sh - Bash script for running NSP simulations in a batch mode on
the local container. The script load input simulations file to the local queue of the
input container. The script is designed to check if a simulation engine is running (by
default every 3 minutes); if so it executes the next simulation command from the input
localQueue.nsp file.

• Inputs:

(a) The container’s unique name; for the existing container, that we want to test
on (default is the latest container created).

(b) The file localQueue.nsp with commands for a simulation engine.

• Outputs:

(a) Simulation results uploaded to the Amazon S3.

(b) The file historyOfSimulations.nsp containing execution history of all the
batch simulation commands uploaded into Amazon S3.

(c) The file globalStatistics.nsp containing summary of execution results of all
the batch simulation commands uploaded into Amazon S3.

3. runSimRemotely.sh - Bash script for running NSP simulations in a batch mode in AWS
cloud. The script load simulations file to S3 remote NSP file. Simulations will be taken
by container for simulation. Script is running (by default every 3 minutes); if so it
executes the next simulation command from the input remoteSimulationQueue.nsp file.

• Inputs:

(a) The file remoteSimulationQueue.nsp with commands for a simulation engine.

• Outputs:

(a) Simulation results uploaded to the Amazon Simple Storage Service (S3).

(b) The file historyOfSimulations.nsp containing execution history of all the
batch simulation commands uploaded into Amazon S3.

(c) The file globalStatistics.nsp containing summary of execution results of all
the batch simulation commands uploaded into Amazon S3.

4. runSampleSim.sh - Bash script for running a few sample NSP simulations directly by
container simulator. Script is designed to help the user to quickly check the whether
the configuration of NSP is correct.

• Inputs:
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(a) The container’s unique name; for the existing container, that we want to test
on (default is the latest container created).

• Outputs:

(a) Simulation results uploaded to the Amazon Simple Storage Service (S3).

(b) The file historyOfSimulations.nsp containing execution history of all the
batch simulation commands uploaded into Amazon S3.

(c) The file globalStatistics.nsp containing summary of execution results of all
the batch simulation commands uploaded into Amazon S3.

(d) Simulations results downloaded to the current folder.

5. showNspQueue.sh - Bash script for showing the content of remote or local container
queue. The script allows to check how many simulations are waiting for execution.

• Inputs:

(a) parameter local indicating that we want to check how many simulations
waiting in local queue for execution by the input container.

(b) parameter remotely indicating that we want to check how many simulations
waiting in local queue for execution by the input container.

(c) The container’s unique name; for the existing container, that we want to test
on (default is the latest container created).

• Outputs:

(a) content of container local queue or remote queue from Amazon S3.

Simulation Post-processing Component

1. listSim.sh - Bash script that shows the simulation’s names loaded into NSP storage
service in Amazon S3. Script requires AWS command line interface installed on the
local computer and setup communication to AWS cloud via access and secrets keys:
aws_access_key_id, aws_secret_access_key.

• Inputs: N/A.

• Outputs:

(a) Simulation’s names loaded into NSP storage service in Amazon S3.

2. showNspContainerLogs.sh - Bash script that shows the console output of the running
NSP container based on the unique name or id.
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• Inputs:

(a) The container’s unique name or id; for the existing container, that we want
to show console output.

• Outputs:

(a) Output of the Container’s console.

3. stopNspContainer.sh - Bash script that stop and delete the NSP container based on the
name or id.

• Inputs:

(a) The container’s unique name or id; for the existing container, that we want
to stop and delete (default latest created container).

• Outputs:

(a) Deletion of the container.

4. deleteNspImage.sh - Bash script that delete NSP images based on the source repository
karolchlasta/genesis-sim.

• Inputs:

(a) N/A.

• Outputs:

(a) Deletion of the all NSP Docker Images.

5.4.3 Containerisation with Docker

Author believes that the problem of building, testing and deploying computer simulation
models, as well as their different software dependencies could be resolved using a container
platform like Docker [162]. Docker is the most popular container platform; as suggested in
the recent IDC’s white paper [40], it has already attracted “a significant amount of industry
recognition”, and it has the opportunity to “define the road map for all container platforms”
as it runs on almost all CPU types and hardware platforms. It also has the potential to become
a key component of “all the enterprise IT environments globally”, due to its operating system
neutrality. The same report mentions that “the container revolution is under way”, with a
forecast of 1.8 billion enterprise container instances deployed by 2021. Containerisation
makes it possible to use provider-agnostic computing (IaC) in the way that the required
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Fig. 5.9 Detailed experiment workflow in Neural Simulation Pipeline.
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resources can be specified in a simple configuration file for multiple deployments to different
hardware architectures [172].

As mentioned in the previous paragraph, Docker is growing in popularity and becoming
a leading container platform globally. Nevertheless, in order to successfully use containers
in a production environment, a container orchestration system is needed. Such a system
“automates and simplifies provisioning, and deployment and management of containerised
applications”. As per IBM Cloud Education (2021) [62], Kubernetes is the most popular
container orchestration platform. The other popular container orchestration tools include
Docker Swarm and Apache Mesos. Although the containers can be deployed and managed
manually, most organisations automate the processes using pipelines [3].

There are several anticipated benefits of using a container platform. The top 7 of them
have been gathered by Kumina15, a consultancy specialising in open source software since
2007, and container technology since 2014. In author’s view they present [38] a good
summary of all the potential benefits, encouraging container adoption into any large scale
research infrastructure for neural computations:

1. Platform independence: build it once, run it anywhere. Listed as a major benefit,
because a container wraps up an application (e.g. neural simulation platform) with
all its configuration files and dependencies, allowing to run these applications more
easily in different environments (e.g. a development workstation, virtual servers, large
computational cluster, in public or private clouds). This is also a key benefit for
commercial organisations, who might seek an easy option to switch to another public
cloud provider to avoid vendor locking for their infrastructure.

2. Resource efficiency and density. Each container does not require a separate operating
system, as all containers share a single kernel. As a result, a containerised application
is expected to use much less resources than a regular Virtual Machine (VM). A VM
often requires several gigabytes (GB) in size, while a container usually measures
from dozens to hundreds of megabytes (MB) [174]. Smaller size allows for running
more containers than VMs using the same computing resources, what results in higher
utilisation of hardware, and thus a reduction of data centre costs.

3. Improved security through isolation with resource sharing. Container platform provides
isolation. In case an application crashes in one container, other containers with the
same application will continue running. The isolation also decreases security risks e.g.
in a scenario when the application is compromised or hit by a malware the negative

15Kumina’s website https://kumina.nl/why_docker_containers.

https://kumina.nl/why_docker_containers


150 Neural Simulation Pipeline

effects will not spread to the other running containers, and the affected container can
easily be killed and/or recreated.

4. Speed: start, create, replicate or destroy containers in seconds. Containers are much
smaller in size than VMs. They start in less than a second because they do not require
an operating system to boot. The other operations of creating, replicating or destroying
containers can also be completed within seconds. This speeds up the development and
release processes. It might also improve customer experience e.g. through faster bug
fixing in production.

5. Immense and smooth scaling. A major benefit of containers is that they offer the
possibility of horizontal scaling, meaning that one can add more identical containers
within a cluster to scale the application out. Container technology can provide so called
“smart scaling”, the number of containers needed can be adjusted in real time, that
reduce resource costs, or deliver the right size of a platform on-demand. Horizontal
scaling has been used by all major public cloud vendors for years now [62].

6. Operational simplicity. As in the container world the host OS does not need any
specific software or libraries to run its applications, it is easier to apply OS updates or
security patches, and to perform vulnerability management across the estate.

7. Improved developer productivity and development pipeline. Applying containers
eliminates environmental inconsistencies, what makes testing and debugging less com-
plicated and less time-consuming. This is because there are fewer (or no) differences
between development, test and production environments. The development pipeline is
simplified, with the process of changing application infrastructure reduced to (1) the
modification of the configuration file (often called a manifest file), (2) creating new
containers and (3) destroying the old ones; a process which can be executed in seconds.
Added version control makes it possible to roll-out or roll-back these environmental
changes with "zero" downtime, and to share the stable and tested containers across
different user groups faster.

Docker container platform is expected to be key to managing the ever-expanding “diver-
sity of IT environments” resulting from multiple operating systems, different hypervisors, a
combination of private and public clouds [40]. The same author suggests that “while Docker
seems to be the solution for cloud-native, micro-services oriented applications, the platform
is also well suited to many existing applications that could benefit from being modernised
and prepared for possible refactoring over time”. In author’s view this statement applies also
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to GENESIS [24] general purpose simulation platform (v2) that has been modernised to its
version 3 at least since 2015 under the umbrella of Neurospaces project16.

This thesis uses Docker platform, notably its Personal subscription. The personal sub-
scription is free for both education and reseach, as well as for businesses employing up to
250 employees, and whosse revenue is less than $10 million in per anum. The subscription
(as of July 202217) consists of:

1. Docker Desktop

2. Unlimited public repositories

3. Docker Engine + Kubernetes

4. 200 image pulls per 6 hours

5. Unlimited scoped tokens

Author selected this platform and this specific subscription, because it is both open source,
and popular among in the community of users and developers; (which in author’s view might
result in its stability), and as such it allows to reduce the risks and complexity that using
neural simulators often brings. In author’s view this approach contributes to reducing the
entry barriers to performing neural or (larger scale) brain simulations.

In spite of a wide enterprise adoption, there are significant problems with resource
allocations [50] when using Docker containers on HPC platform, and running simulations
using MPI communications with SLURM scheduler [238], a popular combination of tools
used for large scale simulations. These problems are resolved using additional front-ends
allocating the containers, or developing the alternative containerisation systems [10].

In this thesis author presents the Neural Simulation Pipeline (NSP), that is a simple
alternative, that developed with Bash [185] and PowerShell [109], and does not require
SLURM to execute simulations.

5.4.4 Docker Architecture

As summarised by Nickoloff and Kuenzlin [174], Docker platform uses the low-level kernel
internals to run containers using the Docker Engine. The process is transparent for applica-
tions, as a container is a ring-fenced area of operating system with limits imposed on how
much system resource it can use.

16Neurospaces Project http://neurospaces.sourceforge.net/.
17Docker Pricing & Subscriptions https://www.docker.com/pricing/.

http://neurospaces.sourceforge.net/
https://www.docker.com/pricing/
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The architecture of Docker containers relies on both namespaces and control groups.
Their relationship for two sample containers can be seen in the Fig. 5.10. Historically the
low-level Linux kernel constructs were available in Linux out of the box, but they were
difficult to use. This gap was explored by the Docker Engine, whose authors have made
using them easier. The engine was designed in a modular way, with two main interfaces: the
Command Line Interface (CLI) and Application Programming Interface (API). The engine
creates a layer of abstraction for all the required kernel internals, and creates a container that
is designed for hosting specific applications and their dependencies [162]. This contributes
to an increased level of automation within the application estate [3].

5.4.5 Docker Kernel Internals

Docker is multi-platform and works both under Windows and Linux. Docker containers have
been around since 2013. Their beginning dates back to Linux kernel internals introduced
to the kernel in 2009. Initially the use of Linux kernel internals required an in depth
knowledge of the kernel programming, and hence it was not popular in the industry and
among researchers. Docker containers on Linux are build on this stable foundation. The
two main building blocks for Docker container platform are namespaces and control groups.
Both of them are Linux kernel primitives. That’s why it’s widely assumed that the genesis of
modern containers happened on Linux operating system [162].

Windows platform has had a few internal projects to implement containers, like Draw-
bridge or Server Silos, but they have never been fully successful as admitted even by
Microsoft itself [35]. This is the reason, why nowadays both Linux and Windows use Docker
namespaces, which enforce isolation, and control groups that enforce their limits. This
combined functionality allows to take an operating system and “carve it into multiple isolated
virtual operating systems”. As such, the concept is similar to both hypervisor and virtual
machine [162].

With virtual machine concept we take a single physical machine with all of its physical
(hardware) resources, like CPUs and RAM, and define one or more virtual machines, each
granted a slice of a virtual CPU, virtual memory, virtual networking, and virtual storage. In
contrast, when using containers, we use namespaces take a single operating system with all of
its resources, which tend to be the higher-level constructs like file systems and process trees or
its users, and than carve all of them into multiple virtual operating systems called containers.
As a result, each container is assigned its own virtual (also often called ’containerised’) root
file system, its own process tree, its own base eth0 interface, and its own root user. Although
each container looks, and acts like an independent operating system (OS), they share a single
kernel on the host machine. Containers introduce a layer of isolation, so that the processes
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Fig. 5.10 Docker Architecture.
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inside of a container don’t know anything about any other processes in other containers. This
architecture is summarised in Fig. 5.10, with two sample containers A and B.

A Docker container is an organised collection of namespaces, that has its own process ID
(PID) table with PID 1, its own network namespace with an Eth0 interface, Internet Protocol
(IP) address, and its own root file system [174]:

• The PID namespace gives each container its own isolated process tree, complete
with its very own PID 1. In POSIX systems the init process owns PID 1 that is only
responsible for starting and shutting down the operating system. This capability allows
a process in one container to be completely unaware of any other processes.

• The Net namespace gives each container its own isolated network stack, by providing
its network interface card (NIC), IPs and routing tables. Mount gives a container its
own isolated root file system. Inter-process communication (IPC) lets processes in
a single container access the same shared memory, and it stops all processes from
outside of the container.

• The User namespace allows mapping accounts inside of a container into different users
on the host. The typical example is to map the container’s root user to a non-privileged
user on the host.

• The UNIX Timesharing System namespace (UTS) gives every container its own host-
name.

As a multi-tenant system is prone to a noisy neighbours problem, a solution to manage the
consumption of system resources was needed. Linux has used control groups to achieve that
since around 2009; the relevant kernel functionality was initially implemented to allow for
resource auditing and limiting [162]. Windows developed this idea later, around 2015, with
the introduction of Windows Job Objects approach [35]. The idea covering both operating
systems is to group the processes and to impose limits on them. With namespaces and control
groups implemented, both popular operating systems received the ability to host containers
for production workloads.

The last fundamental component of a container platform is a union file system. Such a file
system allows combining a few of read-only file systems or block devices with a write-able
layer on top, and presenting them to the operating system in a unified view. These three
elements: namespaces, control groups and union file system form the foundation for modern
containers [174].



5.4 Neural Simulations Pipeline 155

5.4.6 Docker Engine and NSP Scripts

Docker was created by a company called dotCloud. It originates from a a Python tool called
DC, that is an acronym foo for dot (’D’), and cloud (’C’). It was designed as a wrapper for
LinuX Containers (LXC) and aufs, with Aufs being a union file system, and LXC, a set of
tools for interfacing with the container primitives in the Linux kernel.

The Docker Engine is at the core of Docker platform. It exposes Docker API to improve
platform usability. It provides native orchestration with Swarm, on-premise secure registry,
Universal Control Plane with its IT Ops user interface, and Role Based Access Control
(RBAC) policies.

Docker platform uses Docker client to type in commands, and Docker daemon imple-
menting the REST API, with Containerd being container supervisor handling execution of
all the life-cycle operations, like start, stop, pause, and un-pause. The other component of the
platform is the OCI layer that does the interfacing with the kernel. This is how the original,
Linux version of the platform is designed. On Windows both the client and the daemon exist,
but there is so called compute services layer instead of the containerd in the OCI layer. Both
Linux and Windows versions of the Docker platform share exactly the same API. NSP uses
several Bash scripts to interact with the Docker Engine.

5.4.7 Neural Simulation Pipeline Container Scripts

Simulation Preparation Component

1. configAWSCLI.sh - Bash script to configure AWS credentials. AWS credentials can
normally be found in a user’s folder (.aws\credentials), a single AWS configuration is
needed per Region. This script might be useful if the development machine runs on
Windows.

• Inputs:

(a) AWS AccessKeyId.

(b) AWS SecretAccessKey.

(c) AWS SessionToken.

• Outputs:

(a) Config files in user folder (.aws\credentials).

2. validatePositiveInteger.sh - Bash script that checks if the parameter is a positive integer.

• Inputs:



156 Neural Simulation Pipeline

(a) Parameter to be checked.

• Outputs:

(a) Text sent to the standard output.

(b) Return “0”, if the check passes; return greater than zero if the check fails.

3. validateRealNumber.sh - Bash script that checks if the parameter is a real number.

• Inputs:

(a) Parameter to be checked.

• Outputs:

(a) Text sent to the standard output.

(b) Return “0”, if the check passes; return greater than zero if the check fails.

4. validateRange.sh - Bash script that checks if the parameter is inside the range.

• Inputs:

(a) Parameter to be checked.

(b) Begin of range (number).

(c) End of range (number).

• Outputs:

(a) Text sent to the standard output.

(b) Return “0”, if the check passes; return greater than zero if the check fails.

Simulation Execution Component

1. runSim.sh - Bash script that runs a simulation. It specifically:

(a) Downloads the model (sources) from the storage service in Amazon S3.

(b) Reads and validates simulation parameters from the user, sets the default parame-
ters.

(c) Parses the model source code, looking for the NSP parameters. The original
model file is saved as an .org file.

(d) Builds the simulation name using the concatenated NSP parameters of date (%Y-
%m-%d-%T), modelName, retX, retY, columnDepth, modelInput, simulation-
Time, simulationsuffix (e.g. 2022-11-14-143707_RetNet40_5x8_75_0_1_HPIDocker).
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(e) Runs the selected simulation engine (e.g. standard or parallel version).

(f) Prints the simulation execution status to the standard output.

(g) Saves environment statistics to the global statistics file.

(h) Saves the simulation files to the simulation folder in Amazon S3.

(i) Saves the simulation time (start and finish).

(j) Runs showSystemInfo.sh, and generates simulationInfo.out that contains all the
parameters, start/stop time and environment statistics, as well as the screen output
from the execution of the simulation, logs, and the errors (e.g. ModelName.err
with errors).

• Inputs:

(a) Model name.

(b) Simulation suffix (to indicate execution environment).

(c) Simulation description.

(d) Simulation time step [s].

(e) Simulation time [s].

(f) LSM column depth (as described in Section 3.6).

(g) Synaptic probability (as described in Section 3.4).

(h) RetX (as described in Section 3.6).

(i) RetY (as described in Section 3.6).

(j) Parallel mode (“0” or “1” for parallel).

(k) Number of nodes (for parallel execution only).

(l) Model input pattern (input pattern, as described in Section 3.6).

• Outputs:

(a) SimulationInfo.out

(b) ModelName.out

(c) ModelName.err

(d) All the relevant .dat files, as defined in the model.

2. runSimulationsManagerS3.sh - Bash script for running simulations in batch mode. The
script checks (every 6 minutes) if a simulation engine runs; if not it executes the next
simulation command from the simulationsToRun.nsp file on Amazon S3.

• Inputs:
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(a) File simulationsToRun.nsp with NSP steering commands for simulation
engine(s).

• Outputs:

(a) Simulation results uploaded to Amazon S3.

(b) File historyOfSimulations.nsp with the history of execution.

3. showStat.sh - Bash script that prints % of simulation execution based on a defined
simulation step. Uses bash grep command on simulation’s .dat files.

• Inputs: N/A.

• Outputs:

(a) Text sent to the standard output.

4. showSystemInfo.sh - Bash script that prints the predefined OS statistics incl. informa-
tion on hardware, kernel, memory, network, block devices, file systems, available disk
space and active processes.

• Inputs: N/A.

• Outputs:

(a) Text sent to the standard output.

5. calculatePeriod.sh - Bash script that prints the simulation time calculated from two
timestamps.

• Inputs:

(a) start time of simulation.

(b) end time of simulation.

• Outputs:

(a) simulation time sent to standard output.

6. writeDebug.sh - Bash script that prints text to the console output with NSPDEBUG >

prompt depending on environment variable that is set in environment config file.

• Inputs:

(a) Text to be written in NSP output.

(b) nsp_debug environment variable.

• Outputs:
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(a) Text sent to the standard output.

7. writeOutput.sh - Bash script that prints text to the console output with NSP > prompt.

• Inputs:

(a) Text to be written in NSP output.

(b) nsp_debug environment variable.

• Outputs:

(a) Text sent to the standard output.

Simulation Post-processing Component

1. downloadSim.sh - Bash script to create a local copy (e.g. on the development worksta-
tion) of all the data for a given simulation, that is stored in NSP’s cloud storage service
(Amazon S3). Authorisation to the cloud resources happens via configAWSCLI.sh.. All
other NSP scripts use this script to download from the NSP’s storage service.

• Inputs:

(a) Amazon S3 URI (e.g. s3://nsp-project/2022-10-16-182851_2neurons_test).

• Outputs:

(a) A folder with all the data for a given simulation.

2. downloadModel.sh - Bash script to download model code that is stored in NSP’s
cloud storage service (Amazon S3). Model folder is located under following URI path
s3://nsp-project/models/genesis/

• Inputs:

(a) AWS URI folder path to the models store (e.g. s3://nsp-project/models/genesis/)

(b) Model name (e.g. 2022-10-16-182851_2neurons_test).

• Outputs:

(a) A folder with all the data for a given model.

3. listSim.sh - Bash script to show which simulations are currently loaded to NSP’s storage
service. Simulation is defined as a folder, that contains all the simulation parameters,
model(s) source code, outputs (all the data files), as well as logs and statistics.

• Inputs: N/A.
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• Outputs:

(a) Simulation names written to a standard output.

4. saveStat.sh - A Bash helper script that saves the global simulation statistics into the
Amazon S3 object storage. The script takes the simulator’s output (.out file), saves it
as a single row and transfers the file to the global stats file in the AWS public cloud18.

• Inputs:

(a) Path to globalStatistics.nsp downloaded from Amazon S3.

(b) Output file of the simulator with the results of simulation.

(c) Input parameters of simulation.

• Outputs:

(a) globalStatistics.nsp updated and uploaded to Amazon S3.

5.5 Neural Simulation Pipeline Experimental Evaluation

In order to evaluate the NSP author has performed several full-experimental cycles and shown
that the LSM models react differently to 3 different input patterns that are numbers (0, 1) and
letter (A). The evaluation involved performing a total of 54 simulations on the RetNet models
on which this PhD thesis reports. Author used NSP to measure the model execution time
(CPU Time), memory consumption as well as the number of spikes in each simulation run.
The exact results of these simulations are presented in Table 4.4 and Table 4.5. All the results
and accompanying statistics have been gathered through running NSP scripts throughout the
year 2022.

These aggregated, average results are presented in Figure 5.11, and Figure 5.12. They
vary significantly, depending on the model complexity (number of HH neurons) and the
execution environment, hence they were averaged per model. As a result, the figures present
how each execution environment performs against that average. The simulation execution
time (as measured by CPU time in seconds) varies from 2 minutes RetNet(8x5,1,25) to
28 hours RetNet(8x5,1,300) for the on-premise execution at HPI; and from 1 second for
RetNet(8x5,1,25) to 24 hours for RetNet(8x5,1,300), when run as containerised at HPI; and
from 4 seconds till 11 hours for the containerised AWS execution.

The AWS execution is over two times faster than the two alternatives at HPI. This pattern
is additionally confirmed by the speed of Docker image builds. For the five Docker image

18NSP’s object storage at Amazon S3: s3://nsp-project/simulations/globalStatistics.nsp

s3://nsp-project/simulations/globalStatistics.nsp
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Fig. 5.11 Average CPU time for each RetNet model (ranging in complexity from 1040 to
12040 Hodgkin–Huxley neurons) viewing 3 input patterns (0, A, 1), expressed as a percentage
of average CPU time across all execution environments for each RetNet model. Based on
Table 4.4 and Table 4.5.

builds, the average NSP_Genesis container build time was only 5.3 minutes at AWS, whereas
the same build at HPI took 12.40 minutes. Again, we notice a two-fold difference, which is
surprising, assuming a “similar” simulation setting.

The memory utilisation (as measured by RAM consumed) varies significantly from 19
MB for RetNet(8x5,1,25) to 16 GB for RetNet(8x5,1,300) execution on-premise at HPI;
from 26 MB for RetNet(8x5,1,25) to 4.6 GB for RetNet(8x5,1,300) executing through a
container at HPI, and from 68 MB to 17 GB for the containerised AWS execution. In the case
of memory consumption, author notices that the on-premise (direct) HPI execution is similar
to the containerised execution at AWS. Surprisingly, that consumption for the containerised
HPI execution is four times smaller, than in the other execution environments. On the other
hand, the memory utilisation for the smaller models (so with a neural column depth of 50,
75 and 100), that executed on-premise, without the container at HPI is four times smaller if
compared with their containerised execution at HPI.

Author compared the standard and containerised simulation setup on the same underlying
hardware. The results measured on the HPI on-premise infrastructure do not indicate any
major negative impacts of containerisation on the overall simulation performance. The
average time (CPU time) needed to complete the containerised simulations of our RetNet
models is 96.15% of the average simulation time needed to complete the same simulation on
the virtual machine. Interestingly, the opposite was measured for memory consumption, the
containerised simulation consumed 292% of the memory needed for a standard execution.
The performance overhead of containerised execution is invisible, so running computationally
intensive neural simulations seems even more appealing, especially assuming the scalability
and affordability of public cloud execution environments [92].
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Fig. 5.12 Average memory for each RetNet model (ranging in complexity from 1040 to 12040
Hodgkin–Huxley neurons) viewing 3 input patterns (0, A, 1), expressed as a percentage of
average Memory utilisation across all execution environments for each RetNet model. Based
on Table 4.4 and Table 4.5.

Fig. 5.13 Cost structure for 18 experiments run using Neural Simulation Pipeline on AWS
Public Cloud infrastructure.
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The execution of simulations with NSP in AWS public cloud environment allowed the
author to investigate the cost per simulation, as well as the overall cost structure for the
RetNet models. The overall cost structure is presented in Figure 5.13. We measured that
81.6% of the total cost is spent on AWS compute services (AWS ECS and Amazon EC2
spot instances). The rest of the cost is attributed to non-computational services: 3.1% on
data storage (Amazon S3), 9.8% on Domain Name System (AmazonRoute53), 1.6% on data
transfer, secure connection to GitHub 2.6% (AWS Secrets Manager), 1.3% on automation
(CodeBuild).

Author has also calculated the real cost of each simulation. Simulating a single second
of 1040 HH neurons using RetNet(8x5,1,25) costs on average USD 0.02, while the most
expensive RetNet(8x5,1,300) built with 12040 HH neurons costs USD 4 to execute. A
detailed cost per simulation is provided in Table 4.5.

5.6 Neural Simulation Pipeline Limitations

There are also a few other limitations in the current version of the Neural Simulation
Pipeline. Firstly, the current version, first official NSP Docker image with the latest version
of GENESIS simulation engines is relatively large. It requires 1.17 GB in the local repository,
and 424.83 MB in the remote registry (that is after compression, at DockerHub19. Author
believes that the image could be optimised by removing some non-critical operating system
tools and utilities.

Secondly, the current Neural Simulation Pipeline supports GENESIS and PGENESIS [24]
only. Author would like to create a version of the pipeline for each major [215] simulation
engine like BRIAN [87], NEST [82] and NEURON [103]/CoreNEURON [137]; as well as
other (e.g. functional) simulators like Nengo [17]. This will require a preparation of new
Dockerfile in the nsp-code repository.

Thirdly, at present all the NSP containers are configured to read the file with simulation
tasks from the Amazon S3 bucket at different moments in time. Nevertheless, a few containers
could theoretically fetch the same simulation, if they hit the file exactly at the same moment in
time. In the future, author wants to implement a proper semaphore mechanism for allowing,
or disallowing access to the simulation task. This problem could potentially also be resolved
using an Amazon SQS, a standard first-in-first-out (FIFO) queue service. Moreover, the NSP
proof-of-concept was tested with only the three containers reading the remote queue, and

19Official Docker Image Distribution Registryhttps://hub.docker.com/r/karolchlasta/
genesis-sim

https://hub.docker.com/r/karolchlasta/genesis-sim
https://hub.docker.com/r/karolchlasta/genesis-sim
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executing the simulations in parallel. More containers could be evaluated to report a detailed
performance of the solution.

Finally, author thinks that an important limitation of the NSP is that it does not provide a
service for multiple research teams at the same time, and does not enable interdisciplinary
work between different profiles of researchers. This additional functionality would likely
require a web-interface for simulation management, as well as the security model based
on a defined set of access rules for each role e.g. different for model developers and
neuroscientists.



Chapter 6

Summary and Conclusion

6.1 Summary

Neural simulation is a computational approach that involves building and running computer
models of the structure and function of the brain or parts of the brain. It can be used to study
the brain and how it works, as well as to explore and test hypotheses about brain function
in health and disease. Using neural simulation can be useful in studying and understanding
the complexity of certain CNS disorders, as it allows researchers to investigate and analyse
the brain’s structure and function in a controlled and precise manner [66]. This can help
to identify potential targets for therapeutic intervention and to test the effects of different
treatments or interventions on brain function. The large-scale simulations of biologically
realistic neural networks require large and expensive computational resources. Liquid State
Machines [147] are important in brain modelling and increasingly important in different
engineering applications [223].

The first goal of the study was to build a cybernetic model of the visual system using
a spiking neural network that would be simple enough to execute on SBCs, allow for easy
understanding of its operations, and at the same time it could illustrate the most important
functions of the visual cortex.

This thesis analyses the body of knowledge related to modelling the networks of spiking
neurons, and the visual system. It described the fundamental structures and mechanisms
involved in (1) the interaction of the different elements of the visual system and the visual
cortex in the brain, (2) discussed the computational models of neurons used in the process
and simulation frameworks, (3) presented its possible implementation using Liquid State
Machines, (4) performed simulations of neural models illustrating some aspects of the visual
system modelled as Liquid State Machine.
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The work is interdisciplinary, inspired and based on the analysis of numerous publications
related to neuroinformatics, computational neuroscience and biopsychology (e.g. in the
context of brain anatomy).

As the main contribution the author presents the Neural Simulation Pipeline (NSP). This
novel experimental setup allowed running neural simulation in both the cloud environment
and on-premise. In the background of the main work related to this PhD thesis, the author
was experimenting with a low-power computational cluster called Neural Simulations Cluster
(NSC) built with Raspberry Pi and ROCKPro64 boards to support the simulations in author’s
home environment. NSC allows developing and running parallel neural simulations at a
fraction of the time and cost of running them on a dedicated supercomputer, or even a
high-end workstation computer, while allowing for a more realistic development experience
in the same way it would be happening on large scale computational cluster, or a dedicated
supercomputer.

The NSP, a simple scientific workflow management system, based on a set of 18 Bash
scripts, that manages experiments and facilitates defining and executing them across different
simulation engines in a unified way. The authors managed to validate NSP by running it in
three different types of run-time environments (1) using containers in the AWS cloud, and
on-premise (2) on an HPI infrastructure and (3) directly on the operating system without
containerisation. This simple scientific workflow system has also successfully managed
the experiment queue, unified key experimental variables, collected data and experimental
statistics, as well as provided basic validation of experimental parameters, monitored experi-
ment execution, supported simulation code testing, and checked for the completeness of the
experiment results.

In order to evaluate the NSP author performed several full-experimental cycles and shown
that our LSM models react differently to 3 different input patterns that are numbers (“0”, “1”)
and letter (“A”). NSP was used to measure the model execution time (CPU time), memory
consumption as well as the number of spikes in each simulation run for the total of 54
experiments on the RetNet models reported in Chapter 4 of this thesis.

6.2 Future Directions

The current NSP requires a basic knowledge of the computer operating systems, ability to
run Bash or PowerShell scripts (and working knowledge of some AWS cloud services). In
future, the author would like to create a web application providing a simulation service using
NSP containers without the need for running any scripts. This would allow to expose the
NSP as a Scientific Workflow Management System to a wider community, gather feedback,
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and potentially also allow to perform a more extensive testing with (other than AWS) public
cloud services providers.

Author believes that NSP could lead to the enhanced planning and forecasting of costs for
the large-scale simulations across different public clouds. In the current version, the author
has only used the AWS Cost Reports, as a source of the cost information. Author envisions
that a trial run in a public cloud could help the computational neuroscience researchers with
their cost estimation. An automated trial run of a smaller model could also be a good proxy
for a full scale execution, and it would allow both easier and more accurate budgeting, apart
from just providing the researchers with simulation management and execution capabilities.

Author would like to create a version of the pipeline covering each major [215] simulation
engine like BRIAN [87], NEST [82] and NEURON [103]/CoreNEURON [137]; as well as
other (e.g. functional) simulators like Nengo [17].

Looking at these plans, author recognises that some simulators may suit better for running
in containers than the others [50]. Considering that, author thinks that the next simulator to
incorporate into the NSP is NEURON [103]/CoreNEURON [137]. It is the most popular
software for brain network simulations, if counting the number of entries in ModelDB [104].
Moreover, NEURON’s architecture and installation1 resembles that of GENESIS, with the
simulation setup requiring additional MPI libraries for parallel simulation.

The following one would be NEST2, slightly less popular, but capable of running thread-
parallel simulations “out-of-the-box” on multiprocessor computers with OpenMP [47]. For
NEST, the application of NSP could benefit scientists, who would want to execute distributed
simulations using MPI libraries.

Finally, although the BRIAN software has a monolithic architecture, it does not use
external modules or libraries, and as such it also does not use MPI parallelisation. The benefit
of using NSP could be in enabling this software to run simulations in parallel, on multiple
nodes through the mechanism of NSP queues.

The other area of future development for NSP is the adoption of the ModelDB [164],
rather than the approach involving the nsp-model GitHub repository. As a result, the process
of inserting a new model into the NSP could happen directly from the ModelDB database in
a standard way [104].

Apart from the scientific workflow, this PhD thesis described the structure and main
elements of the visual system from a biocybernetic perspective. In the subsequent research
author would like to simulate much larger models e.g. those built with millions of spiking

1NEURON Documentationhttps://nrn.readthedocs.io/en/8.2.2/install/install_instructions.
html

2NEST Guide for Parallel Computinghttps://nest-simulator.readthedocs.io/en/stable/
guides/parallel_computing.html

https://nrn.readthedocs.io/en/8.2.2/install/install_instructions.html
https://nrn.readthedocs.io/en/8.2.2/install/install_instructions.html
https://nest-simulator.readthedocs.io/en/stable/guides/parallel_computing.html
https://nest-simulator.readthedocs.io/en/stable/guides/parallel_computing.html
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HH neurons, as well as to present a more in-depth evaluation of the NSP using services
provided by different public cloud services providers.

6.3 Practical Significance

As already mentioned, the large-scale simulations of biologically realistic neural networks
require expensive computational resources [155, 66]. They create challenges with storing the
massive amounts of their data [66], as well as with developing, distributing, and maintaining
their cybernetic model codebase [49]. Both their configuration, and model deployment pro-
cess might present a significant barrier for many researchers tackling biocybernetic modelling.
This is due to both methodological and IT challenges [66], that include maintaining software
dependencies and executing computations on different hardware infrastructures. The task is
not trivial from a technical perspective, even when using such a well established simulation
engine as GENESIS [44].

The practical significance of NSP is in reducing entry barriers to numerical systems
modelling using the mid to large-scale simulations; with applications to both brain networks
(GENESIS), and brain bio-mechanics (Kinetikit). The framework could also be used to
improve experiment budgeting. NSP hides the complicated technical aspects of installing
and configuring simulation engines on different platforms, enabling the same model to be
easily run on-premise on different types of processors, and in-cloud using a predefined set of
service parameters. The system is intended to popularise the use of computer simulators in
brain research through its functionality summarised below.

NSP manages simulations and allows them to be saved and defined for different simulation
engines in a unified way. The framework provides both local and remote queues for executing
simulations. These queues can be executed regardless of the hardware platform, through
Docker containers running in the cloud, or on-premise.

The NSP also enables faster and easier analysis of experimental data. This is because of
four key reasons listed below:

1. All the simulation results are stored centrally using a single storage service.

2. They can be managed using a set of standard NSP scripts on both Linux and Windows
machines.

3. Cybernetic models can be equipped with the reusable NSP variables, independently of
a simulation programming language used.
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4. All the experimental data get partially pre-processed, by aggregating the results to-
gether with the statistics on the execution environment (e.g. simulation run-times,
detailed information about CPUs, memory and operating system processes, as well as
simulation engine specific statistics).

To summarise, the practical significance of NSP would be in reducing entry barriers to
numerical systems modelling and large-scale simulations through a Docker-based pipeline,
that could be executed across multiple compute infrastructures. The practical application of
the novel LSM-based RetNet system could be in pattern classification tasks for the industrial
or medical setting.

6.4 Key Insights

This PhD thesis explores the simulation setup in computational neuroscience. Author uses
GENESIS, a general purpose simulation engine for sub-cellular components and biochemical
reactions, realistic neuron models, large neural networks, and system-level models. GENESIS
supports developing and running computer simulations, but leaves a gap for setting up larger
and more complex models of today. The field of realistic models of brain networks has
outgrown the simplicity of earliest models. The challenges include managing the complexity
of software dependencies and various models, setting up model parameter values, storing the
input parameters alongside the results, and providing execution statistics.

Moreover, in the High Performance Computing context, public cloud resources are be-
coming an alternative to the expensive on-premises clusters. Author presents the Neural
Simulation Pipeline, that facilitates the large scale computer simulations and their deployment
to multiple computing infrastructures using the infrastructure as code (IaC) containerisa-
tion approach. He demonstrates the effectiveness of NSP in a pattern recognition task
programmed with GENESIS, through a custom-built visual system, called RetNet(8x5,1)
that uses biologically plausible Hodgkin–Huxley spiking neurons. The pipeline is evaluated
by performing 54 simulations executed on-premise, and through the Amazon Web Services
public cloud. The PhD thesis reports on the non-containerised and containerised execution
with Docker, as well as presents the cost per simulation in AWS. In author’s view the results
show that the Neural Simulation Pipeline can reduce entry barriers to neural simulations,
making them more practical and cost effective.

The results confirm no significant overhead of containerisation on CPU time for the
RetNet model. The containerised execution was actually faster, taking only 96.15% of the
average simulation time needed to complete the same simulation on the virtual machine.
Interestingly, the opposite was measured for the memory consumption, the containerised
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simulation consumed only 292% of the memory needed for a standard execution. The
performance overhead of containerised execution is negligible, that is promising for its future
applications in neural simulations.

Author also measured that the simulation of his own biological visual system that was
built of a significant number of 12040 HH neurons executed for 11.62 hours in AWS public
cloud environment, and costed USD 4 only. The other finding was that only 81.6% of the
total cost spent on AWS compute services was actually spent on real computations (AWS
ECS and Amazon EC2 spot instances).

Finally, the novel LSM system presented in this PhD thesis (called RetNet), whose
computational complexity was estimated to grow in polynomial time O(0.000679468∗n2−
1.09334∗ x+716.782), achieves both the accuracy and F1 Score of 81% with the readout
function based on Light Gradient Boosting Machine algorithm.

6.5 Conclusion

In his thesis, the author claimed that numerical simulations must integrate a robust model de-
velopment methodology, with adequate testing and simulation steering workflows to increase
scientific throughput, and improve utilisation of current and next-generation computational
infrastructure, available both on-premise and in-cloud. Author proposed to transform the
end-to-end computational experiment workflow from one that is non-universal and manual
to one that is standardised and automated through the novel Neural the Simulation Pipeline.

The pipeline, a simple scientific workflow management system, based on Docker and a set
of 50 scripts (34 written in Bash and 16 in PowerShell) manages simulations and facilitates
defining and executing them across different simulation engines and execution environments
in a unified way. The author validated the NSP by running it in three different types of
run-time environments: (1) using containers in the AWS cloud, (2) on-premise using the HPI
infrastructure and (3) directly on the operating system without containerisation. This simple
scientific workflow system has also successfully managed the simulation queue, unified key
experimental variables, collected data and experimental statistics, as well as provided basic
validation of experimental parameters, monitored simulation execution, supported simulation
code testing, and checked for the completeness of the simulation results.

The practical significance of NSP is in reducing entry barriers to the numerical systems
modelling and large-scale simulation execution through a Docker-based pipeline across
multiple computing infrastructures. The NSP provides a set of tools for automating the build
of GENESIS and PGENESIS from their source code to container images. The simulation
engines are bundled with all the necessary software libraries, what allows for flexible testing
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and deployment of simulations (understood as different cybernetic models) according to the
IaC principle.

NSP tools also facilitate the analysis of experimental data. All simulation results are
stored centrally, and available in a single, on-line storage. The experimental data gets partially
prepossessed, that facilitates further analysis by aggregating the results and enriching them
with additional information on the details of the execution environment, and run-time statistics
(e.g. detailed run-times, information on microprocessors, memory and operating system
processes).

Author evaluated the NSP using own Liquid State Machines RetNet models of up to 12040
HH neurons. The thesis explains how the containerised Docker-based pipeline designed
by the author allows the simulations to be developed, tested and simulated in either an
on-premise environment or in the public cloud environment. Finally, the thesis describes the
application of the novel idea for simulation management, that simplifies model development
and simulation across multiple execution environments. Author integrates this idea into the
Neural Simulation Pipeline, and applies it into his own simulations.

To summarise, the significance of NSP is in reducing entry barriers to numerical systems
modelling and large-scale simulations, with application to both brain networks (GENESIS),
and brain bio-mechanics (Kinetikit) simulations. The framework could also be used to
improve experiment budgeting. NSP hides the complicated technical aspects of installing
a simulation engine on different platforms, enabling the same model to be easily run on
different types of processors and in cloud computing with predefined service parameters.
Author hopes that the NSP presented in this PhD thesis will popularise the use of neural
simulators, and advance scientific workflows in brain research.
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A.2 Selected Formal Education
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• 2022: University College Dublin, Postgraduate, University Teaching & Learning at
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• Agile Project Management Foundation (1 exam), PRINCE2 Foundations (1 exam),
Certificate of LEAN Competency (1 exam)

A.5 Academic Experience & Achievements

Since 2018 in the process of building a long-term career in academia: 19 conference pre-
sentations, 13 different publications, including 2 in-review, 3 accepted for publication and 8
published. Conducted research in applied social and neuroinformatics independently, and as
part of a few research projects listed below.

Academic Collaboration

• 2021-23: Future SOC Lab (Service-Oriented Computing), Hasso-Plattner Institut,
Germany. Collaborating with prof. Andreas Polze and his team in the areas of in-
memory computing, cloud computing, and non-CPU (GPU, FPGA) computing:

– Received a computational grant for LSM simulations; now responsible for a
1.5 year research project “Exploring Spiking Neural Networks for Real-Time
Information Processing” (Project 125).
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• 2020-21: Mobility Research Centre, SWPS University, Warsaw, Poland. Collaborating
with dr Olga Czeranowska and her team in the (IT)mobility research project:
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– Researcher in (IT)mobility project financed by the Ministry of Science and Higher
Education in Poland under the 2019-2022 program called “Regional Initiative of
Excellence”, project number 012/RID/2018/19. Research completed in mid-2021.
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• FedCSIS 2022 – 17th Conference on Computer Science and Intelligence Systems,
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in social media entries”
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parallel simulations of mammalian visual system on Raspberry Pi”

• IEEE VR 2021 – Conference on Virtual Reality and 3D User Interfaces, Lisbon, Portu-
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and Mobile Touch for Large Virtual Display Interaction”

• HCist 2019 – International Conference on Health and Social Care Information Sys-
tems and Technologies, an Association for Information Systems affiliated conference,
Sousse, Tunisia (October 16-18th, 2019). Presented: “Automated speech-based screen-
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• 2019-23: Polish-Japanese Academy of Information Technology, Contracted Lecturer
for Advanced Multimedia Techniques and Introduction to Machine Learning

• 2021-23: Kozminski University, Research and Teaching Assistant focusing on technical
modules of Management & Artificial Intelligence programme

• 2020-21: University of Information Technology and Management, Olsztyn, Poland.
Designed, developed, and delivered three courses for the engineering students in com-
puter science and industrial management. Contracted Lecturer for Business Intelligence
Systems, Modern Database Systems and Multimedia Technologies.
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Table A.1 Author’s selected scientific peer-reviewed publications.

No Title Publisher Details Points
1 Neural Simulation Pipeline:

Enabling Container-based
Simulations On-Premise
and in Public Clouds.

Frontiers in
Neuroinformatics
(2023)

Volume 17,
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A Cloud-based Facebook
Social Chatbot for Migrant
Populations

FedCSIS - 17th Conference
on Computer Science and
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Annals of Computer
Science and Information
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Selected Topics
in Applied Computer
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Skłodowska University
Press (2021)
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4 Hybrid approach
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social media entries

PACIS - The Pacific
Asia Conference
on Information
Systems (2021)

PACIS 2021
Proceedings. 192
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Movement and Mobile
Touch for Large Virtual
Display Interaction

ACM Designing
Interactive Systems
Conference (2021)
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/10.1145/
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of dementia through
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Frontiers in Psychology
- Human Media
Interaction (2020)

https://doi.org/10.3389
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70

7 Automated speech-based
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using deep convolutional
neural networks

Elsevier Procedia
Computer Science (2019)

Volume 164, 2019,
618-628,
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20
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• Reviewer at:

– Neurocomputing Journal, ISSN: 0925-2312 (2022)

– International Symposium on Automation, Information and Computing (2021)

– Yearbook of the Poznan Linguistic Meeting, ISSN: 2449-7525 (2020)

• Professional Organisations:

– British Computer Society, Chartered Institute for IT - Professional Member
(MBCS)

– Association for Computing Machinery

– IEEE Computer Society Member

– Polish Information Processing Society (PTI Member)

Awards

• 2022 Award for the best PhD student at Polish Japanese Academy of Information
Technology

• 2022 Rector’s Special Award for Research Activities at Kozminski University

• 2021 Best Presentation Award at International Conference on Telemedicine & eHealth
for „Liquid State Machine for neuronal computations on High Performance Computing
systems”

• 2021 Award for the best PhD student at Polish Japanese Academy of Information
Technology

• 2020 Best Presentation Award at International Conference on Telemedicine & eHealth
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Appendix B

Building Neural Simulation Cluster

B.1 Bill of Materials for Neural Simulation Cluster

Building a SBC cluster requires hundreds of hardware components that have to be selected
and assembled prior to cluster testing. The items listed below are the complete list of
materials that the author selected and collected to build the Neural Simulations Cluster (NSC)
for this thesis.

A number of these materials could be supplemented by others (e.g. compatible). A
good example of such hardware are the micro USB cables and power supplies, that could
be replaced with individual power supplies of each SBC board, or even provided entirely
using each board’s GPIO expansion header. There is also the option to explore alternatives
for a switch / router, SD cards, case, and peripherals. Although this is not a definitive bill
of materials, all the key components needed to build the NSC, a SBC cluster supporting the
preparation of this thesis are listed in the Subsection B.1 below.

The costs of all the materials is the real cost found for the materials purchased since Feb
12th, 2021. By default author made purchases at Kamami.pl, one of the three authorised
Raspberry Pi re-sellers in Poland, and one of the most popular on-line electronics stores in
Poland. The design of the cluster had to change in early 2022, due to COVID-19 pandemic
causing the breakdown of supply chains. When author ordered more RPi boards for the
cluster on Jan 15th, 2022, he was soon informed that “the collection of SBC boards has to be
postponed” to the end of February 2022, only to be postponed again to March 18th, 2022
and cancelled due to “the lack of availability of the products”.

As a result, the author of this thesis had to change the approach to build the NSC from
using Raspberry Pi (RPi) boards presented in Table B.1 to ROCKPro64 (RPr), presented in
Table B.2.
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Table B.1 Hardware specification of Raspberry Pi 4 Model B.

Component Description

CPU 4 x Cortex-A72 (ARM v8) Broadcom BCM2711 64-bit SoC @ 1.5GHz
RAM 8GB LPDDR4-3200 SDRAM

Wireless Network 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE
Wired Network Gigabit Ethernet

Ports 2 USB 3.0 ports; 2 USB 2.0 ports
Raspberry Pi standard 40 pin GPIO header

2 × micro-HDMI ports (up to 4kp60 supported)
2-lane MIPI DSI display port & CSI camera port

4-pole stereo audio and composite video port
Video H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode)

Graphics OpenGL ES 3.0
Storage Micro-SD card slot for OS and data storage
Power 5V DC via USB-C connector & GPIO header (minimum 3A*)

Power over Ethernet (PoE) enabled.
2.5A power supply can be used if USB peripherals consume less than 500 mA

Operating temperature 0 – 50 degrees C ambient

Table B.2 Hardware specification of ROCKPro64.

Component Description

CPU 4 x ARM Cortex A53 cores @ 1.4GHz + 2 x ARM Cortex A72 cores @ 1.8 GHz
RAM 4GB LPDDR4-3200 SDRAM

Wireless Network N/A (Optional 802.11ac WiFi module with Bluetooth 5.0)
Wired Network Gigabit Ethernet

Ports 2 x USB 2.0, 1 x USB 3.0, 1 x USB-C with video out
ROCKPro64 standard 40 pin GPIO header, CMOS Sensor port
PCIe 4x open-ended slot, eDP port, PI-2 bus, Touch Panel port

Display Serial Interface port, Real Time Clock port, 3.5mm jack input
Stereo MiPi-SCI port for 12MP cameras, IR R/X port, Lithium battery port

Video H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode)
Graphics ARM Mali T860 MP4 GPU
Storage Micro-SD card slot for OS and data storage
Power 5.5mm barrel power (12V 3A/5A) port

Operating temperature 0 – 65 degrees C ambient
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Materials Required for Neural Simulations Cluster

• (1x) Wireless USB Keyboard and Mouse (Logitech K295 Silent Touch, Black),

– Cost: PLN 149 (as of Jan 20th, 2022)

• (1x) microHDMI Goobay 1m HDMI Cable, to connect a monitor:

– Cost: PLN 22 (as of Feb 11th, 2021)

• (1x) Raspberry Pi 4 Model B in the hardware configuration described in Table B.1:

– Cost: PLN 389 (as of Feb 11th, 2021)

• (1x) Radiator Type 37032 (Large):

– Cost: PLN 34.9 (May 26th, 2021)

• (1x) microSD card 32 GB class 10 (GOODRAM):

– Cost: PLN 94.1 (as of Feb 11th, 2021)

• (1x) Ethernet cable, 25cm UTP, Cat 6a:

– Cost: PLN 12.9 (Feb 11th, 2021)

• (1x) Micro USB-to-USB cable (Power)

– Cost: PLN 9.76 (Feb 11th, 2021)

• (1x) Official Raspberry Pi USB-C Power Supply, 5V (Spare):

– Cost: PLN 37 (as of Feb 11th, 2021)

• (3x) ROCKPro64 in the hardware configuration described in Table B.2:

– Cost: PLN 499.15, PLN 1497.45 in total (as of Feb 5th, 2022)

• (1x) Pico Cluster’s “High Power Enterprise Starter Kit” including:

– Transparent acrylic case

– Nuts and bolts with base cabling

– 5 port gigabit switch

– 80mm Fan



200 Building Neural Simulation Cluster

– Internal Power

– Cost: PLN 981 in total (as of Feb 6th, 2022)

• (4x) Ethernet Adaptor 270 Degree Female to Male Cat5e/Cat6:

– Cost: PLN 14.99, PLN 56.96 in total (as of March 12th, 2022)

• (4x) microSD card 128 GB class 10:

– Cost: PLN 92.08, PLN 368.32 in total (as of March 12th, 2022)

• Total cost of PLN 3 652.39, with VAT at 23% (PLN 840.05) is PLN 4 492.44.

B.1.1 Assembling Hardware Elements

Author built the Neural Simulations Cluster using the three RockPro64 boards, and a single
Raspberry Pi board. The reasons for using two different SBC board types are described
in Tables B.1 and B.2. The build process was started with preparing a three board stack,
according to the steps listed below. Author also used the best practice provided by PicoCluster
LLC [33], and their Pico 3H Starter Kit as a backbone for the NSC cluster.

1. Preparing and assembling the SBCs using a standoff. All the boxes with RPr SBCs
had been opened. In the first step author mounted all the heat sinks. As part of the
PicoCluster Starter Kit, each radiator had already been equipped with a sticky tape
allowing it to attach easily to the main microprocessor of each board. Each of the RPr
boards required the setup two radiators. After these were applied, the three RPr SBCs
were screwed together using the standoffs. As a result, the backbone of the NSC (the
main three RPr computational boards) was assembled, what is presented in Fig. B.1.

2. Mounting Power Distribution Unit (PDU) and power cables. The PDU in the Starter
Kit was a PicoCluster LLC’s custom 10 way, 16 A, 9 Ft. It had 10 Outlets, supply
voltage (Vac: 125 Vac). Author mounted the PDU to the side plate of the cluster using
long (9.53 mm) screws and nylon washers. After that each power cable was connected
to both the PDU and to each of the boards. To avoid cluster’s cabling setup to be too
unorganised, a cable tie was used to bind all of them together. The PDU is shown in
Fig. B.2.

3. Assembling power supply and its wiring. A natural place to mount the power supply
in most computer cases is to their back panels. The same, standard approach was
selected for this cluster case. Firstly, the power supply was mounted with screws and
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Fig. B.1 Neural Simulation Cluster’s three RPr SBCs screwed together using the standoffs.
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Fig. B.2 Neural Simulation Cluster’s power distribution unit and power cables.
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Fig. B.3 Neural Simulation Cluster’s A/C power supply and its wiring.

nylon washers to the back plate. Secondly, the A/C power connector was mounted
using the 6mm screws and the standard nylon washers. Thirdly, the power input wires
were connected to the power supply terminals on the right side. As per manufacturer’s
designation they are from the right to left: [L] power, [N] neutral, [G] ground. Finally,
the pre-wired leads of the board power and fan were connected to the left most
terminals. As per the manufacturer’s designation, these were from the left to the right:
[-V] ground, [+V] positive wires, that are presented in Fig. B.3.

4. Preparing the NSC’s case: the bottom plate, the left side plate with PDU, and the
right sight plate with the Gigabit Ethernet switch. The RPr board stack prepared as
part of Point 1 was mounted to the base panel using the 9.53 mm screws and standard
washers. Firstly, the board standoff was then attached to the upper right side of the
base plate in the way that the micro SD card slots can made available to the outside
of the NSC. Secondly, author mounted the PDU to the side panel using the 12.7 mm
screws, 3.175 mm nylon spacers, nuts and washers, as presented in Fig. B.2. Thirdly,
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Fig. B.4 Neural Simulation Cluster’s Gigabit Ethernet switch providing connectivity between
all the NSC nodes, and its cabling.

author mounted the cabling in the way that the right power cable attaches to the right
screw terminals, with the black cable plugged into [-], and the red mounted into the
right [+5 V], and attached the fan plugs (black wire) to the PDU’s fan connectors, as
presented in Fig. B.3. Fourthly, the author unboxed the switch package, positioned the
switch onto the right plate, and tightened it down with the nuts. As the next step, all
the network cables were connected into each RPr board, and to a port in the switch to
provide Gigabit Ethernet connectivity between all the NSC nodes. After that process
was complete, the switch was mounted to the right side plate, as shown in Fig. B.4.

5. Organising and finalising the NSC’s cabling. Firstly, author bent and positioned all
of the cables along the bottom of the base plate, placing them in the position towards
the back of the plate. Secondly, author plugged the black HDMI cable to the HDMI
port on the top RPr board. Thirdly, plugged the Ethernet cable to the top port on the
switch (black cable), and bent the cable towards the front of the cluster case. Fourthly,
author connected the switch power cable into the power port of the switch (black cable).



B.1 Bill of Materials for Neural Simulation Cluster 205

Fig. B.5 Neural Simulation Cluster’s internal cabling.

Fifthly, author connected the missing RJ45 Ethernet cable from the bottom slot of the
Gigabit switch into the RPi node mounted on the custom top plate (Fig. 5.4). Lastly,
author connected the remaining A/C power wires to the On/Off switch on the front
plate (red and white wires), and used the cable tie (in the centre) to bind the cabling
together, as shown in Fig. B.5.

6. Finalising the cluster case. Firstly, author mounted the Ethernet extension and the
HDMI cable to the front plate using the 9.53 mm screws and nylon washers. Secondly,
he mounted the power switch in the square hole of the front panel. Thirdly, the Gigabit
switch plat was assembled to both the base and side plates to form a cube, as shown in
Fig. B.6.

7. Adding the top panel and turning on the NSC system. The final step is to assemble all
the NSC panels together, by attaching the top panel to the base panel, screwing all the
plates together, and connecting the power cable (USB-C) and Gigabit network (RJ45)
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Fig. B.6 A view of Neural Simulation Cluster’s assembled front panel.
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cable to the top node. After this is completed, the whole NSC can be turned on, and
presents itself as in Fig. B.7.

The above instructions have shown how author built the complete Neural Simulations
Cluster. With all the hardware assembled, the micro SD cards can be inserted into each board
and start the cluster to configure the Neural Simulation Pipeline.

B.2 Configuring Neural Simulations Cluster

This subsection presents all the key steps needed to configure the Neural Simulations Cluster.

1. The initial step in the NSC configuration was to connect all the cluster nodes to each
other. Author configured the nodes in the hosts file. The below listing presents the
node layout of:

1 10.1.10.240 nsc0
2 10.1.10.241 nsc1
3 10.1.10.242 nsc2
4 10.1.10.243 nsc3

This was achieved through generating the SSH key on nsc0 (through genNscKeys.sh),
and copying the key to all other nodes of the cluster and add them to the known_hosts
file. The below listing presents this initial configuration that is applicable for each
node.

1 nspcluster@nsc0 :~ $ sh genNscKeys.sh
2 Generating public/private rsa key pair.
3 Created directory ’/home/nspcluster /.ssh’.
4 Your identification has been saved in /home/nspcluster /.ssh/

id_rsa.
5 Your public key has been saved in /home/nspcluster /.ssh/id_rsa.

pub.
6 The key fingerprint is:
7 a2:06:b8 :43:12: ee:28:aa:8d:97:2a:cb:ee:84:c5:55 nspcluster@nsc0
8 The key’s randomart image is:
9 +---[RSA 2048]----+

10 | E |
11 | . |
12 |. . |
13 |.+ . |
14 |oo+ . S |
15 |*o . . . |
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Fig. B.7 Neural Simulation Cluster is up and running with all the four nodes.



B.2 Configuring Neural Simulations Cluster 209

16 |*o .o |
17 |*+o. |
18 |@B. |
19 +-----------------+
20 The authenticity of host ’nsc1 (10.1.10.241) ’ can’t be

established.
21 ECDSA key fingerprint is c2 :69:58:03:80: c7:7e:ae:a4:97:c8:ee:4e:

f0:aa:88.
22 Are you sure you want to continue connecting (yes/no)? yes
23 /usr/bin/ssh -copy -id: INFO: attempting to log in with the new

key(s), to filter out any that are already installed
24 /usr/bin/ssh -copy -id: INFO: 1 key(s) remain to be installed --

if you are prompted now it is to install the new keys
25 nspcluster@nsc1 ’s password:
26

27 Number of key(s) added: 1

2. The second step is to log into the machine 2, with: $ sshnscluster@nsc1 and check
that the SSH key(s) have been added.

1 The authenticity of host ’nsc2 (10.1.10.242) ’ can’t be
established.

2 ECDSA key fingerprint is c2 :69:58:03:80: c7:7e:ae:a4:97:c8:ee:4e:
f0:aa:88.

3 Are you sure you want to continue connecting (yes/no)? yes
4 /usr/bin/ssh -copy -id: INFO: attempting to log in with the new

key(s), to filter out any that are already installed
5 /usr/bin/ssh -copy -id: INFO: 1 key(s) remain to be installed --

if you are prompted now it is to install the new keys
6 nspcluster@nsc2 ’s password:
7

8 Number of key(s) added: 1

3. The same step has to be repeated for machine 3, using: $ sshnscluster@nsc2

1

2 The authenticity of host ’nsc3 (10.1.10.243) ’ can’t be
established.

3 ECDSA key fingerprint is c2 :69:58:03:80: c7:7e:ae:a4:97:c8:ee:4e:
f0:aa:88.

4 Are you sure you want to continue connecting (yes/no)? yes
5 /usr/bin/ssh -copy -id: INFO: attempting to log in with the new

key(s), to filter out any that are already installed
6 /usr/bin/ssh -copy -id: INFO: 1 key(s) remain to be installed --

if you are prompted now it is to install the new keys
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7 nspcluster@nsc3 ’s password:
8

9 Number of key(s) added: 1

The same step has to be repeated for machine 4, using: $ sshnscluster@nsc3

1

2 The authenticity of host ’nsc4 (10.1.10.244) ’ can’t be
established.

3 ECDSA key fingerprint is c2 :69:58:03:80: c7:7e:ae:a4:97:c8:ee:4e:
f0:aa:88.

4 Are you sure you want to continue connecting (yes/no)? yes
5 /usr/bin/ssh -copy -id: INFO: attempting to log in with the new

key(s), to filter out any that are already installed
6 /usr/bin/ssh -copy -id: INFO: 1 key(s) remain to be installed --

if you are prompted now it is to install the new keys
7 nspcluster@nsc4 ’s password:
8

9 Number of key(s) added: 1

After that we add nsc0 to it’s known_hosts file, so that it can be accessed by SSH. That
is done through connecting to itself and then exiting back to the original shell.

1 nspcluster@nsc0 :~ $ ssh nsc0
2 The authenticity of host ’nsc0 (10.1.10.240) ’ can’t be

established.
3 ECDSA key fingerprint is c2 :69:58:03:80: c7:7e:ae:a4:97:c8:ee:4e:

f0:aa:88.
4 Are you sure you want to continue connecting (yes/no)? yes
5 Warning: Permanently added ’nsc0 ,10.1.10.240 ’ (ECDSA) to the

list of known hosts.
6

7 The programs included with the Debian GNU/Linux system are free
software;

8 the exact distribution terms for each program are described in
the

9 individual files in /usr/share/doc/*/ copyright.
10

11 Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY , to the
extent

12 permitted by applicable law.
13 Last login: Mon Aug 22 15:23:36 2022 from 192.168.1.100
14 nspcluster@nsc0 :~ \$ exit
15 logout
16 Connection to nsc0 closed.
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4. The final connectivity test ensures that all the NSC nodes can communicate with each
other. The script testNscNodes.sh, performs a $ d f −h command on all the nodes to
show available file systems and mount-points.

1 nspcluster@nsc0 :~ $ sh testNscNodes.sh
2 testing nsc3
3 Filesystem Size Used Avail Use% Mounted on
4 /dev/root 7G 3.3G 3.7G 47% /
5 devtmpfs 459M 0 459M 0% /dev
6 tmpfs 463M 0 463M 0% /dev/shm
7 tmpfs 463M 6.3M 457M 2% /run
8 tmpfs 5.0M 4.0K 5.0M 1% /run/lock
9 tmpfs 463M 0 463M 0% /sys/fs/cgroup

10 /dev/mmcblk0p1 63M 21M 43M 33% /boot
11 tmpfs 93M 0 93M 0% /run/user /1000
12 tmpfs 93M 0 93M 0% /run/user /109
13 tmpfs 93M 0 93M 0% /run/user /1001
14 testing nsc2
15 Filesystem Size Used Avail Use% Mounted on
16 /dev/root 7G 3.3G 3.7G 47% /
17 devtmpfs 459M 0 459M 0% /dev
18 tmpfs 463M 0 463M 0% /dev/shm
19 tmpfs 463M 6.3M 457M 2% /run
20 tmpfs 5.0M 4.0K 5.0M 1% /run/lock
21 tmpfs 463M 0 463M 0% /sys/fs/cgroup
22 /dev/mmcblk0p1 63M 21M 43M 33% /boot
23 tmpfs 93M 0 93M 0% /run/user /1000
24 tmpfs 93M 0 93M 0% /run/user /109
25 tmpfs 93M 0 93M 0% /run/user /1001
26 testing nsc1
27 Filesystem Size Used Avail Use% Mounted on
28 /dev/root 7G 3.3G 3.7G 47% /
29 devtmpfs 459M 0 459M 0% /dev
30 tmpfs 463M 0 463M 0% /dev/shm
31 tmpfs 463M 6.3M 457M 2% /run
32 tmpfs 5.0M 4.0K 5.0M 1% /run/lock
33 tmpfs 463M 0 463M 0% /sys/fs/cgroup
34 /dev/mmcblk0p1 63M 21M 43M 33% /boot
35 tmpfs 93M 0 93M 0% /run/user /1000
36 tmpfs 93M 0 93M 0% /run/user /109
37 tmpfs 93M 0 93M 0% /run/user /1001
38 testing nsc0
39 Filesystem Size Used Avail Use% Mounted on
40 /dev/root 7G 3.4G 3.7G 47% /
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41 devtmpfs 459M 0 459M 0% /dev
42 tmpfs 463M 0 463M 0% /dev/shm
43 tmpfs 463M 6.4M 457M 2% /run
44 tmpfs 5.0M 4.0K 5.0M 1% /run/lock
45 tmpfs 463M 0 463M 0% /sys/fs/cgroup
46 /dev/mmcblk0p1 63M 21M 43M 33% /boot
47 tmpfs 93M 0 93M 0% /run/user /1000
48 tmpfs 93M 0 93M 0% /run/user /109
49 tmpfs 93M 0 93M 0% /run/user /1001

5. We can adjust the size of root file system of the NSC nodes to reflect a proper size of
their SD cards. This can be done using the resizeNscFs.sh script.

1 nspcluster@nsc0 :~$ ssh nsc2
2 Welcome to Ubuntu 18.04.6 LTS (GNU/Linux 4.4.132 -1075 - rockchip -

ayufan -ga83beded8524 aarch64)
3

4 * Documentation: https :// help.ubuntu.com/
5

6 334 packages can be updated.
7 130 updates are security updates.
8

9 Last login: Thu Aug 25 16:29:09 2022 from 10.1.10.240
10 nspcluster@nsc2 :~$ sudo su -
11 root\@nsc2 :~# sh resizeNscFs.sh
12 Found the start point of mmcblk0p2: 143360
13 Re -reading the partition table failed .: Device or resource busy
14 Ok , Partition resized , please reboot now
15 Once the reboot is completed please run this script again
16 root@nsc2 :~# init 6
17 Connection to nsc2 closed by remote host.
18 Connection to nsc2 closed.
19 nspcluster@nsc0 :~$
20 Once all nodes come back , the script must be run a second time.

ssh to nsc2 , sudo to root , then run the resizeNscFs.sh script
. Once this is completed , then the /dev/root will be expanded
to full size. Exit twice to return back to nsc0. It will

look like this. Repeat for all 4 nodes.
21

22 nspcluster@nsc0 :~$ ssh nsc2
23 Welcome to Ubuntu 18.04.6 LTS (GNU/Linux 4.4.132 -1075 - rockchip -

ayufan -ga83beded8524 aarch64)
24

25 * Documentation: https :// help.ubuntu.com/
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26

27 334 packages can be updated.
28 130 updates are security updates.
29

30 Last login: Tue Aug 23 18:34:27 2022 from 10.1.10.240
31 nspcluster@nsc2 :~$ sudo su -
32 root@nsc2 :~# sh resizeNscFs.sh
33 Activating the new size
34 resize2fs 1.44.1 (24-Mar -2018)
35 Done!
36 Enjoy your new space!
37 root@nsc2 :~# exit
38 logout
39 nspcluster@nsc2 :~$ exit
40 logout
41 Connection to nsc2 closed.
42 nspcluster@nsc0 :~$

After executing the above steps the Neural Simulation Cluster is configured.

B.2.1 Cluster Configuration Steps

Primary Node

• Setting up the configuration on the first NSC node

• Setting up static IP address

• SSH between NSC nodes

• Creating a common user for all NSC nodes

• Generating SSH keys for the common user

• Creating and mounting drives

• Backup NSC (image of each SD card)

Subsequent Nodes

• Potential acceleration of long running simulations, or prototyping distributed models.

• Automatically mounting file-systems on boot-up

• All nodes use the same SD Card image, that can be resized.





Appendix C

Additional Information on Neuronal
Models

Table C.1 The standard RetNet simulation parameters for HHLSMs organised into five
groups.

Parameter Type Parameter Values

Main resistances Rx = 0.3 Ω, Rn = 0.33 Ω

Capacitance Cn = 0.01 F
Potential En = 0.07 V, Ek = 0.0594 V (soma compartment), Ek = 0.07 V (dendrite)

Conductance GK = 360 Ω−1 and GNa = 1200 Ω−1 (for each of the ionic channels)
Physical characteristics A soma with circular shape, diameter of 30 µ ,

and with dendrites and axon length of 100 µ
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Listing C.1 A code snippet presenting two GENESIS functions written to support the RetNet
model, the visual system described in this PhD thesis.

1 function make_circuit_2d_output(net , nx, ny , filename)
2 int i,j
3 create spikehistory {net}-history
4 setfield ^ filename {filename }. spike append 0 ident_toggle 1
5 for (i=1; i<={nx}; i={i+1})
6 for (j=1; j<={ny}; j={j+1})
7

8 addmsg {net}_{i}_{j}/soma/spike {net}-history SPIKESAVE
9

10 end
11 end
12

13 echo {net} spike activity saved to file {filename }.spike
14 end
15

16 function make_circuit_3d(protocell , net , nx, ny , nz)
17 str protocell
18 int i,j,k
19

20 for (i=1; i<={nx};i={i+1})
21 for (j=1; j<={ny};j={j+1})
22 for (k=1; k<={nz};k={k+1})
23

24 copy {protocell} {net}_{i}_{j}_{k}
25

26 position {net}_{i}_{j}_{k} { {array_minx} + ({ sep_x} * {i}) } \
27 { {array_miny} + ({ sep_y} * {j}) } \
28 { {array_minz} + ({ sep_z} * {k}) }
29 end
30 end
31 end
32 end
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Fig. C.1 A GENESIS code snippet explaining the implementation of synaptic stimulus
(patterns of "0" and "1") on the retina’s 8x5 neural grid.
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Neural Simulation Pipeline

D.1 Repositories

• https://github.com/KarolChlasta/nsp-code.git

• https://github.com/KarolChlasta/nsp-model.git

• https://github.com/KarolChlasta/nsp-cluster.git

D.2 Usage

D.2.1 Neural Simulation Pipeline Installation Steps

1. Install Docker engine:

(a) Install Docker engine from https://docs.docker.com/engine/install/.

(b) Log into your local Docker registry.

1 $ docker login userAccount

(c) Validate your Docker setup by downloading NSP docker image from DockerHub.

1 # Linux
2 ./ pullNspContainer.sh

2. Setup public cloud (AWS):

(a) Create a user account in AWS to access the data stored by NSP.

https://github.com/KarolChlasta/nsp-code.git
https://github.com/KarolChlasta/nsp-model.git
https://github.com/KarolChlasta/nsp-cluster.git
https://docs.docker.com/engine/install/
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(b) Create a technical user account with limited privileges, read/write access to
Amazon S3 only, that will be used by NSP scripts to push and pull simulation
data to a single location).

(c) Install AWS CLI from https://aws.amazon.com/cli/.

(d) Setup AWS CLI for the accounts created in steps (a) and (b).

3. Download nsp-code from GitHub:

(a) Clone nsp-code repository containing pipeline’s source code.

(b) Clone nsp-model repository containing source code of simulations.

4. Setup NSP via environment config file nsp-code/config.nsp

1 nsp_aws_access_key_id=YOUR_ACCESS_KEY
2 nsp_aws_secret_access_key=YOUR_SECRET_KEY
3 nsp_region=eu-west -1
4 nsp_debug =0
5 nsp_scientist_name=Karol
6 nsp_scientist_surname=Chlasta
7 nsp_scientist_email=chlasta@pja.edu.pl
8 nsp_project_info="Exploring Spiking Neural Networks for Real -

Time Information Processing"

5. Starting NSP container with a simulation engine:

1 # Linux
2 ./ startNspContainer.sh &

Neural Simulation Pipeline Post-installation Steps

1. Select model for your simulation.

2. Execute your simulation with NSP.

(a) Get the name of a working NSP container:

1 ./ showNspContainers.sh
2

3 CONTAINER ID IMAGE NAMES
4 fde8447cad99 karolchlasta/genesis -sim:prod nsp_genesis

(b) Check if the NSP container is configured by fetching the NSP model names
already loaded into S3 storage:

https://aws.amazon.com/cli/
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1 ./ listModels.sh
2

3 Container: 7d839b9be3c9
4 2neurons
5 RetNet40
6 RetNet784
7 liquid

(c) Execute a sample simulations on RetNet(8x5,1,25) for “0”, “A”, “1” patterns to
check if installation and setup is complete:

1 # Linux
2 ./ runSampleSim.sh
3

4 # Windows
5 ./ runSampleSim.ps1

(d) Note that NSP will print your selected simulation parameters after execution:

1 Parameters:
2 1. simulator = genesis
3 2. modelName = RetNet40
4 3. simSuffix = Windows11 -8GB
5 4. simDesc = RetNet40
6 5. simTimeStepInSec = 0.00005
7 6. simTime = 1
8 7. columnDepth = 13
9 8. synapticProbability = 0.1

10 9. retX = 5
11 10. retY = 8
12 11. parallelMode = 0
13 12. numNodes = 1
14 13. modelInput = A (12)

D.2.2 Neural Simulation Pipeline Simulation Execution Steps

1. NSP facilitates the validation of simulation’s input parameters. Four types of checks
on the input parameters are implemented. These are the validation of:

(a) a positive integer,

(b) an inside of a numerical range,

(c) a greater that value,

(d) a less than value.
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2. NSP saves all the simulation input parameters into the results repository. This is to
facilitate the registration of inputs/outputs, and improve the overall traceability of
results.

3. To execute simulation, get the name of your working NSP container:

1 $ docker ps
2 CONTAINER ID IMAGE NAMES
3 fde8447cad99 karolchlasta/genesis -sim:prod nsp_genesis

4. Select your simulation engine. At present, NSP allows for choosing between GENESIS
and PGENESIS simulation engines (note parallelMode = 1 for parallel execution).

5. Execute your simulation, using a set of inputs and parameters (with runSim.sh and
runSimulationsManager.sh; note the concept of NSP variables).

6. Monitor your simulation. A scientist can get information about the running simulation
from a few sources, namely by:

(a) Analysing partial simulation output files in the NSP’s central cloud data store,
that is accessible via a web browser (AWS Management Console), or AWS CLI.

(b) Directly monitoring the machine running the NSP container.

(c) Directly monitoring the NSP container.

i. Enter the NSP container using its interactive mode, to get access to the
command prompt in a running container:

1 # Linux
2 ./ loginNspContainer.sh

ii. Check the progress of simulation using a Linux/Unix tail command (display-
ing the last few, in this case 10, lines of simulation’s .dat files):

1 $ cd /usr/local/genesis -2.4/ simulationFolder
2 $ tail -n 10 *.dat
3 -rw-r--r-- 1 root root 440 Nov 10 08:13 RetNet40 -1-retina

.dat
4 -rw-r--r-- 1 root root 818 Nov 10 08:14 RetNet40 -1-column

.dat
5

6 RetNet40 -1-retina.dat:/ retina_net_4_8/soma/spike
0.004300

7 RetNet40 -1-column.dat:/ column_net_1_5_8_195/soma/spike
0.006300
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7. Save simulation results, statistics and errors (e.g. using saveStat.sh) to the NSP’s
central cloud storage service:

1 $ aws s3 copy . s3://nsp -project/simulations/globalStatistics.
nsp

2 $ aws s3 copy . s3://nsp -project/simulations /2022 -11 -06 -120002
_RetNet40_5x8_75_9_1_HPI -Docker/

Running an Official NSP Container with GENESIS

1. Clone nsp-code1 repository.

2. Build Docker production container from the official NSP image, using the ’prod’ tag.

3. Run the standard short simulation for testing (e.g. runUnitTest.sh).

4. On a successful test result (e.g. using runUnitTestCheck.sh), perform the local NSP
container image deployment; push the docker NSP container image from the local
images repository (with ’prod’ tag) to the DockerHub repository2.

Running Simulations with NSP from a local queue

1. Start your NSP container:

1 # Linux
2 ./ startNspContainer.sh &

2. Go to the downloaded or cloned nsp-code repository to its sub-folder /scripts/sh/.

3. To execute your simulation locally, prepare the simulation parameters and add the
commands to your local queue, by preparing localSimulationQueue.nsp. Sample
simulation commands for the localSimulationQueue.nsp are presented below:

1 runSim.sh --simulator genesis --modelName RetNet40 --simSuffix
First -Local -Run --simDesc RetNet40 --simulationTimeStepInSec
0.00005 --simulationTime 1 --columnDepth 3 --
synapticProbability 0.1 --retX 5 --retY 8 --parallelMode 0 --
numNodes 1 --modelInput 0;

2 runSim.sh --simulator pgenesis --modelName 2neurons --simSuffix
First -Local -Run --simDesc 2neurons --simulationTimeStepInSec
0.00005 --simulationTime 1 --columnDepth 3 --
synapticProbability 0.1 --retX 5 --retY 8 --parallelMode 1 --
numNodes 3 --modelInput A;

1Offical NSP Code Repository https://github.com/KarolChlasta/nsp-code.git
2Official DockerHub NSP Image https://hub.docker.com/r/karolchlasta/genesis-sim/tags

https://github.com/KarolChlasta/nsp-code.git
https://hub.docker.com/r/karolchlasta/genesis-sim/tags
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4. Run the script runSimLocally.sh to start the process of running your simulations from
the local queue (one after the other). This functionality is especially useful for long
running simulations.

1 # Linux
2 ./ runSimLocally.sh -f localSimulationQueue.nsp

Preparing for Cybernetic Model Development with NSP

1. Create a user account at DockerHub3, to be able to use published Docker images.

2. Install Docker Engine from Docker website4.

3. Log into your local Docker registry.

4. Create user account in the public cloud (AWS) for accessing results through NSP (S3)
bucket.

5. Create a technical user account with limited privileges (of read/write access to Amazon
S3 only), that will be used by NSP to push and pull simulation data to/from Amazon
S3 storage service.

6. Install AWS CLI.

7. Setup AWS CLI.

8. Clone nsp-code repository with NSP’s source code.

9. Clone nsp-model repository with cybernetic models’ source code.

10. Setup config file for the environment.

11. Run the NSP container.

Cybernetic Model Development with NSP

1. Design a cybernetic model by preparing its source code.

2. Add NSP model variables (e.g. $modelName$ or $simulationTime$). Sample code
with the NSP model variables can be found in the code listing below.

3DockerHub https://hub.docker.com/
4Install Docker from https://docs.docker.com/engine/install/

https://hub.docker.com/
https://docs.docker.com/engine/install/
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1 ...
2 float dt = $simulationTimeStepInSec$ // simulation time step in

sec
3 ...
4 make_circuit_3d /cell /column_net_1 $retX$ $retY$ $columnDepth$
5 make_circuit_3d_output /column_net_1 $retX$ $retY$ $columnDepth$

$modelName$ -$modelInput$ -column
6 ...
7 elif ( $modelInput$ == 1 )
8 make_synapse /input /retina_net_1_1/dend/Ex_channel 2 0
9 make_synapse /input /retina_net_2_1/dend/Ex_channel 2 0

10 make_synapse /input /retina_net_3_1/dend/Ex_channel 2 0
11 ...
12 echo Pattern 1
13 ...
14 // start simulation
15 step $simulationTime$ -time
16 ...

3. Add the new model to code repository (e.g. nsp-model).

4. Clone the nsp-model to a development workstation (Windows or Linux) in order to
load the models from the repository (that provides versioning), to the NSP’s Amazon
S3 (that provides storage for the pipeline).

1 $ git clone https :// github.com/KarolChlasta/nsp -model.git

5. Load the model(s) from your local repository to the Amazon S3 (loadModels.sh).

1 $ cd nsp -model
2 $ ./ loadModels.sh

6. Run the simulation by selecting the model (through its name; in the “/model” sub-
folder) and other relevant parameters, through the process described for runSim.sh.

7. Check the simulation’s output (note “/results” sub-folder below).

1 # Linux
2 ./ listSim.sh
3

4 PRE 2022 -11 -08 -083003 _RetNet40_5x8_50_T_1_HPI -Docker/
5 PRE 2022 -11 -08 -091505 _RetNet40_5x8_50_K_1_HPI -Docker/
6 PRE 2022 -11 -08 -164749 _RetNet40_5x8_50_J_1_HPI -Docker/
7 PRE 2022 -11 -08 -190216 _RetNet40_5x8_3_A_1_HPI -Docker/
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8 PRE 2022 -11 -08 -190931 _RetNet40_5x8_500_0_1_HPI -Docker/
9 PRE 2022 -11 -09 -150043 _RetNet40_5x8_13_0_1_HPI -Docker/

10 PRE 2022 -11 -09 -151850 _RetNet40_5x8_13_0_1_Windows11 -8GB/
11 PRE 2022 -11 -09 -215406 _RetNet40_5x8_200_0_1_HPI -Docker/
12 PRE 2022 -11 -10 -075753 _RetNet40_5x8_200_1_1_HPI -Docker/
13 globalStatistics.nsp

1 $ aws s3 ls s3://nsp -project/simulations /2022 -11 -09 -150043\
_RetNet40_5x8_13_0_1_HPI -Docker/model/

2

3 2022 -11 -09 16:00:57 5290 RetNet40 -old.g
4 2022 -11 -09 16:00:59 16788 RetNet40.g
5 2022 -11 -09 16:00:56 17263 RetNet40.g.org
6 2022 -11 -09 16:00:55 1088 cell.p
7 2022 -11 -09 16:00:58 14443 simulationInfo.out
8 2022 -11 -09 16:00:55 1961 functions.g
9 2022 -11 -09 16:00:54 13575 patterns.g

10 2022 -11 -09 16:00:53 1559 protodefs.g
11 2022 -11 -09 16:00:52 1249 start.sh
12

13 $ aws s3 ls s3://nsp -project/simulations /2022 -11 -09 -150043\
_RetNet40_5x8_13_0_1_HPI -Docker/results/

14

15 2022 -11 -09 16:02:10 721644 RetNet40 -0-column.dataut
16 2022 -11 -09 16:02:11 35200 RetNet40 -0-retina.dat
17 2022 -11 -09 16:02:12 250 RetNet40.err
18 2022 -11 -09 16:02:13 2283266 RetNet40.out
19 2022 -11 -09 16:02:15 14510 simulationInfo.out

D.2.3 Neural Simulation Pipeline Finalisation and Cleanup Steps

1. Retrieve the simulation results. Below is the command for downloading the simulation
files:

1 # Linux
2 ./ downloadSim.sh --uri s3://nsp -project/simulations

/2022 -11 -06 -120002 _RetNet40_5x8_75_9_1_HPI -Docker/

2. Retrieve simulation’s statistics only:

1 # Linux
2 ./ downloadSim.sh --uri s3://nsp -project/simulations/

globalStatistics.nsp
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3. Perform the data analysis.

4. Stop and delete the NSP container from your local store:

1 # Linux
2 ./ stopNspContainer.sh

5. Remove the NSP container’s image to save your disk space by running the below
command:

1 ./ deleteNspImages.sh

6. Perform your data analysis using the results recorded in NSP’s central simulation store.

D.3 Scripts
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Table D.1 Full list of scripts in Neural Simulations Pipeline and in Neural Simulation Cluster.

User Scripts Container Scripts Cluster Scripts
buildNspImage.sh calculatePeriod.sh resizeNscFs.sh

deleteNspImages.sh (.ps1) configAWSCLI.sh resizeNscNodes.sh

downloadSim.sh (ps1) downloadModel.sh restartNscNodes.sh

getAWScredencials.ps1 listSim.sh stopNscNodes.sh

listModels.sh (.ps1) runSim.sh testNscNodes.sh

listSim.sh (ps1) runSimLocally.sh genNscKeys.sh

loadModels.sh (.ps1) runSimulationsManagerS3.sh

loginNspContainer.sh (.ps1) saveStat.sh

pullNspImage.sh (.ps1) showStat.sh

pushNspImage.sh showSystemInfo.sh

runSampleSim.sh (.ps1) validatePositiveInteger.sh

runSimLocally.sh (.ps1) validateRange.sh

runSimRemotely.sh (.ps1) validateRealNumber.sh

runUnitTest.sh (.ps1) writeDebug.sh

runUnitTestCheck.sh writeOutput.sh

showNspContainerLogs.sh (.ps1)

showNspQueue.sh (.ps1)

startNspContainer.sh (.ps1)

stopNspContainer.sh (.ps1)
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